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Abstract

Seed inoculation with beneficial microorganisms has gained importance as it has been

proven to show biostimulant activity in plants, especially in terms of abiotic/biotic

stress tolerance and plant growth promotion, representing a sustainable way to

ensure yield stability under low input sustainable agriculture. Nevertheless, limited

knowledge is available concerning the molecular and physiological processes underly-

ing the root-inoculant symbiosis or plant response at the root system level. Our work

aimed to integrate the interrelationship between agronomic traits, rhizosphere micro-

bial population and metabolic processes in roots, following seed treatment with

either arbuscular mycorrhizal fungi (AMF) or Plant Growth-Promoting Rhizobacteria

(PGPR). To this aim, maize was grown under open field conditions with either optimal

or reduced nitrogen availability. Both seed treatments increased nitrogen uptake effi-

ciency under reduced nitrogen supply revealed some microbial community changes

among treatments at root microbiome level and limited yield increases, while signifi-

cant changes could be observed at metabolome level. Amino acid, lipid, flavone, lig-

nan, and phenylpropanoid concentrations were mostly modulated. Integrative

analysis of multi-omics datasets (Multiple Co-Inertia Analysis) highlighted a strong

correlation between the metagenomics and the untargeted metabolomics datasets,

suggesting a coordinate modulation of root physiological traits.

1 | INTRODUCTION

The world population is predicted to reach 9.7 billion by 2050

(DeSa, 2015) and, consequently, global demand for food and other

agricultural products is expected to rise by 50% (FAO, 2017), thus

requiring a marked increase in agricultural productivity. Cereal pro-

duction in the world is projected to reach 3054 Mt in 2029, and maize

yield is expected to increase the most (+193 Mt) (OECD/FAO, 2021).

Maize represents the second most important cereal globally in terms

of acreage and the first one for production, predominantly cultivated

in the USA and used to feed livestock and humans, in addition to bio-

ethanol (FAOSTAT, 2019).[Correction added on 16 May 2022: CRUI-CARE funding statement has been added.]
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Agriculture worldwide will need to increase its yields to meet the

growing demand also for maize-based products (OECD/FAO, 2021).

With this regard, intensive cropping systems will require sustainable

approaches to avoid the negative externalities normally linked to the

over-use of chemical inputs, such as biodiversity loss and water/soil

degradation (Panfili et al., 2019). In this framework, the use of plant

biostimulants in agriculture, recently normed by the Regulation

(EU) 2019/1009, may represent a sustainable tool to ensure yield sta-

bility under low input sustainable agriculture. Recently, positive

advances have been found for plant microbial biostimulant applica-

tion, reflecting advantageous implications for many agronomic and

physiological crop traits (Guerrieri et al., 2020; Guerrieri et al., 2021;

Rouphael et al., 2020). The most promising microbial biostimulants

include arbuscular mycorrhizal fungi (AMF), Trichoderma spp., and

plant growth-promoting rhizobacteria (PGPR) such as Azotobacter

ssp., Rhizobium ssp. and Azospirillum ssp. The inoculation of beneficial

microorganisms has gained remarkable importance, having been

proven to show a biostimulant activity in plants, especially in terms of

abiotic/biotic stress alleviation (Sangiorgio et al., 2020), growth pro-

motion (Nacoon et al., 2020), and improvement of food functional

quality (Ganugi et al., 2021a, 2021b). The putative mechanisms of bio-

stimulation include the provision of enzymatic activities and/or

release of small molecules and peptides (in turn affecting nutrients

uptake), the release of antimicrobials or quorum-sensing compounds,

and the modulation of plant root architecture (Fiorentino et al., 2018;

Lucini et al., 2019; Raaijmakers & Mazzola, 2012; Saia et al., 2020).

Despite the consensus on their effects, limited knowledge is available

to date concerning the molecular and physiological processes underlying

plant-inoculants symbiosis or regarding plant response at root system

level under field conditions. The latter information is relevant given the

pivotal role played by roots in coping with drought, nutrient deficiencies,

toxicants, and soil compaction (Ryan et al., 2016). Notwithstanding, the

plant dependence on its microbiota across all development stages is also

known, with several microbial strains thriving in the rhizosphere that can

affect plant health and productivity, as well as resistance to both abiotic

and biotic stresses (Colla et al., 2017). The interrelationships between root

agronomic traits, microbiota and metabolites remain largely unstudied,

and the assessment of the metabolomic changes in roots is necessary to

fully understand the tripartite interaction between roots, soil and microor-

ganisms underlying the biostimulant activity (Rouphael et al., 2020).

The lack of information about the interplay mechanisms between

roots and beneficial microorganisms can be related to the complex

and dynamic processes involved. However, the recent development

of new tools, including the integration of multiple omics datasets, has

paved the way for a deeper understanding of plant-microbe interac-

tions. Multivariate approaches such as Multiple Co-inertia Analysis

(MCIA) have been proposed to identify co-relationships between mul-

tiple high dimensional datasets, based on a covariance optimization

criterion (Min & Long, 2020). Nevertheless, despite the advances in

this field, this approach remained limited to human and food studies

(Afshari et al., 2020; Meng et al., 2014).

The present study aims at integrating root metabolomics and rhi-

zosphere metagenomics to investigate the interrelationships between

agronomic traits, rhizosphere bacterial community and root metabolic

processes in maize, following seed treatment with either AMF or

PGPR. To this object, MCIA has been used for data integration, com-

bining agronomic trait data, metagenomics analysis, and untargeted

metabolomics analyses.

