Hindawi

Computational Intelligence and Neuroscience
Volume 2022, Article ID 9228982, 25 pages
https://doi.org/10.1155/2022/9228982

Research Article

A Study on the Adoption of Blockchain for IoT Devices in
Supply Chain

Muhammad Anas Baig,l Danish Ali Sunny,2 Abdullah Alqahtani,3 Shtwai Alsubai,’
Adel Binbusayyis,3 and Muhammad Muzammal (*

'Department of Computer Science, Bahria University, Islamabad 44000, Pakistan

’Department of Applied Mathematics Statistics, Institute of Space Technology, Islamabad 44000, Pakistan

*College of Computer Engineering and Sciences, Prince Sattam bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
*Department of Software Engineering, Bahria University, H-11 Campus, Islamabad 44000, Pakistan

Correspondence should be addressed to Muhammad Muzammal; mmuzammal.buic@bahria.edu.pk
Received 4 March 2022; Revised 1 June 2022; Accepted 2 June 2022; Published 19 July 2022
Academic Editor: Dalin Zhang

Copyright © 2022 Muhammad Anas Baig et al. This is an open access article distributed under the Creative Commons Attribution
License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is
properly cited.

The integration of blockchain and IoT enables promising solutions in decentralized environments in contrast with centralized
systems. The blockchain brings forth features such as fault tolerance, security, and transparency of the data in IoT devices. As there
is requirement of consensus among the network nodes to agree on a single-state-of-ledger, nonetheless, the extensive com-
putational requirement for the consensus protocol becomes a limitation in resource-constrained IoT devices with limited battery,
computation, and communication capabilities. This study proposes an empirical approach on the adoption of blockchain in a
supply chain environment. Furthermore, a modified version of the Raft consensus protocol is proposed for use in supply-chain
environment on the permissioned blockchain Hyperledger. In Raft consensus protocol, each transaction is directed to the leader
node that transmits it to the follower nodes, making the leader node the bottleneck thus inhibiting the scalability and throughput
of the system. This also results in high latency for the network. The modified RAFT consensus protocol (mRAFT) is based on the
idea of utilizing the idle follower nodes in disseminating the vote requests and log replication messages. A detailed empirical
evaluation of the solution built on Hyperledger Caliper is performed to demonstrate the applicability of the system. The improved
workload division on the peers boosts the throughput and latency of the system in ordering service that enhances the overall
efficiency of the system.

1. Introduction

The Internet of Things (IoT) is an emanating technology
with a massive impact on day-to-day activities of either an
individual for his routine tasks or organizations for man-
aging and proposing novel business models. Due to the
emergence of self-intelligent computing machines, IoT is
shifting from automatic to autonomous systems where in-
telligent smart devices could learn from their environment
and make decisions accordingly, revolutionizing the ubiqg-
uitous digital environment towards a new era. IoT has
become part of every aspect of the modern world, from
intelligent healthcare systems to intelligent transportation

systems, traffic control systems, supply chain management,
smart grid, and many others in which several heterogeneous
devices communicate with each other to provide an intel-
ligent digital environment. IoT devices generate a massive
amount of data, and all intelligent decisions are solely based
on the sensed data, which must be accurate and pure from
any mutations.

As a means of communication, IoT devices typically use
centralized client-server architecture in which all commu-
nication is done through the backbone network of cloud that
is not much suitable to scale, manage, and control a large
number of IoT devices. Moreover, there is a considerable
overhead in managing diverse nature of heterogeneous

mailto:mmuzammal.buic@bahria.edu.pk
https://orcid.org/0000-0001-8817-1629
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2022/9228982

devices that need to communicate efficiently in a delay
critical manner. The centralized architecture of cloud
computing in IoT is severely prone to a single point of
failure, which is vulnerable to system collapse and inhibits an
environment in which numerous IoT devices could com-
municate seamlessly; besides that, cloudis expensive to
manage and maintain. Traditional IoT network never fits in
the delay-critical environment for resource-constrained
devices based on storage and power. Even if devices are near
each other, they still need to communicate through a long
distant cloud server. Considering the downside of the tra-
ditional IoT network centralized architecture, there is a need
for a system that provides a decentralized, fault-tolerant,
secure, and widely scalable mechanism to manage IoT
network infrastructure in which devices induce heteroge-
neity among systems and trust is managed between them.

Blockchain technology surprisingly solves most of the
significant issues of centralized IoT network architecture. It
provides a secure, trustless, transparent, traceable, scalable,
and highly fault-tolerant environment for IoT devices
communication. Blockchain technology is currently one of
the most discussed technologies that eliminated the need of
the third party for validating the transactions using the
consensus mechanism of existing nodes over the peer-to-
peer network [1]. A blockchain is analogous to a database
that signifies the data definition in parallel to the data update
mechanism; blockchain allows to add new data and ensures
that the state of the data on all nodes over the peer-to-peer
network is alike. Blockchain also maintains the historical
state of the data and ensures that such rules are enforced in
which linked blockchain structure is resistant to any
modification [2]. Via reverse engineering blockchain tech-
nology, it could be seen that blockchain is just the combi-
nation of old technologies in a different manner, in which
core technologies include cryptography, distributed ledger
technology, peer-to-peer network, and few others [3].

