Skip to main content
. 2022 Jul 18;14(14):3492. doi: 10.3390/cancers14143492

Table 2.

Comparative performance among different GA-based machine learning algorithms in predicting the TMB group.

Algorithm GA Features Sensitivity Specificity Precision Accuracy Running Time (s)
LR 13 0.64 ± 0.265 0.9 ± 0.079 0.8367 ± 0.162 0.7936 ± 0.132 0.159057
SVM 10 0.56 ± 0.15 0.8714 ± 0.177 0.7733 ± 0.228 0.7462 ± 0.133 0.050138
RF 6 0.64 ± 0.15 0.9179 ± 0.064 0.8833 ± 0.108 0.8089 ± 0.041 0.817011
LDA 4 0.56 ± 0.16 0.8714 ± 0.131 0.77 ± 0.131 0.7449 ± 0.056 0.125044
LGBM 11 0.72 ± 204 0.8893 ± 0.131 0.8367 ± 0.131 0.8218 ± 0.1 0.094271
XGB 7 0.6 ± 204 0.9 ± 0.009 0.8 ± 0.106 0.7808 ± 0.08 1.63018

GA: genetic algorithm, logistic regression (LR), random forest (RF), support vector machine (SVM), linear discriminant analysis (LDA), light gradient boosting machine (LGBM), extreme gradient boosting (XGB).