2 | MATERIALS AND METHODS

2.1 | Experimental site, treatments, and crop
management

The field experiment started in June 2020, using maize (Zea mays L.),

and was conducted over the entire cropping season (until October

2020) at the CERZOO experimental station of Università Cattolica del

Sacro Cuore, in Piacenza, Northern Italy (45�00021.600N, 9�42027.100E;

altitude 68 m a.s.l.). The local climate is temperate (Cfa as Köppen

classification), with an average annual temperature of 13.2 �C and

annual precipitation of 837 mm. During the experiment, climatic data

were collected from an automated meteorological station positioned

close to the field (Figure S1). The soil is a fine, mixed, mesic Udertic

Haplustalf according to Soil Taxonomy (Soil Survey Staff, 2014). Soil

properties in the top 30 cm soil layer (mean values ± standard devia-

tion) were: organic matter 27.1 ± 0.5 g kg�1; pH (H2O) 7.5 ± 0.1; bulk

density 1.36 ± 0.5 g cm�3; sand 136 ± 15 g kg�1; silt 448 ± 33 g kg�1;

clay 416 ± 20 g kg�1; soil total N 1.7 ± 0.1 g kg�1; soil N-NO3
� 8.3

± 0.2 mg kg�1; soil N-NH4
+ 3.3 ± 0.3 mg kg�1; available P (Olsen)

41.4 ± 2.0 mg kg�1; exchangeable K (NH4
+ Ac) 197 ± 16 mg kg�1;

and cation exchange capacity 26.2 ± 0.9 cmol+ kg�1.

A split-plot (SP) design was arranged to test maize responses to two

commercially available biostimulant-based treatments, consisting of seed

dressing with either the AMF-based product Aegis Sym irriga

(Rhizoglomus irregulare BEG72 and Funneliformis mosseae BEG234, 700 sp

g�1 each species), or the PGPR formulation Bactrium (Bacillus megaterium

BM77 e BM06), all from Atens, Agrotecnologias Naturales SL (Tarragona,

Spain). The seed dressing was homogenized with the maize seeds using

an automatic mixer. The rate of seed dressing applied to the maize seed

(around 88,000 seeds ha�1) was 2 kg ha�1 for Aegis Sym irriga, and

2 kg ha�1 for Bactrium, according to the manufacturer's label specifica-

tions. Then, a commercially available protein hydrolysate (Trainer, from

Hello Nature SpA, Rivoli Veronese, Italy) was applied at the V6-V7 pheno-

logical stage by foliar spraying application. The main factor in the SP

design was the biostimulant treatment, with three levels: (1) T1, no seed

treatment as the Control; (2) T2, treatment with AMF; and (3) T3, treat-

ment with the B. megaterium PGPR formulation. The secondary factor

was the chemical N-fertilization rate (Urea 46%-N), with two levels:

(i) 230 kg N ha�1 as the 100% N-fertilization, and (ii) 160 kg N ha�1 as

the 70% N-fertilization). The 100% N-fertilization rate was estimated

according to the N balance, considering crop and soil-climate variables

(Sainju, 2017). The number of replicates was three (three blocks), with a

total of 18 sub-plots. The elemental sub-plot size was 160 m2 (25 m long

and 8 m wide).

The previous crop was maize. Tillage operations (i.e., 30 cm sub-

soiling followed by 15 cm rotary harrowing) were conducted during

the previous winter–spring season (between November 2019 and
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April 2020). Maize (hybrid LG Aaoitgeiz, FAO 400) was planted on

June 16, 2020, with 75 cm spacing between rows. The N-fertilizer

was applied once at the V4–V5 stage (July 17, 2020) and was incorpo-

rated into the soil during distribution. To prevent water stress, maize

was sprinkler-irrigated four times at doses of 25, 35, 35, and 40 mm.

A detailed description of irrigation water doses estimation from the

maize crop evapotranspiration, crop coefficients (Kc) calculation, and

crop irrigation requirements (CIR) is reported in Fiorini et al. (2020).

The field was treated with 0.4 L ha�1 of the pre-emergence herbicide

Adengo Xtra (Isoxaflutole 19.1% + Thiencarbazone-methyl 7.6%

+ Cyprosulfamide 12.7%) to control weeds. Maize was harvested on

October 8, 2020.

2.2 | Maize yield and N-uptake efficiency

Yield components of the maize crop were assessed by manually

harvesting a 10 m2 area per plot. Plants collected were weighed and

separated into grain and stover for biomass determination. Then, a

100 g sub-sample of each grain and stover sample was oven-dried at

65�C until constant weight to measure relative water content. Nitro-

gen (N) concentration for each sub-sample was determined by Dumas

combustion method with an elemental analyzer varioMax C:N

(VarioMax C:NS, Elementar). N-uptake in grain and stover was calcu-

lated by multiplying grain and stover yield by their N concentration.

N-uptake efficiency (NUpE; kg kg�1) was calculated as the ratio of

total plant N-uptake to N-supply according to L�opez-Bellido and

L�opez-Bellido (2001).

2.3 | Root sampling and analyses

Maize roots were sampled at anthesis, BBCH 69, on September

2, 2020 (79 days after sowing), following the procedures previously

reported in Maris et al., 2021. Briefly, a self-constructed “Shelby” tube
sampler of 7 cm diameter was pushed into the soil to collect an intact

0–15 cm soil core. Sampling occurred in each plot, at two positions on

the perpendicular of the crop row: 0 cm (on the row, i.e., close to the

base of the sampled plant but not including the maize stalk) and at

37.5 cm (mid-row). Then, root biomass was extracted from the sur-

rounding soil by washing in a hydraulic sieving-centrifugation device.

After extraction, roots were scanned at 600 dpi with the scanner

Epson Expression 10000xl, equipped with a double light source to

avoid roots overlapping. The determination of Root Length Density

(RLD, cm cm�3) and root diameter was performed using the software

winRHIZO Reg 2012. The Diameter Class Length (DCL, mm cm�3)

was then calculated for very fine (0.0–0.075 mm), fine (0.075–

0.2 mm), medium (0.2–1.0 mm), and coarse (>1 mm) diameters for the

whole soil profile, as adapted from Fiorini et al. (2018). After the anal-

ysis, the root samples were oven-dried at 65�C until constant weight

to measure root dry biomass. Root dry weight (RDW, mg cm�3) was

then computed as the ratio between the root dry biomass and the ini-

tial volume of the soil sample.

