Skip to main content
. 2022 Jul 20;11(14):1885. doi: 10.3390/plants11141885

Table 1.

Anticancer preclinical studies and potential mechanisms of action of natural compounds from Prunus armeniaca.

Cancer Type Model Main Cellular Effects Ref
Cancers of the nervous system N2a neuroblastoma cells
in vitro
↑Bax, ↑caspase-3, ↓Blc2
LC50 > 5.0 mg/mL
[66]
C6 glioma cells
in vitro
antiproliferative effect [68]
Digestive cancers KB oral cancer cells
in vitro
↓8-OH-dG
IC50 = 61 µg/mL
[69]
AGS human gastric carcinoma cells
in vitro
↓cell proliferation
IC50 = 4 mg/mL
[71]
HepG2 cells
in vitro
↑apoptosis, ↑autophagy, ↑antioxidant defenses
antiproliferative, ↓angiogenesis
↓TNF-α, ↓VEGF
IC50 = 25.26 − 6.20 µg/mL
[72]
HCT-116 cells
in vitro
IC50 = 17.5, 19.2, 14.5 µg/mL [73]
mice inoculated with EAC cells
in vivo
↓tumor volume, ↓AST, ↓ALT, ↓urea, ↓creatinine, ↓MDA, ↓SOD, ↓CAT
Dose = 100 mg/kg
[69]
HepG2 cells
in vitro
↑cytotoxic effect [74]
HepG2 cells
in vitro
antiproliferative
EC50 = 14.72 ± 0.82 mg/mL
[71]
DMBA-induced carcinogenesis mice
in vivo
antioxidant, ↓lipid peroxidation, ↓SOD, ↓CAT, ↓GSH, ↓MDA
↑caspase-3, ↑Beclin-1, ↓Bcl-2
[75]
N-nitrosodiethylamine-induced hepatocellular carcinogenesis in rats
in vivo
↓AST, ↓ALT, ↓ALP, ↓bilirubin, ↓alpha-fetoprotein, ↓MDA, ↓NO, ↓glutathione
Dose = 200 mg/mL
[77]
transplanted EAC cells in mice
in vivo
↓tumor growth [78]
HCT-116 colon cancer cells
in vitro
↓cancer cell growth
IC50 = 33.6 − 36.3 µg/mL
[73]
HCT-116 colon cancer cells
in vitro
↓cancer cell growth
IC50 = 100 µg/mL
[79]
HT-29 colon cancer cells
in vitro
↓cell proliferation [80]
Caco-2 human colon cancer cells
in vitro
cell cycle interrupted in the S-phase, ↓cyclin B1
↓D1 levels
[81]
Caco-2 and HT-29 cells
in vitro
↓proliferation
↓cells in G0/G1
[82]
HT-29 cells
in vitro
↑cytotoxicity
IC50 = 2.5 − 5 μg/mL
antiproliferative
IC50 > 5 μg/mL
[83]
PANC-1 human pancreatic cancer cells
in vitro
↓growth, ↑apoptosis, ↑Bax, ↑caspase-3, ↓Bcl-2
IC50 = 704, 945, 35 µg/mL
[85,86]
Breast cancer MCF-7, HDF,
MDA-MB-231 human breast cancer cells
in vitro
↓cell proliferation
IC50 = 0.5, 1.51, 0.48 mg/mL
[87]
MCF-7 cells
in vitro
↓cell growth
IC50 = 8.9, 34.9, 33.9 µg/mL
[73]
IC50 = 31.5 μg/mL [69]
MCF-7, MDA-MB-231, T47D breast cancer cells
in vitro
antiproliferative, ↑apoptosis, ↑Bax, ↑caspase-3, ↓Blc2, ↑cells in G0/G1 phase, ↑cells in the G2/M phase
IC50 = 0.198, 0.693, 0.532 mg/mL
[88]
MCF-7 cells
in vitro
antiproliferative
IC50 = 25, 100, 400, 1200 μg/mL
[89]
↑cytotoxicity
IC50 = 4 mg/mL
[71]
↑apoptosis, ↑ROS, ↑Bax, ↑Bcl-2, ↓CDK4, ↓cyclin E,
↓ cyclin D1, ↑caspase-3
[91]
T47D human breast ductal cancer,
MCF-7 breast adenocarcinoma,
MCF-12A normal breast cells
in vitro
↑cytotoxicity
IC50 = 1.2 μg/mL against MCF-7, T47D cells
IC50 = 0.6 μg/mL against
MCF-12A cells
[90]
Lung cancer A549 human lung carcinoma cells
in vitro
↑cytotoxicity
IC50 = 4 mg/mL
[71]
↑cytotoxicity, ↓NF-κB, ↓E-cadherin, ↓N-cadherin, ↓MMP-2, ↓MMP-9, ↓IL-6, ↓TNF-α, ↓IL-1β [93]
Urogenital cancers T24 human bladder carcinoma cells
in vitro
antiproliferative
↑apoptosis
IC50 > 20 µg/mL
[96]
DU145 human prostate cancer cells
in vitro
↑apoptosis, ↑Bax, ↑caspase-3, ↓Blc2 [97]
HeLa human cervical adenocarcinoma cells
in vitro
↑cytotoxicity, ↓cell growth
IC50 = 4 mg/mL
[71]
Skin cancer HaCaT cells
in vitro
↓ cell growth, ↑caspases-3/8/9, ↑Bax, ↑PARP, ↓Bcl2, ↓NF-κB
↑G0/G1 cell cycle arrest
IC50 = 142.45 μg/mL
[98]
Leukemia NALM-6, KG-1
acute leukemia cells
in vitro
↑apoptosis, ↑caspase-3
IC50 = 0.388 − 0.159 mg/mL
[100]

Symbols: ↑ increase, ↓ decrease.