Table 2.
Algorithm | GA Features | Sensitivity | Specificity | Precision | Accuracy | Running Time (s) |
---|---|---|---|---|---|---|
LR | 13 | 0.64 ± 0.265 | 0.9 ± 0.079 | 0.8367 ± 0.162 | 0.7936 ± 0.132 | 0.159057 |
SVM | 10 | 0.56 ± 0.15 | 0.8714 ± 0.177 | 0.7733 ± 0.228 | 0.7462 ± 0.133 | 0.050138 |
RF | 6 | 0.64 ± 0.15 | 0.9179 ± 0.064 | 0.8833 ± 0.108 | 0.8089 ± 0.041 | 0.817011 |
LDA | 4 | 0.56 ± 0.16 | 0.8714 ± 0.131 | 0.77 ± 0.131 | 0.7449 ± 0.056 | 0.125044 |
LGBM | 11 | 0.72 ± 204 | 0.8893 ± 0.131 | 0.8367 ± 0.131 | 0.8218 ± 0.1 | 0.094271 |
XGB | 7 | 0.6 ± 204 | 0.9 ± 0.009 | 0.8 ± 0.106 | 0.7808 ± 0.08 | 1.63018 |
GA: genetic algorithm, logistic regression (LR), random forest (RF), support vector machine (SVM), linear discriminant analysis (LDA), light gradient boosting machine (LGBM), extreme gradient boosting (XGB).