A blockchain is a singleton machine with a shared data
state that has a very precise principal architecture [4].
Blockchain architecture comprises of components like
“cryptography” to ensure security and integrity of trans-
actions, “datastore” to store the data in a decentralized
network, “validation” to determine the transaction conforms
to protocol rules, “peer-to-peer network” of nodes running
blockchain protocol and “consensus” mechanism to achieve
the significant agreement on a single state of the ledger, as
described in Figure 1. Blockchain is the consecutive se-
quence of blocks, consisting of block-header and block-
body. Block body contains numerous transaction records in
a public ledger. Each block header contains the block
number and previous block hash; however, the first block
has no previous or parent block, hence called as genesis
block [5].

Bitcoin [6] as the first use case of blockchain technology
is a digital currency synonymous with money, the intent
behind Bitcoin was to make cross border payments secure
and transparent, which facilitates two parties located
globally to transact without any expensive intermediary. This
whole payment system is solely based on secure crypto-
graphic evidence. However, Bitcoin blockchain, also referred

Computational Intelligence and Neuroscience

to as Blockchain-1.0, has a very limited scripting language
obstructing the development of applications on top of the
Bitcoin blockchain. Bitcoin blockchain limiting application
development over it sparked the emergence of turing-
complete Ethereum blockchain. Ethereum blockchain, also
referred to as the world computer and Blockchain-2.0,
supports running any sort of computational code via smart
contracts in a completely decentralized fashion, maintaining
a singleton state of data across the ledger [7].

Beyond Blockchain-2.0, private blockchains came into
existence that authenticates only the known entities in the
blockchain; private blockchains offer numerous data pro-
cessing capabilities as the study [8] is a detailed discussion on
the data processing view of blockchain systems. Enterprise
level blockchains offer several benefits as one of the popular
permissioned blockchains; Hyperledger is an open-source
collaborative effort that enables cross-industry blockchain
applications for business organizations. Among numerous
flavours of Hyperledger, Fabric is one of the popular per-
missioned blockchains that provides a foundation for private
enterprise-owned blockchain-based solutions, products, and
software applications [9]. Corda is another blockchain
platform that supports the creation of distributed applica-
tions on top of it for usage across the financial sector, in-
surance, and trade finance [10]. Based on public blockchain
Ethereum, Quorum is a permissioned blockchain that is
implemented to support the enterprise needs of Ethereum
blockchain [11]. Also, there are many scenarios where
blockchain technology is implementable. With time, re-
search is expanding on enterprise-grade permissioned
blockchain technology, opening the door to surprising facts
of innovating the traditional organizational structures with
blockchain technology.

Considering the tremendous benefits of blockchain and
its hybrid with IoT could solve many problems of IoT like
trust, security, and maintenance cost problems. Blockchain
provides a peer-to-peer network instead of relying on a
single cloud or data center. Blockchain is not vulnerable to a
single point of failure; furthermore, privacy and security are
ensured via cryptographic hashing algorithms, solving re-
liability issues. The blockchain technology used in IoT will let
the network execute autonomous transactions, storing
business logic in smart contracts. Similarly, the public ledger
of the blockchain will enable IoT devices to ensure trans-
parency among their operations and let the stakeholders
audit the information of IoT devices [12]. Decentralization in
the blockchain is achieved through consensus between
nodes without the involvement of a third party which is the
most significant feature of blockchain for IoT. The hybrid of
blockchain and the IoT is questioned by its computationally
intensive cryptographic hashing algorithms in consensus
methods and delay in transactions, or their confirmations
that are inevitable; hence lightweight consensus methods
with low latency and high computational efficiency are
required for blockchain-enabled IoT networks [13]. This
study analyses the different consensus methods in block-
chain, their applicability in the scenario of resource-con-
strained IoT devices provides the improved consensus
mechanism mRAFT for IoT devices-based blockchain

Computational Intelligence and Neuroscience

o~ ~

T

Network

=

Cryptography

v

Y

‘o
Consensus
SR

_ Datastore)

__Validation) K

Blockchain
Block Parent Block Block Parent Block Block Parent Block
Header Hash Header Hash Header Hash

B

Transaction List

ERE

Transaction List

B

ERE

Transaction List

B

ERE

=

—/

FIGURE 1: Basic components of a blockchain architecture.

networks. IoT devices are power and storage constrained,
limiting the use of blockchain in IoT networks as blockchain
involves computationally intensive hashing algorithms in
consensus methods. The consensus algorithms used in
blockchain are not built considering the capability con-
straints of IoT devices. To address this issue, there is a need to
develop IoT resource-friendly consensus algorithm that
utilizes the idle resources in blockchain peer nodes to assist
the IoT devices in reaching consensus efficiently.