2.4 | Sampling and UHPLC/QTOF-MS untargeted
metabolomic analysis

Additional root samples were collected (on September 2, 2020) from

each sub-plot and isolated from the surrounding soil following the

procedures reported above. Then, clean roots were ground with liquid

nitrogen using pestle and mortar and extracted, as previously reported

by Rouphael et al. (2020). In brief, a 2 g aliquot was extracted in 10 ml

of 0.1% formic acid in 80% aqueous methanol using an Ultra-Turrax

(Ika T-25, Staufen) and successively centrifuged (12,000 g).

Untargeted metabolomics was concomitantly next carried out using a

UHPLC liquid chromatography system and a quadrupole-time-of-

flight mass spectrometer equipped with an electrospray ionization

source (UHPLC/QTOF), according to Ganugi et al. (2021a, 2021b). To

this aim, a 1290 LC system was coupled to a G6550 quadrupole-time-

of-flight mass spectrometer (Agilent Technologies). A water-acetoni-

trile reverse phase gradient elution (6–94% acetonitrile in 34 min) and

positive polarity SCAN acquisition (range 100–1200 m/z) were used

for chromatography and electrospray mass spectrometry, respectively.

Profinder B.07 software (Agilent Technologies) and the comprehensive

database PlantCyc 9.6 (Schläpfer et al., 2017) were used for compound

annotation by combining both the monoisotopic accurate mass and iso-

topic pattern (i.e., isotope spacing and ratio) and adopting a mass accu-

racy tolerance of <5 ppm, as previously described (Ceccarelli

et al., 2021). As referred by COSMOS Metabolomics Standards Initia-

tive (Salek et al., 2015), a putative Level 2 annotation was achieved.

Thereafter, annotated features were filtered by frequency to retain

compounds in at least 75% of replicates within at least one treatment.

2.5 | Rhizosphere bacterial community diversity

A third sampling was carried out from each sub-plot to analyze the rhizo-

sphere bacterial community. The soil particles adhering to roots, following

vigorous shaking, were carefully and aseptically collected using forceps at

the time of sampling into the Whirl-Pak (Nasco) sample bags and frozen

until further analysis at �20 �C. The whole soil DNA was then extracted

using the DNeasy PowerSoil Kit (Ref 12888–100, QIAGEN) according to

the manufacturer's protocol. The extracted DNA of the bacterial commu-

nity associated with plant roots was amplified by primers 343F (50-

TACGGRAGGCAGCAG-30) and 802R (50-TACNVGGGTWTCTAATCC-30)

targeting the hypervariable V3 and V4 regions of the bacterial 16S rRNA

gene (Maris et al., 2021). A two-step nested-PCR was applied, and condi-

tions used for reaction mix and amplification experiments were described

by Vasileiadis et al. (2015). The PCR products of the second step for all

samples were multiplexed in a single pool in equimolar amounts based on

the QuBit quantification data. The PCR products pool was then purified

using the solid phase reverse immobilization method of the

AgencourtAMPure XP kit (Beckman Coulter) and sequenced at Fasteris

SA (Geneva, Switzerland). The TruSeq rDNA sample preparation kit

(Illumina Inc.) was used for the amplicon library preparation, while the

sequencing reaction was performed with a MiSeq Illumina instrument

(Illumina Inc.) with V3 chemistry, generating 300 bp paired-end reads.
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The raw sequences data have been deposited in the Sequence

Read Archive of NCBI (accession number being assigned).

3 | STATISTICAL ANALYSES

3.1 | Maize yield, N-uptake efficiency and root
traits

A two-way analysis of variance (ANOVA) was performed with a mixed

effect model on (1) grain yield and grain N-uptake, (2) stover biomass

and stover N-uptake, and (3) NUpE. Maize treatment (T) and

N-fertilization (N) were selected as fixed factors, while the plot block

was the random effect of the mixed model. A repeated-measures

ANOVA was conducted with a mixed effect model on root traits

(diameter class length, DCL; root length density, RLD; and root dry

weight, RDW) selecting T, N and distance from the row (D) as fixed

factors and block as a random effect. The distribution of measured

variables was checked for normality using the Shapiro–Wilk test and

homogeneity of variances with the Levene's test. Data were log-

transformed prior to analysis when the ANOVA assumptions were

violated; then, Shapiro–Wilk and Levene's tests were performed again

on log-transformed data. Treatment means were compared using

Tukey's honestly significant difference (HSD) at p-value <0.05. Statis-

tical analyses were conducted using R 4.0.3. (R Core Team, 2020) with

nlme (Pinheiro et al., 2013) and multcomp (Hothorn et al., 2007)

packages.

3.2 | Metabolomics

The metabolomics dataset was elaborated using Mass Profiler Pro-

fessional B12.6 (Agilent Technologies, Santa Clara, CA) following

log2 transformation, normalization and baselining against the

median abundance of each compound (Miras-Moreno et al., 2020).

Metabolomic patterns across treatments were naively investigated

through unsupervised hierarchical cluster analysis (Euclidean dis-

tance, Ward's linkage) based on fold change (FC) values. The dataset

was then imported into SIMCA 13 (Umetrics) to perform the super-

vised orthogonal projections to latent structures discriminant

analysis (OPLS-DA), whose model was successively cross-validated

(CV-ANOVA) and inspected for outliers (Hotelling's T2). Thereafter,

model parameters, including the goodness-of-fit (R2Y) and

goodness-of-prediction (Q2Y), were recorded, and a permutation

test (N = 200) was carried out to exclude overfitting. The variable

importance in projection (VIP), calculated as a weighted sum of the

squared correlations between the OPLS-DA components and the

original variables, was used to select the most discriminant com-

pounds (VIP ≥1.3). Finally, to achieve information on the regulation

of these discriminant compounds, a Fold-Change (FC) analysis

(FC ≥ 1) was carried out, and the resulting values were exported to

the PlantCyc Pathway Tools software (Karp et al., 2009) for biologi-

cal and biochemical interpretations.

