Skip to main content
. 2022 Jul 11;11(14):4008. doi: 10.3390/jcm11144008

Table 1.

The architecture of the proposed 3D-CNN model.

Model Type Filter Size Number of Filters Stride
Layer 1 Conv1 + Maximum Pooling 3 × 3 × 3 16 (1, 1, 1)
Layer 2 Conv2 + Maximum Pooling 3 × 3 × 3 32 (2, 2, 2)
Layer 3 Conv3 3 × 3 × 3 64 (1, 1, 1)
Layer 4 Conv4 + Maximum Pooling 3 × 3 × 3 64 (2, 2, 2)
Layer 5 Conv6 3 × 3 × 3 96 (1, 1, 1)
Layer 6 Conv6 + Maximum Pooling 3 × 3 × 3 96 (2, 2, 2)
Layer 7 Conv7 3 × 3 × 3 128 (1, 1, 1)
Layer 8 Conv8 + Maximum Pooling 3 × 3 × 3 128 (2, 2, 2)
Layer 9 FC1 - - -
Layer 10 FC2 - - -
Layer 11 FC3 (SoftMax) - - -

Conv—convolutional layer; FC—fully connected layer.