Internet of Things (IoT) devices are becoming part of
every day; innovative systems like smart homes, intelligent
transportation systems, and smart supply chains are
emerging rapidly. In the centralized architecture of IoT
devices network, there are issues like security, maintenance
cost, less fault tolerance, and many others. On the other
hand, Blockchain technology is one of the most researched
technologies in computer science that eliminated the need
for the centralized third party for performing transactions
globally. Hybrid of the IoT and blockchain technology is
worthful because it solves centralized IoT devices network
issues like transparency, security, fault tolerance, and
auditability needs of the IoT devices. However, the block-
chain needs the consensus between the nodes in the network
to agree on the single state of the blockchain data. Inte-
grating IoT devices over a blockchain network is massively
beneficial, but the resource-intensive computation required
by the blockchain consensus mechanism is overhead for
resource-constrained IoT devices. The power constraint
nature of IoT devices makes it a wrong choice for running
computationally intensive consensus algorithms of block-
chain. Due to this fact, there is a significant challenge to
analyze, determine, and develop such consensus algorithms

that are resource-friendly for IoT resource-constrained
devices and provide the best possible consensus among IoT
devices with insignificant trade-offs to bear. Moreover, there
is huge scale usage of IoT devices in supply chain man-
agement. There is a significant need to analyze the hybrid of
blockchain and IoT in the supply chain sector to optimize
the performance of IoT devices and blockchain frameworks
as per the supply chain management needs. This research
aims to study different consensus methods in blockchain,
analyze their applicability for IoT resource-constrained
devices and ultimately propose the improved consensus
algorithm for IoT devices network. Furthermore, we finally
explore the hybrid architecture of permissioned blockchain
and IoT devices network in the supply chain sector.
Blockchain belongs to various categories based on its
controlling authority and read/write access. Public vs. pri-
vate refers to the write access rights of the blockchain. Open
vs. closed means which entities could read data from the
blockchain. While permissioned vs. permissionless block-
chain tells whether only entities with special access per-
missions could interact with the blockchain or everyone can
connect and make transactions over the blockchain. The
scope of this research is focused on permissioned blockchain
Hyperledger Fabric and specifically its Raft-based consensus
algorithm for its ordering service. The research analyzes the
applicability of blockchain technology in IoT resource-
constrained device networks and thoroughly analyzes the
different blockchain consensus methods. Finally, it proposes
an improved consensus mechanism for IoT resource-con-
strained devices network and subsequently evaluates its
application in a blockchain-based supply chain case study.
As one of the primary usages of IoT devices is in the supply

chain sector, exploring the efficiency of the proposed im-
proved raft algorithm in reference to the supply chain case
study let this research thoroughly analyze all the short-
comings of the proposed algorithm concerning the real-life
application. The research constraints of this study include
the assumption that the system could share signatures with
the devices over the network in a secure manner. The system
admin is a trusted person who initializes the processes at
first, and all actions carried out by the admin are legitimate.

The literature on the blockchain is reviewed in the first
phase, which identifies the transition of the public block-
chain toward the permissioned blockchain. In the second
phase, literature related to blockchain-based IoT is studied,
signifying why and why not public blockchains are suitable
for IoT. Public blockchains are best suitable for environ-
ments that involve public use of IoT devices openly.
However, industrial IoT does not need everything to be open
and accessible to everyone. IoT for enterprise requirements
needs identifiable and authorized participants, high trans-
action throughput performance requirements, and most
importantly, the confidentiality of the private transactions
and data. The permissioned blockchain of enterprise-grade
Hyperledger Fabric architecture is reviewed, including
thoroughly studying its modular architecture, transaction
flow, certificate management, and ordering service. In the
third phase, the core of our research, “consensus methods in
blockchain-based IoT,” is reviewed. Whitelisting of the
nodes needed for consensus in a distributed network is done
in some cases to make consensus lightweight, which raises
security concerns for the decentralized system. IoT could be
managed with centralized architecture; however, significant
issues could be solved by introducing decentralization in IoT
network architecture. The literature review order of se-
quence helped understand the blockchain architecture and
different blockchain solutions available. Secondly, making
the perception about the hybrid of IoT and blockchain
technology and thirdly developing an in-depth under-
standing of the commonalities and variances and pros and
cons among numerous consensus methods in blockchain-
driven IoT networks.

Raft is a strong leader-based consensus protocol in which
all the operations are done via the leader node. In our
mentioned IoT-based supply chain scenario, follower nodes,
upon receiving the messages, disseminate the messages to a
further subset of nodes, due to which finally the message is
propagated through the whole network. It is important to
note here that the term number attached to each message lets
the follower nodes determine which version of the message
they are receiving, so if the message received is from the
older term, then it is automatically rejected by the follower
nodes. In this way, the improved version mRAFT of the raft
algorithm in Hyperledger Fabric makes use of the idle
follower nodes and reduces the workload from the leader
node. In return, leader nodes utilize the saved time to
validate and propagate the remaining transactions. The
balanced workload on every peer improves the overall
performance and efficiency of the Raft consensus in
Hyperledger Fabric.

This paper has the following key contributions.

Computational Intelligence and Neuroscience

(i) The literature related to the applicability of block-
chain technology in solving traditional IoT devices
network limitations is thoroughly studied and
analyzed.

(ii) The characteristics of different blockchain-based
consensus algorithms in IoT are analyzed which
helped in developing an in-depth understanding of
the commonalities and variances and pros and cons
among numerous consensus methods in block-
chain-driven IoT networks.

(iii) An improved consensus algorithm in terms of la-
tency and throughput mRAFT which uses idle
follower nodes for message dissemination is de-
veloped for IoT-enabled blockchain and analyzed
mRAFT algorithm in reference to blockchain-based
supply chain case study.