3.3 | Metagenomics

High-throughput sequencing data filtering, multiplexing and prepara-

tion for concomitant statistical analyses were carried out as previously

detailed (Połka et al., 2015; Vasileiadis et al., 2015). Paired-reads were

assembled to reconstruct the full V3-V4 amplicons with the “pan-
daseq” script (Masella et al., 2012), allowing a maximum of 2 mis-

matches and at least 30 bp of overlap between the read pairs.

Samples demultiplexing was then carried out using the Fastx-toolkit

(http://hannonlab.cshl.edu/fastx_toolkit/) and. Mothur v.1.32.1

(Schloss et al., 2009) was applied to remove sequences with large

homopolymers (≥10), sequences that did not align within the targeted

V3-V4 region, chimeric sequences out of quality criteria (Edgar

et al., 2011) and sequences that were not classified as bacterial ones,

after alignment against the Mothur version of the RDP training data

set. The resulting high-quality sequences were analyzed with Mothur

and R 4.0 (Team, 2012) was used for the following two main

approaches: the operational taxonomic unit (OTU) and the taxonomy-

based approach. For the OTU approach, sequences were first aligned

against the SILVA reference aligned database for bacteria (Pruesse

et al., 2007) using the NAST algorithm and a kmer approach (DeSantis

et al., 2006; Schloss, 2010), and then clustered at the 3% distance

using the average linkage algorithm. Canonical correspondence analy-

sis (CCA) was applied to assess the significance of different treat-

ments on the analyzed diversity of the samples with the statistical

analysis using the same software. OTUs having a sum of their abun-

dances across all samples of more than 0.1% of the total were

grouped into a single “rare OTUs” group. For the taxonomy based

analyses, sequences were classified into taxa using an amended ver-

sion of the Greengenes database (McDonald et al., 2012). Alpha diver-

sity indices results were subjected to the one-way analysis of

variances (ANOVA) and the means were statistically compared by the

least significant differences (LSD) test at p < 0.05 threshold using

CoStat Statistical Software (Version 6400, CoHort Software).

3.4 | Integrative analysis of maize roots traits,
microbiome, and metabolome datasets

Multiple Co-inertia Analysis (MCIA) was performed with the omicade4

package in Rstudio software (4.0.2 version) to identify the co-

relationships between multiple high-dimensional datasets, which con-

tained the same samples and were obtained through the agronomic,

metagenomic, and metabolomic analyses. Initially, OTUs and metabo-

lites with zero values in more than 90% of the samples were removed.

Successively, a principal component (PCA) was applied to each

multidimensional-omics dataset separately, transforming data into

comparable lower dimensional spaces. Finally, as previously reported

by Afshari et al. (2020), the variance structures were combined into a

single analysis to find a new axis on which the omics datasets could

be projected by maximizing the square covariance, according to

Afshari et al. (2020). Different shapes were used to represent the

three datasets in the MCIA graphical outputs (Figure 7), while
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different colors were adopted to highlight the treatments. Each shape

was connected by lines whose length was proportional to the diver-

gence between the data derived from the same sample.

3.5 | Correlation analysis

The correlation between metabolites and OTUs was calculated

using Pearson's rank correlation analysis, performed in Rstudio with

the rcorr function of the Hmisc package (Harrell Jr & Harrell

Jr, 2019). The first 50 more discriminant metabolites and OTUs

were selected for the analysis using the VIP approach to identify

the most significant inter-omic correlations following the

biostimulant treatments. Differences were considered significant

when p-value <0.05.

4 | RESULTS

4.1 | Maize yield and N-uptake efficiency

Grain yield and grain N-uptake were not affected by the factors or

the interaction between factors (Table 1). Conversely, stover biomass

and stover N-uptake were significantly affected by N-fertilization

(N) (Table 1), with 100% N-fertilization having higher values than 70%

N-fertilization for both parameters. NUpE was significantly affected

by N and the interaction maize treatment (T) � N (Table 1). Overall,

70% N-fertilization had higher NUpE than 100% N-fertilization. More

in detail, the interaction T � N showed that both T2 and T3 had

higher NUpE than T1 under 70% N-fertilization level, while no differ-

ence between treatments occurred under the 100% fertilization level

(Figure 1).

4.2 | Root traits

Root Length Density (RLD, cm cm�3) and diameter class length (DCL,

mm cm�3) for very fine, fine, medium, and coarse diameters were sig-

nificantly affected by the distance from the row (D) (Table 2), with the

level 0 cm distance (on the row) being higher than the 37.5 cm dis-

tance (mid-row; data not shown). Conversely, no significant effect of

T and N, as well as of the interactions T � N, T � D, N � D, and

T � N � D was found (Table 2).

Root dry weight (RDW, mg cm�3) was significantly affected

by T, N, D, and the interaction T � D (Table 2). Overall, RDW was:

(i) higher in T3 than T2 and T1, (ii) higher with 100% N-fertilization

than with 70% N-fertilization, and (iii) higher at the 0 cm distance than

at the 37.5 cm distance to the maize row. More in detail, a significant

T � D interaction showed that T3 had higher RDW than T2 and T1 at

the 0 cm distance, while not at the 37.5 cm distance (Table 3).

4.3 | Metabolomic profiling of maize roots

Overall, UHPLC/QTOF untargeted metabolomics allowed annotating

3830 putative compounds (provided in Table S1, together with

respective abundances, composite mass spectra and retention time).