(iv) The related issues in performance bottleneck and
challenges in IoT-enabled blockchain to which
succeeding research could be directed are identified.

The structure of the paper is as follows. Section 2 outlines
the recent related work. Section 3 introduces the proposed
technique, while Section 4 gives the evaluation of the pro-
posed methodology. Finally, Section 5 concludes the find-
ings of the work done and identifies the future directions.

2. A Review of the State of the Art

Blockchain is a discovery of the recent past, and several
investigations were conducted to evaluate the usage of public
blockchains in traditional applications. Public blockchains
research is transitioning towards permissioned or private
blockchains as it is a more exciting research area for big
enterprise organizations. Permissioned blockchains research
work is reviewed to analyze how it could fit in the IoT devices
network architecture scenario. Furthermore, blockchains
and their consensus methods application in the network of
resource-constrained IoT devices based on storage and
power consumption are also analyzed. The main aim of this
research is to explore different available blockchain solutions
and then optimize the blockchain algorithms for use in IoT
device networks. In reviewing the state of the art, firstly the
literature related to the public blockchain is discussed which
also signifies the emerging need for permissioned block-
chains for organizational use cases. After that, the literature
related to the use hybrid of blockchain and IoT is discussed
which explains the use of public blockchains in IoT and its
transition to permissioned blockchain for use in industrial-
IoT systems. There is a need for identifiable and authorized
participants in industrial IoT therefore the permissioned
blockchain is the most useful. For the sake of permissioned
blockchain, the enterprise-grade Hyperledger Fabric is
thoroughly reviewed, discussing its modular architecture,
ordering service, and transaction flow. The purpose of
discussing the Hyperledger Fabric is to dive deep into its
architectural modules and consensus method so that the
challenging issues could be resolved in the proposed mRAFT
consensus algorithm. Lastly, the literature related to

Computational Intelligence and Neuroscience

consensus methods in blockchain-driven IoT is discussed.
The review of the different blockchain-based consensus
algorithms for IoT provides strong theoretical groundings
on the optimization of the proposed mRAFT consensus
algorithm. There is also a concept reviewed in literature in
which IoT devices resource-constrained nature smart homes
are loaded with high-performance computing resources to
provide additional resources for the computational tasks of
IoT resource-constrained devices such that providing them
support in undergoing lightweight consensus among IoT
devices. The studies discussing the core behind consensus
mechanisms PoW, PoS, and DAG-based Tangle by IOTA
blockchain revealed the challenges and applicability of
DAG-based consensus mechanisms in blockchain-driven
IoT. Moreover, the literature review revealed strategies that
introduce rewards in consensus algorithms that ultimately
proposed the evolution of credit-based consensus mecha-
nisms that work by increasing the computational workload
for malicious nodes while decreasing the workload for
honest nodes.

2.1. Permissioned Blockchain. Vukoli¢ [14] identified that
current permissioned blockchains have architectural limi-
tations like all nodes must execute the smart contracts,
contracts run sequentially, non-determinism exists in smart
contract execution, and rigid consensus mechanisms that are
not suitable for every use case. The paper discusses that the
nondeterminism in smart contracts in the public blockchain
is handled by “gas” that limits the execution capacity as per
the gas amount; the more gas the smart contract has, the
more is its execution capacity. The gas feature is applicable
due to the inherent Ether currency in the Ethereum
blockchain, where gas could be bought via paying in Ether
currency. However, no such payment mechanism is defined
in permissioned blockchains, especially Hyperledger, which
does not have inherent cryptocurrency. In the context of the
addressed issues, the paper proposed the redesign of the
architecture of Hyperledger Fabric, introducing the modi-
fication to execute-order-validate architecture and providing
flexible endorsement policies. However, this paper did not
provide the mechanism to translate and generate chaincodes
from policies specified in the policy language.

Risius and Spohrer [15] recognized that most of the time,
the technical applicability and practical benefits of block-
chain are neglected, concerning respective issues critics
consider blockchain technology as overhyped. The paper
elaborated the techniques for structuring blockchain ad-
vancements, proposed the research framework for block-
chain systems, and finally provided insights on avenues for
blockchain advance research in multiple disciplines to help
blockchain research sustain instead of getting overhyped.
However, this research lacks the consideration of the
technical aspects in providing the multidisciplinary research
approach in the blockchain.

Saraf and Sabadra [16] discussed technical aspects of
Ethereum blockchain-like currency, transaction processing,
gas price, and consensus algorithm. The research then
contrasted the Hyperledger flavors - Burrow, Fabric, Indy,

Iroha, and Sawtooth based on maturity status, consensus
algorithm, REST API, interoperability scale, and program-
ming languages support and finally, contrasting Ethereum,
Hyperledger and Corda blockchain based on platform type,
governance, mode of operation, consensus, currency, con-
tract language, and data storage. The research inferred that
Hyperledger is best where security and privacy are the
priority. At the same time, the Ethereum blockchain is best
for processing transactions with decentralized miners,
inhibiting third-party involvement. However, the Corda
blockchain can be used in an environment where financial
agreements are essential to business processes. However, the
research lacks the insights on most significant performance
metrics such as block creation time, block size, cost and
power consumption.

Lasisi and Hsu [17] described how permissionless
blockchain consensus evolved in permissioned blockchain.
PBFT in Bitcoin includes two validation processes, the
consensus from the mining node and then from all the miner
nodes for verifying and publishing the block to the block-
chain. With validation process reduction to one Ethereum
blockchain changes PBFT to Smart Contract, a self-exe-
cuting business logic when certain conditions are met.
Hyperledger evolved the Smart Contract to Chaincode in
which all the consensus is done via ordering service. The
research investigates and concludes that the consensus
mechanism is the rationale behind discussed evolution.
However, the major limitation of this research is that it did
not address the significant modular architectural differences
of Hyperledger from the previous blockchains.

Nadir [18] contributed towards contrasting the permis-
sioned blockchain leading houses Fabric, Corda, and Quorum
blockchain based on comparison filters of modularity, lan-
guage support, privacy, transactions per second, currency
support, and adaptability. The comparison filters are scaled
between 1 and 3 and computing the final score, representing
the overall adaptability of the framework. The research
winded up by computing the results that deduced Fabric with
high adaptability score due to its modular structure and
pluggable ordering service. Similarly, the evaluation of Corda
blockchain resulted in a second adaptability score that leads
ahead of Quorum blockchain due to its latest security feature
of the hardware security module. Then, it surmises Quorum
blockchain with the least general adaptability score due to its
rigid and less adaptable architecture. This paper ignored the
crucial performance comparison metrics like block creation
time, block size, and energy consumption.

Ban et al. [19] empirically examined the frameworks
under the Hyperledger family consisting of Fabric, Saw-
tooth, Iroha, Burrow, and Indy by contrasting them based on
three layers; data model layer (transactions/smart contracts,
blocks), execution layer (nodes/blockchain), and consensus
layer (consensus, DLT). The experimental design has
qualitative comparison metrics as interfaces, network de-
ployment, transaction hashes, transaction privacy, smart
contracts, consensus, zero-knowledge proof, access control,
private DB within a chain, block size, release frequency, and
license. The quantitative comparison is based on bench-
marking and performance evaluation to measure latency and

throughput on different node configurations. The research
paper concluded by presenting the score-based comparison
of different characteristics of Hyperledger flavours that will
help the programmer choose the best among them as per
their use case scenario. However, this research did not
address the cost-effectiveness of maintaining each scheme
and the power consumption of managing the peers of the
network.

Thota et al. [20] discussed one of the significant concerns
in blockchain technology that is preserving and securing the
private keys for the end-user in a software wallet to give the
end-user control of its identity. In the blockchain, assets are
secured by using the Public Key Infrastructure (PKI). Only
the entity having access to the secret private keys could
undergo the transactions on his asset. In the proposed
scheme, two participants, regulatory authorities and orga-
nizations, require KYC information for end-users. Block-
chain identity is issued for the end-user in which his
transaction is recorded as “recordConsent” on the backend
of which Hyperledger Fabric smart contract executes. The
research proposed the implementation of a software wallet
on top of Hyperledger Fabric to enhance security in en-
terprise applications and let the end-users manage their
identities as per their consent. However, the proposed
implementation of software wallet has significantly less
interoperability among enterprise blockchain applications,
making the solution very rigid and less adaptable.

Polge et al. [21] provided the detailed comparison of five
major permissioned blockchain frameworks Fabric, Quo-
rum, Ethereum, R3 Corda, and MultiChain. The comparison
metrics are scalability, performance, privacy, and adoption
criteria. It also explained the consensus protocol used in the
Quorum blockchain called “QuorumChain,” which is de-
clared fast compared to relative consensus protocols. The
respective research described the tradeoffs between the
mentioned blockchains and identified that the drawbacks
and benefits of using each approach depend on the use case
scenarios. The research paper concluded with the lessons
and suggestions for industrial blockchain practitioners and
researchers. It suggested that industrial practitioners should
select 2-3 frameworks and first test them in their own en-
vironment/settings and keep track of the queue size that
limits the latency in case of too many simultaneous trans-
actions. Secondly, it suggested that the researchers must
compare various frameworks in the same environment as
there is a significant gap in the previous literature. It also
directed future researchers to work on optimising the
consensus algorithms to enhance the performance of the
blockchain system. The research provided valuable infor-
mation; however, the versions used in the experimental
evaluation are old for some blockchain frameworks.

Table 1 provides a summarized overview of the reviewed
literature related to permissioned blockchains.

2.2. Blockchain-Driven IoT. Permissioned blockchain pro-
vides the enterprise-grade blockchain-based solution with
only authorized entities capable of joining the solution.
There are several architectural limitations of stable

Computational Intelligence and Neuroscience

permissioned blockchain Hyperledger Fabric, and the re-
design of its architecture with flexible endorsement policies
and pluggable modules is inevitable. One of the significant
issues is that blockchain is the novel solution and numerous
blockchain frameworks exist. It is complicated to choose the
best suitable blockchain solution as per the use case need.
For the technical applicability, there is a need for new av-
enues of multidisciplinary blockchain research. Several in-
vestigations compared the popular blockchain frameworks
like Corda, Ethereum, and different Hyperledger flavours
and recognized the best among them; the review of com-
parisons increased the knowledge about the significant
differences among different blockchain solutions and helped
in determining the appropriate framework for resource-
constrained IoT devices networks.