Initially, the fold change-based unsupervised hierarchical cluster anal-

ysis (HCA) was carried out to describe similarities and dissimilarities

across treatments based on metabolic profiles. The first analysis, car-

ried out also considering the fertilization regime, showed that the

microbial treatment provided a hierarchically stronger effect on maize

root metabolome, with replications related to fertilization regime

being not discriminated within each treatment (Figure S2). Therefore,

the level of fertilization was not considered as a clustering factor in

TABLE 1 Analysis of variance on grain yield, grain N-uptake, stover biomass, stover N-uptake, and N-uptake efficiency (NUpE) as affected by
maize treatment (T) and N-fertilization (N)

Grain yield
(mg ha�1)

Grain N-uptake
(kg ha�1)

Stover biomass
(mg ha�1)

Stover N-uptake
(kg ha�1)

NUpE
(kg kg�1)

Maize treatment

(T)

0.7745 0.8601 0.9702 0.6650 0.6767

N-fertilization (N) 0.1352 0.5767 0.0305 0.0271 <0.0001

T � N 0.5338 0.1106 0.4580 0.7329 0.0150

F IGURE 1 N-uptake efficiency (NUpE) as affected by the

interaction maize treatment (T1: Control; T2: AMF-based product;
T3: B. megaterium. PGPR formulation) � N-fertilization (70: 70%
N-fertilization and 100: 100% N-fertilization). Letters indicate
significant differences between T levels (p < 0.05), within the same
N-fertilization level
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the following clustering to specifically point out differences related to

seed treatments (Figure 2). This latter analysis highlighted two main

clusters, which separated the treatment and highlighted as T3 pro-

vided the most distinctive metabolomic signature.

Successively, to investigate the contribution of the different metabolites

for treatment discrimination, a supervised Orthogonal Projection of Latent

Structures Discriminant Analysis (OPLS-DA) was performed. The OPLS-DA

score plot (Figure 3) showed a clear differentiation between the three treat-

ments, with goodness-of-fit (R2Y = 0.981), goodness-of-prediction

(Q2Y = 0.424), adequate cross-validation parameters (CV-ANOVA;

p= 0.035) and without overfitting as provided via permutation testing.

Thereafter, the variables importance in the projection (VIP)

approach was used to select the compounds having the highest dis-

crimination potential (VIP score >1.3) in the prediction model. The VIP

approach allowed identifying 323 compounds (provided in Table S2).

Therein, a diversity of metabolites, including mainly amino acids, lipids,

flavones, lignans phenylpropanoids, and hormones, was represented

(Figure 4).

Among amino acids, N-acetyl-L-glutamic acid, L-serine,

S-methylmethionine, cystathionine, and L-tyrosine contents were up-

accumulated by T2 and T3 treatments, even if the strongest elicitation

could be observed following T3 inoculation. The same trend was

observed for lipids, which appeared to be increased in both T2 and

T3, but more markedly T3 inoculation. In detail, oleoyl-CoA, (9,12,15)-

linolenic acid, cis,cis-octadeca-9,12-dienoyl-CoA, 3R-hydroxy-

lesqueroloyl-CoA 3-oxo-auricoloyl-CoA, stearyl-CoA, icosanoyl-CoA,

(8Z,11Z,14Z,17Z)-3-oxoicosatetraenoyl-CoA, icosanoyl-CoA and

linoleoyl-CoA were accumulated.

On the contrary, secondary metabolism appeared to be differently

modulated by the two microbial seed treatments. Particularly, N- and

TABLE 2 Analysis of variance on diameter class length (DCL) for very fine (Ø = 0.00–0.075 mm), fine (Ø = 0.075–0.2 mm), medium
(Ø = 0.2–1.0 mm) and coarse (Ø ≥ 1.0 mm) root diameter classes, root length density (RLD), and root dry weight (RDW), as affected by maize
treatment (T), N-fertilization (N), and distance from the row (D)

DCL (cm cm�3)

RLD

(cm cm�3)

RDW

(mg cm�3)

Very fine
Ø = 0.00–
0.075 mm

Fine

Ø = 0.075–0.2 mm

Medium

Ø = 0.2–1.0 mm

Coarse

Ø > 1.0 mm

p-value

Maize treatment (T) 0.5387 0.3065 0.6752 0.6825 0.5645 0.0056

N-fertilization (N) 0.949 0.8191 0.405 0.647 0.6565 0.0495

Distance from the

row (D)

<0.0001 <0.0001 0.0007 <0.0001 <0.0001 <0.0001

T � N 0.4331 0.6952 0.5865 0.691 0.6599 0.8674

T � D 0.582 0.2066 0.9131 0.466 0.7435 0.0002

N � D 0.9449 0.2863 0.9286 0.6731 0.8144 0.0651

T � N � D 0.8165 0.9497 0.4761 0.6933 0.8054 0.7087

TABLE 3 Root dry weight (RDW; mg cm�3), as affected by levels of maize treatment (T), N-fertilization (N), distance from the row (D),
and interaction T � D

Source of variation Maize treatment (T) N-fertilization (N) Distance from the row (D) (cm) RDW (mg cm�3)

Maize treatment (T) T1 0.67 b

T2 0.56 b

T3 1.00 a

N-fertilization (N) 70% N-fertilization 0.64 b

100% N-fertilization 0.85 a

Distance from the row (D) 0 1.38 a

37.5 0.10 b

T � D T1 0 1.22 b

T2 0 1.03 b

T3 0 1.90 a

T1 37.5 0.11 a

T2 37.5 0.09 a

T3 37.5 0.11 a

Note: Different letters indicate statistically significant differences between means within the same source of variation. Letters in T � D indicate differences

between T levels, within the same D level.

6 of 15 GANUGI ET AL.
Physiologia Plantarum



S-containing compound concentrations, including N-hydroxy-L-valine,

1-O-feruloyl-β-D-glucose, dihydrochelerythrine and the glucosinolate

related (E)-1-(L-cystein-S-yl)-N-hydroxy-ω-(methylsulfanyl)heptan-

1-imine and 6-(methylsulfanyl)hexyl-desulfoglucosinolate were down-

accumulated in T2 samples and strongly increased in T3 roots. Similarly,

T3 treatment elicited terpenoids such as gypsogenin-28-beta-D-

glucoside, 40-hydroxyadonixanthin, (20S)-ginsenoside Rh2 and

(2Z,6Z)-farnesyl diphosphate, which appeared to be decreased

under T2 treatment. Nevertheless, this opposite trend was not

observed for phenylpropanoids compounds, which showed a general

increase in both treatments, compared with the control, even if this accu-

mulation was remarkably highlighted with T3. Among this class, curcumin,

deguelin, isovitexin 7-O-xylosyl 200-O-arabinoside, afrormosin-7-O-gluco-

side-600-O-malonate, (2S)-sakuranetin and cyanidin 3-O-[200-O-(xylosyl)-600-

O-(p-coumaroyl) glucoside] 5-O-malonylglucoside showed the highest

increase.