Public blockchain solutions offer numerous benefits
but lack some of the most significant characteristics of
standard industrial solutions. For industrial IoT-based
network architecture, some requirements are lacking in
public blockchains-like IoT devices or network partici-
pants needed to be identifiable, only authorized or per-
missioned entities must be allowed to become part of the
system, high-transaction throughput performance re-
quirement, low-latency transaction confirmation re-
quirement, and confidentiality of the private transactions
and data. Considering enterprise or industrial needs, the
permissioned or private blockchain offers tremendous
benefits without compromising the industrial needs and
core utilities provided by the traditional blockchain. A
generic IoT-enabled enterprise blockchain architecture
based on Hyperledger Fabric is shown in Figure 2. With
the help of membership service provider (MSP) and
certificate authority (CA), the administrator enrolls en-
tities-like orderer, IoT devices, peer nodes, and generate
identity certificates for them. Peers or peer nodes are
resource-rich nodes that host ledgers; smart contracts and
endorsement of chaincode execution are the responsibility
of the peer. Ordering nodes perform the transaction or-
dering via receiving the number of endorsed transactions
from the peers, then a block is formed, and the number of
orderer nodes forms an ordering service. The orderer
initiates the network; IoT devices could perform trans-
actions and store transactional data to the ledger once the
network is started. When IoT devices interact and generate
transactions containing data or information, the trans-
action proposal is sent to the peers for validation and
endorsement as per the chaincode. After successfully
validating the transaction and signing it, the peer sends it
back to the ordering service; this step is known as a
broadcasting endorsement.

When the orderer receives the transactions, it waits until
the block or batch time to accumulate several transactions to
constitute a block. It sends that group of transactions in the
form of the block back to the peer for permanent storage. All
the infrastructure is shared among different channels;
however, only the peers who are part of the respective
channel are involved in the whole process and ultimately
store the blocks concerning their channel. The ordering
service and CA are the guardians of the whole network;

Computational Intelligence and Neuroscience

TABLE 1: A review of permissioned blockchains.

Contribution

Limitations

Authors Year Approach
Hyperledger Fabric, Quorum,
onlllge et al 2021 Ethereum, R3 Corda, and
MultiChain.
Thota et al. 2020 Hyperledger Fabric.
(20]
][SIagr]l etal. 2019 Hyperledger Fabric.
Permissioned blockchain leading
Nadir [18] 2019 houses; Fabric, Corda, and
Quorum.
Lasisi and 2019 The consensus among public and
Hsu [17] private blockchain.
Saraf and Ethereum, Corda and
Sabadra [16] 2018 Hyperledger flavors; Burrow,
Fabric, Indy, Iroha, and Sawtooth.
Risius and 2017 Technical applicability of
Spohrer [15] blockchain.
Vukoli¢ [14] 2017 Architectural limitations of

Hyperledger Fabric.

Compared five major blockchain frameworks
and suggested lessons for industrial practitioners
and researchers for choosing frameworks.
Proposed software wallet to enhance security in
enterprise blockchain applications and give end
users consent.

Qualitative and quantitative comparison made
between different Hyperledger flavors for the
technical programmers.
Comparison made among Fabric, Corda and
Quorum blockchain and determined the best
adaptable among them as Fabric.

The research concluded the rationale behind the
consensus among public and private blockchain.
Compared different blockchains and recognized
Hyperledger best for security purposes,
Ethereum blockchain for decentralization and
Corda blockchain for financial agreements.
Proposed the research framework for blockchain
systems and avenues for multi-disciplinary
blockchain research.

Proposed the redesign of HLF architecture which
introduces flexible endorsement policies and

Old versions of frameworks
were used in experiments.

Very less interoperability.

Cost effectiveness and power
consumption are not
discussed.

No block size, creation time
discussed.

Modular Hyperledger Fabric
architecture not discussed.

Performance metrics like
block size, creation time,
power neglected.

Technical aspects ignored.

No mechanism provided for
chaincode generation from

Fabric Client

pluggable modules. policies.
g N
Certificate Request N P — n
ﬁ CJ Ea . (X X
Certificates———» - =
Certifi Device-1 Device-2 Device-3 Device-4 Device-5
ertificates— _ IoT Devices / Nodes J
—> 1:': l_: 1:-_ [€Transactions
E E E °°* —m
Orderer-1 Orderer-2 Orderer-3
Odering Service / Ordering Cluster J
a @ . 17\
’.’ ® [€-Block
°
Certificate .‘ \ ° — E
- °
Request ° [€—Transactions
Certificates °
ertificates————— ‘ b+ P
Certificate . °
Request Peer Nodes / Vahdatmg Entities Ledgy
Query /
Update
User Actions— . .E ..
‘ p Request / Updates P,
User View—
Authorized Personnel

Analytics

Ficure 2: Blockchain-driven IoT architecture.

2.3. Consensus Methods

forging either will question the legitimacy of the whole
network. The fundamental assumption in the scenario of
blockchain-driven IoT scenario is that CA and ordering
service both are trusted and secure; hence the network could
trust the identities generated by them.

in Blockchain-Driven IoT.
Christidis and Devetsikiotis [22] provide the supply chain
model implemented with blockchain. The proposed model
maintains the delivery log for the shipment of containers via
the secure blockchain storage mechanism. All the supply
chain network entities could review the shipped containers

in a cryptographically verifiable manner and trace them to
reduce delivery delays; moreover, the mismanaged container
item could be detected accurately. The issues that must be
considered while deploying IoT solutions over blockchain-
like transactional privacy, scalability, and network overhead
were also discussed. However, the proposed model adopted
a vulnerable security risks approach of canceling consensus
mechanism via a whitelist scheme, which raises severe
system security risks.