Finally, concerning phytohormone profiles, lower amounts of N6-

dimethylallyladenine and gibberellin A12-aldehyde were observed in

T2-treated samples, whereas accumulation of 5-deoxystrigol, the

cytokinins dihydrozeatin-9-N-glucoside-O-glucoside and N6-

dimethylallyladenine, and jasmonate was elicited in T3 roots.

4.4 | Diversity of rhizosphere bacterial community

Bacterial community diversity in the rhizosphere samples were ana-

lyzed for α- and β- diversity, respectively, by a total number of

observed species (Sobs), Chao's and Simpson's indexes and Shannon's

evenness, and by taxonomic comparison of all samples through hierar-

chical clustering of bacterial communities in samples. Although sug-

gestive trends and differences were present, the overall distinction of

the impact of treatments bt α-diversity analysis was not as significant

F IGURE 2 Unsupervised hierarchical
cluster analysis of maize roots
metabolomics profiles, obtained by
UHPLC-ESI/QTOF-MS untargeted
analysis, as a function of the seed
treatment with biostimulants. A fold-
change based heatmap was built and
samples were clustered according to
Ward's algorithm, based on Euclidean

distances. T1: Control; T2: AMF-based
product; T3: B. megaterium PGPR
formulation

F IGURE 3 Orthogonal projections to
latent structures discriminant analysis
(OPLS-DA) score plot for maize root
metabolomic following seed treatment
with microbial biostimulants. T1: Control;
T2: AMF-based product; T3:
B. megaterium PGPR formulation
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as in the case of root metabolomics analysis of the present study.

Simpson's evenness index indicated a slight decrease in biodiversity

for the T2 and T3 treatments (Figure 5A), with the latter being lower

than Control and T2. The impact of reduced fertilization levels, 70%

versus 100%, remained insignificant across treatments (Figure 5B).

However, both results remained statistically insignificant as there

were no significant differences among treatments according to one-

way ANOVA followed by LSD test at p < 0.05 threshold.

Furthermore, Canonical Correspondence Analysis (CCA) was carried

out to evaluate the impact of the treatments on the clustering of bacterial

communities. CCA results (model p= 0.838, constrained variance= 27.8%)

suggest, in agreement with those of biodiversity indexes, differences

between treatments Control, T2 and T3 (p = 0.202) and the insignificant

impact of the fertilization regimes (70% vs. 100%, p= 0.962) (Figure 5C).

Taxonomic comparison of all samples through hierarchical cluster-

ing of bacterial communities at the family level across all samples used

in this study, too, indicated a trend where fertilization regimes

remained at the level of impact that was not significant to overall

results. Interestingly, taxonomical clustering indicated some clustering

of the T3 group with few exceptions, whereas T2 was often found

clustering with Control (T1) (Figure 6).

4.5 | MCIA analysis

Multiple co-inertia analysis (MCIA) was used to determine whether

inter-omic relationships existed between the three datasets (agro-

nomic traits, metagenomics and UHPLC/QTOF-MS untargeted met-

abolomics). Figures 7A and 8A show the projections of maize root

samples onto the first two and three principal components (PCs) of

MCIA, which accounted for approximately 25, 18 and 10% of the vari-

ation, respectively (Figures 7B and 8B). The pairwise RV (R-vector)

F IGURE 4 Maize roots metabolic
processes (A) and the relative details of
secondary metabolism (B) as affected by
AMF-based product (T2) or B. megaterium
PGPR formulation (T3), compared with
untreated control (T1). The VIP
compounds were subjected to fold
change analysis (FC ≥ 1), and the resulting
values were loaded into the PlantCyc

pathway tool (https://www.plantcyc.org/).
The x-axis represents each set of metabolic
subcategories, while the y-axis corresponds
to the cumulative log fold change (FC). The
large dots represent the average (mean) of
all FCs for the different metabolites in the
class, while the small dots represent the
individual log FC. aa, amino acids; carbo,
carbohydrate; derivs, derivative; FA/Lip,
fatty acid/lipid; sec met, secondary
metabolite; struct, structure; syn, synthesis;
metab reg, metabolic regulator; nucleo,
nucleotide
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coefficient, which is the multivariate generalization of the squared

Pearson correlation coefficient, indicated higher global similarity

between metabolomics and metagenomics datasets (RV score for

core = 0.85) compared with the similarities between the meta-

genomic dataset and the agronomic traits (RV score for core = 0.48),

and between the metabolomics dataset and the agronomic traits

(RV score for core = 0.46).

4.6 | Correlation analysis

Since significant inter-omic correlations were found between maize

root microbiome and metabolome, Pearson's rank correlation analysis

was performed between VIP metabolites and VIP OTUs (listed in

Table S3). The correlation coefficients are provided in Table S4.

5 | DISCUSSION

Bacterial and mycorrhizal biostimulants are known to hold the poten-

tial to improve agronomical and physiological traits in crops, especially

under stress conditions (Rouphael & Colla, 2020). The present study

indicated that using the tested bio-stimulants did not impair the rhizo-

sphere soil bacteria biodiversity in treated plants. This can be attrib-

uted to the fact that the microbial treatments accounted for a small

portion of the microbial diversity in the rhizo-microbiome (Nuzzo

et al., 2020). Nonetheless, it must also be considered that the changes

in the microbiome are the consequence of centuries of coevolution

and that plants actively seek microbial interactions (Durán

et al., 2018; Kwak et al., 2018). On the other hand, the selection of a

functionally positive community at the rhizosphere level can improve

plant fitness (Liu et al., 2020), a process that typically involves root

exudation processes (Carvalhais et al., 2015). Indeed, it has been pro-

posed that plant crop species and nutrients were the main drivers of

change (Armada et al., 2018). In light of these considerations, it is not

surprising that our results highlighted moderate differences in root

microbiome under the different treatments. Regarding the non-

significant impact of 30% less N fertilization on soil rhizomicrobiome,

our results are in accordance with Maris et al., 2021.

The complex dialog between plants and rhizomicrobiome gener-

ally paves the way for the active recruitment of specific microorgan-

isms providing benefits to plants, a process that may induce changes

in rhizosphere microbial biodiversity (Bandyopadhyay et al., 2017). In

turn, plant pattern-recognition receptors (PRRs) at the plasma mem-

brane level are activated by root-microbe interaction in the rhizo-

sphere and can trigger intracellular processes at the root level

(Teixeira et al., 2019). Microbe-associated molecular patterns

(MAMPs) are among the most studied molecular processes being

elicited in plants following host-microbiota interaction(s), mostly in

the framework of induced systemic resistance or, more generally,

plant defense (Pieterse et al., 2014). However, plant response to

microbial colonization has been proposed to be much wider than

F IGURE 5 Bacterial community diversity in the rhizosphere
samples through Simpson's index and canonical correspondence
analyses (CCA). (A) Simpson's evenness for biostimulant treatment;
(B) Simpson's evenness for biostimulant and nitrogen treatments;
(C) Canonical correspondence analyses (CCAs) on the impact of the
biostimulant and nitrogen treatments on the structure of bacterial
communities (A and B were subjected to one-way ANOVA at p ≤ 0.05
according to LSD, absence of significance letters indicate that there
were no significant differences between treatments. Dedicated
p values are indicated on the right upper and left lower corners of
the “C”)
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F IGURE 6 Taxonomic comparison of all samples through hierarchical clustering of bacterial communities at the family level

F IGURE 7 MCIA projection plot. (A) The first two axes of MCIA represents metabolomics, microbial community and agronomic traits of the
maize root samples. Different shapes (diamond: Agronomic traits; triangle: Metagenomics dataset; square: Metabolomics dataset) represent the
different variables connected by lines, the length of these lines is proportional to the divergence between the datasets. Lines for each sample are
joined at a common point, at which the covariance derived from the MCIA analysis is maximal. Color shows the different thesis (black: Control;
red: AMF-based product; green: B. megaterium PGPR formulation). (B) Pseudo-eigenvalue space representing the percentage of variance
explained by the first twoof the MCIA components. (C) Pseudo-eigenvalues space of all datasets for maize roots, showing overall co-structure
between three datasets and shows which dataset contributes more to the total variance
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defense mechanisms, including direct and indirect effects related to

the promotion of plant growth and fitness and tolerance to abiotic

stresses (Kumar et al., 2018; Ole�nska et al., 2020). This agrees with

our findings, where a broad metabolic reprogramming was observed,

with secondary metabolite biosynthesis affected by T2 and T3 treat-

ments. Although limited, the impact of metabolic reprogramming was

visible through trends observed in the reprogramming of the microbial

communities at soil rhizomicrobiome, hinting at previously cited

interlinkages between rhizomicrobiome and metabolites. Statistically

insignificant differences at the alpha diversity level were contrasted

with the changes in whole community ecology, especially on the com-

munity composition level. However, the limited differences in rhizo-

sphere biodiversity between treatments can be attributed to the

occurrence of the above-mentioned interactions directly between

plants and specific microorganisms (possibly including microbial dress-

ing treatments), instead of the whole bacterial community of the rhi-

zosphere, in accordance with Dal Cortivo et al., (2020). Surprisingly,

the metabolomics signatures of maize roots differed as a function of

the treatment, even though 79 days passed from seed dressing to

root sampling and despite trials being carried out in open fields with

non-sterilized agricultural soil. This indicates that the treatments could

modify root biochemical processes in a rather persistent manner. The

ability of the root microbiome to affect root morphology (Bardgett

et al., 2014; Pervaiz et al., 2020) and exudation patterns (Iannucci

et al., 2021; Zuluaga et al., 2021) (and vice versa) corroborates our

findings, where a broad reprogramming of metabolic processes could

be observed in maize plant roots. Despite some positive trends could

be observed, such modulation was translated into only a limited yield

increase, irrespective of the nitrogen availability level. Dal Cortivo

et al., (2020) found similar results, with small grain yield increases

(1–4%) when either microbial or fungal consortia were applied to

wheat seeds.

Nevertheless, it can be interestingly observed that the treatments

induced significant changes at the functional level and that root

metabolome and rhizosphere population were highly correlated. With

this regard, a correlation of 0.84 (as provided by MCIA) under field

conditions is indicative of a rather strong link between the two omic

profiles. This coordinate modulation of root physiological traits was

not translated into yield increase, probably because the concentration

of nutrients into the soil was per se relatively high even when the

30% decrease of N-fertilizer was applied or because root performance

was increased following our biostimulant treatments. Nevertheless,

our results showed that (1) both biostimulants had higher NUpE with

70% N-fertilization level, and (2) B. megaterium PGPR led to increased

maize root biomass, mostly due to an increase of root development

on the crop row. Given these findings and the well-recognized

biostimulant effect of the treatments applied, we can postulate that

either more severe nitrogen starvation status or other abiotic stresses

such as drought and/or low nutrients (other than N) concentrations

and/or high temperatures might have helped in highlighting the bene-

ficial effects of the treatments considered.