Yeow et al. [23] presented a thorough survey on the
consensus methods used in blockchain and provided the
thematic taxonomy of consensus mechanisms based on
security parameters. The paper discussed the pros and cons
of existing decentralized approaches and the commonalities
and variances in consensus methods of blockchain networks.
Moreover, it discussed the state-of-the-art consensus algo-
rithms and their applicability in edge-centric IoT nodes
networks. Finally, the study concluded by putting insights
into research challenges and open issues related to IoT
blockchain implementation and highlighting the deficiencies
in centralized systems without blockchain. However, the
paper discussed very little regarding the consensus mech-
anisms for permissioned blockchain and insight more re-
garding the consensus mechanisms in public blockchain
solutions for edge-centric IoT nodes networks.

Dorri et al. [24] insight on the smart home case study for
IoT and proposed a framework to induce traceability, se-
curity, integrity, and confidentiality. The proposed frame-
work equipped smart homes with miners that induce high
availability characteristics and computationally resource-
intensive capabilities. Miners are responsible for internal
and external communication handling. Each miner has its
own preserved ledger used for auditing and controlling all in
between communication. The proposed mechanism made
the consensus mechanism light by eliminating the proof of
work consensus method, which improved the speed of
transaction and efficiency but then the system is more
vulnerable to security risks.

Cao et al. [25] briefed about the use of blockchain in IoT
devices networks and explained the fundamentals behind
the popular consensus methods like proof of work (PoW),
proof of stake (PoS), and directed acyclic graph (DAG). The
paper also discussed the applicability of these popular
consensus algorithms in IoT devices networks. The char-
acteristics of the Tangle and Hash graph, which are based on
the DAG consensus mechanism, are also discussed. The
challenges in DAG-based consensus algorithms were also
discussed and analyzed based on their applicability in IoT
nodes networks. However, this paper provided significantly
fewer directions about how the DAG-based algorithms can
be made suitable for IoT devices networks with computa-
tional and communication constraints.

Huang et al. [26] proposed a credit-based security
mechanism for blockchain-enabled IoT networks of in-
dustrial factories. The proposed mechanism used directed
acyclic graph (DAG) based blockchain instead of traditional
blockchain, which is more friendly for resource-constrained
IoT devices in terms of storage and power consumption.
Traditional chain-structured blockchain uses synchronous

Computational Intelligence and Neuroscience

proof of work consensus mechanism, whereas the proposed
scheme used an asynchronous credit-based consensus
mechanism. The mechanism works by increasing compu-
tational workload extensively for malicious nodes whereas
decreasing the same workload for honest nodes. However,
due to the asynchronous nature of the consensus mecha-
nism, it is vulnerable to security threats in some scenarios.

Khalid et al. [27] signified the importance of IoT as an
emerging technology that is composed of heterogeneous
devices that are connected via Internet. As IoT devices
generate a huge amount of confidential and security-sen-
sitive data, there is a need for efficient and reliable au-
thentication mechanisms. The research proposed a
lightweight decentralized authentication mechanism for the
heterogeneous nature of IoT devices. The proposed mech-
anism is based on concepts of the public blockchain and fog
computing. The proposed mechanism results are more re-
liable than state-of-the-art authentication techniques;
however, the paper did not provide insights into the au-
thentication mechanisms used in permissioned blockchain.

Biswas et al. [28] addressed the security and access
control challenges solution with blockchain implementation
in heterogeneous nature of the Internet of Things (IoT)
networks. The core consensus algorithms used in enterprise
blockchain are less suitable to scale for many IoT devices,
and to scale them, the security of the consensus methods is to
be downgraded. The research proposed a lightweight con-
sensus mechanism for business blockchain as proof of block
and trade (PoBT), which efliciently reduces block validation
and computation time; however, the proposed mechanism is
only valid for business blockchain and is not suitable for a
public blockchain.

Raghav et al. [29] described the drawbacks of using
blockchain technology in IoT devices network as high energy
consumption, massive computation requirement, and high
latency of blockchain-based consensus algorithms. Con-
cerning the respective issues, a lightweight trust-free
probabilistic consensus algorithm proof of elapsed work and
luck (POEWAL) is developed for IoT devices network en-
vironment that consumes less energy and has low latency.
Experimental results demonstrate the low energy con-
sumption, network latency, consensus time compared with
the state-of-the-art consensus mechanisms at various diffi-
culty levels; however, the paper lacks the significant ex-
perimentation to analyze in-depth resistance and security
against cyberattacks.