Notwithstanding, plant response to seed treatment persisted at

anthesis, thus paving the way towards a set of beneficial aspects in

maize production that go far beyond the direct effects of exogenously

applied biostimulant microorganisms. Plant beneficial rhizospheric

microorganisms are known to increase nutrient use efficiency (Meena

et al., 2017). However, we observed the possible mechanisms under-

lying the coordinate modulation of root metabolome and

rhizomicrobiome. It would be aleatory to identify a main player

between plants and microorganisms, and the intricate series of inter-

actions occurring at the rhizosphere should be considered instead. In

fact, from one side, plant root exudates include chemotaxis com-

pounds and are known to shape the microbial community (Pérez-

Jaramillo et al., 2016; van Dam & Bouwmeester, 2016), but it is also

important to consider that microorganisms produce signaling com-

pounds that are perceived by roots (Mendes et al., 2014; Zancarini

et al., 2013). Together with the exchange of chemical messengers or

functional metabolites, the microorganisms perceived by roots are

F IGURE 8 MCIA projection plot. (A) The first and the third axes of MCIA represents metabolomics, microbial community and agronomic
traits of the maize root samples. Different shapes (diamond: Agronomic traits; triangle: Metagenomics dataset; square: Metabolomics dataset)
represent the different variables connected by lines, the length of these lines is proportional to the divergence between the datasets. Lines for
each sample are joined at a common point, at which the covariance derived from the MCIA analysis is maximal. Color shows the different thesis
(black: Control; red: AMF-based product; green: B. megaterium PGPR formulation). (B) Pseudo-eigenvalue space representing the percentage of
variance explained by the first three of the MCIA components. (C) Pseudo-eigenvalues space of all datasets for maize roots, showing overall
co-structure between three datasets and shows which dataset contributes more to the total variance
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also able to interact with root receptors directly (Poole, 2017), thus

eliciting specific biochemical responses in the plant cells, and some

symbionts are even endophytes. The elucidation of such intricate agro-

ecological crosstalk is very complicated because of technical limitations in

sampling and analysis (Escolà Casas & Matamoros, 2021) and the need to

track temporal and spatial dynamics (van Dam & Bouwmeester, 2016).

However, it can be noted that under our experimental conditions, the

microbial species showing the higher correlation to root metabolome

(provided in Table S4) are well-known beneficial rhizobacteria. In particu-

lar, Actinobacteria (such as Gemmatimonas, Gaiella, and Solilubrobacter

spp.), and some Acidobacteria and Chloroflexi spp. have been reported to

provide positive functions at the rhizosphere level, particularly under

stress conditions (Akinola et al., 2021; Khan et al., 2020; Lazcano

et al., 2021; Yue et al., 2020). In particular, some Acidobacteria have been

reported to possess the genetic capability to support nitrate, nitrite and

nitric oxide reduction and to release serine endopeptidases, hence having

the potential to improve nitrogen uptake (Kalam et al., 2020). Chloroflexi

spp. are beneficial PGPR that have been linked to plant root growth pro-

motion. Similarly, Actinobacteria can promote plant growth under adverse

conditions and contribute to fixing atmospheric nitrogen (Yadav

et al., 2018; Yue et al., 2020) and are reported to be increased by AMF

(Agnolucci et al., 2019). Noteworthy, Gemmatimonadetes and Gaiella spp.

play a key role in plant abiotic stress (Khan et al., 2020; Yue et al., 2020),

and both have been specifically linked to the level of N-nitrate levels in

maize (Akinola et al., 2021). Among the root metabolites showing

the strongest correlation with rhizomicrobiota, flavonoids (sakuranetin

and 20,4,40 ,60-tetrahydroxychalcone) and isoflavonoids (vestitone and

7,2,4,20-tetrahydroxy-40,50-methylenedioxyisoflav-3-ene) were the most

represented, followed by the hydroxycinnamic phenolic cinnamoyl-

beta-D-glucoside, and the phenolic glycoside salicin. Among non-

phenolics, lipids (a diacylglycerol, a decaprenylbenzoate ubiquinol

intermediate and 3-oxoicosatetraenoyl-CoA), D-glucono-1,5-lactone,

phlormethylbutanophenone (a 2-acylphloroglucinol) and amino acids

intermediates could be found. Plant roots may exudate up to 20% of

their photosynthate, in the attempt of shaping the root microbiome

(Poole, 2017). The molecular processes involved in this chemotaxis are

largely unknown, even though literature agrees that root exudation pat-

terns are paramount in the tripartite soil–root–microbiome interaction.

Despite no specific pathways for root exudation have been identified to

date, our results indicate that the root microbiome may represent an

upstream process in the modulation of root exudation.

This coordinate modulation of rhizomicrobiome and root

metabolomic signature, linked to higher NUpE with reduced

N-fertilization level, implies that biostimulants could be particularly

suitable in less suited soils, in arid and semi-arid regions, with poor soil

quality, and where N-fertilization is a limiting factor (e.g., organic

farming). However, since in many temperate areas across the world,

the climate is changing rapidly (Zhongming et al., 2021) and the Euro-

pean Commission (EU) recently set ambitious goals for reducing fertil-

izer use significantly at the field level (Schebesta et al., 2020), using

effective tools to mitigate yield losses by increase nutrient use effi-

ciency will become more important in a greater proportion of arable

land across the world.

6 | CONCLUSIONS

Improved yields are required to meet the food demand of an increas-

ing population. Until now, this need has been highly dependent on

chemical inputs, and more sustainable approaches are needed. In this

framework, beneficial microorganisms are gaining popularity because

of the multiple effects they may play several functional roles in plants.

Here we show that both the fungal and the PGPR seed treatments

were able to increase nitrogen uptake efficiency under low nitrogen

availability without compromising yields. This point is of paramount

practical importance since it indicates that these biostimulants may

support agricultural production in a sustainable manner, under a

reduced input farming perspective. Both the biostimulant treatments

induced a coordinate modulation of root metabolome and

rhizomicrobiome, although with differences between mycorrhiza and

PGPR treatments. Nonetheless, such coordinate modulation could be

observed several weeks after seeding, supporting the involvement of

the biostimulants in the improved maize performance we observed.

The effects observed involved the positive modulation of several ben-

eficial rhizosphere microorganisms, possibly involving indirect effects

mediated by root exudation patterns. This latter point is of relevance

and deserves further ad hoc investigation.
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