Wang et al. [30] leveraged the lightweight blockchain
and consensus algorithm to enhance the security of routing
of swarm unmanned aircraft systems (UAS) networking.
The respective investigation compared the proof of work and
proof of stake in estimating the traffic status of UAS in
swarm UAS networking and proposed the proof of traffic
(PoT). PoT is a novel lightweight consensus algorithm that
synchronizes lightweight blockchain blocks while staying in
the limited power-constrained resources for UAS. The
evaluation resulted in decreasing the routing consumption
processes via lightweight consensus algorithm and light-
weight blockchain. The paper optimized the performance
and efficiency of resource-constrained UAS networks;

Computational Intelligence and Neuroscience

however, the study lacks in-depth discussions on vulnera-
bilities and attacks on the proposed system.

Li et al. [31] signified the importance of blockchain-
based lightweight consensus mechanisms in providing a
secure, efficient, and reliable solution for resource-con-
strained IoT devices network. The paper proposed a light-
weight modified PBFT consensus algorithm based on
punishment penalty and rewards strategy that can reduce
blockchain storage cost, delay of the consensus, and com-
munication resources required by consensus. In storage
systems, Reed-Solomon (RS) erasure codes are used to find
and correct the erroneous symbols at unknown random
locations. To optimize the blockchain solution, a scheme
based on RS erasure code is introduced to reduce the
overhead of recoverability of blockchain. However, the in-
vestigation lacks in determining the effects of using RS
erasure code technology for storage optimization as it has
high resource consumption, which is constrained in IoT
devices network.

Frikha et al. [32] discussed the implementation of
blockchain consensus algorithm in supply chain embedded
architecture. This study shows that in the supply chain of
distributed robotic systems running on embedded IoT
hardware, the power consumption, and execution time are
more significant challenges in addition to data security is-
sues and the number of nodes scalability. The study pro-
posed the software and hardware hybrid architecture of the
proof of work (PoW) consensus algorithm with validation
on the Ethereum blockchain which shows three times im-
provement in execution time and more than two times
saving in power consumption. The respective results made
the solution highly applicable in the supply chain case
scenario; however, the variation of the PoW consensus al-
gorithm is used which is less efficient in terms of power-
constrained devices. In addition, the enterprise-grade need
for organizational private data is also neglected via valida-
tion of the solution on the public Ethereum blockchain.

Zhang et al. [33] described that blockchain traditional
consensus protocols have complications like high power
consumption and token dependence which is not suitable
for large cloud manufacturing systems. In response, this
paper developed a proof of service power (PoSP) consensus
algorithm for cloud manufacturing which calculates the total
power of member nodes and optimizes the performance and
power consumption of PoW. The experimental results show
that the proposed consensus algorithm has better perfor-
mance in terms of power consumption and transaction per
second (TPS) throughput which makes it cloud
manufacturing friendly for supply chain IoT systems.
Moreover, this study also provided insights on novel ideas of
cloud manufacturing management and trust evaluation in
blockchain applications; however, this paper did not discuss
the enterprise need for cloud manufacturing management
concerning the private data needs of organizations.

Table 2 provides a comparison based review of different
consensus mechanisms for IoT and determined their
limitations.

In this section, we presented the literature related to
blockchain-based IoT, signifying why or why not public

blockchains are suitable for IoT. Public blockchains are best
suitable for environments that involve public use of IoT
devices in an open fashion. However, industrial IoT does not
need everything to be opened and accessible by everyone.

3. Blockchain-Enabled Supply Chain System
Design for IOT

This work aims to analyze different consensus methods in
blockchain and determine their applicability in IoT re-
source-constrained devices networks. For this purpose, the
blockchain-based supply chain case study is used to analyze
consensus in IoT devices. Significantly known proof of work
(PoW) consensus algorithm is a cryptographically secure
proof. The prover proves that a certain amount of heavy
computational puzzle is solved by finding the nonce value.
The verifier nodes could verify the nonce value proof with
minimal computation effort. PoW guarantees that the
prover node has made the required effort to create the block
of transactions for the blockchain; however, the heavy
computation requirement for the prover node in PoW
makes it unsuitable for IoT resource-constrained devices.
Proof of capacity (PoC) is similar to PoW, but instead of
relying on the computation power of nodes, it relies on the
storage capacity of nodes. The more the capacity of the
nodes, the vast dataset (plot files) it could hold, and then it
could find the solution more quickly. However, the storage
capacity of IoT resource-constrained devices is also not great
to support proof of capacity consensus mechanism.

Proof of stake (PoS) is among the most used consensus
algorithm after PoW, in which a bidding system is intro-
duced for nodes. When they bid, their specific stake is
locked; if other nodes validate their solution, the stake is
returned; otherwise, the network holds the winning node
stake. PoS is energy efficient; however, its integrity is
challenged by a “nothing at stake” problem. In “nothing at
stake” problem, an attacker sends his transaction in fork-2,
confirming it and then utilizing its computational resources
to assist fork-1, to get the fork-1 win and fork-2 vanish that
prone to the double-spend problem. There are solutions for
this problem, but even if this problem is solved, this con-
sensus method is not suitable for IoT networks as it involved
a monetary stake that does not exist in IoT networks. This
section describes the methodology of the improved mRAFT
consensus algorithm in terms of latency and throughput and
then plugging its module in a supply chain-based IoT net-
work. The comprehensive design of the generic IoT-based
supply chain management solution on top of permissioned
blockchain Hyperledger Fabric is shown in Figure 3.

3.1. Supplier Module. In a hypothetical scenario, the supply
chain ecosystem comprises of suppliers that produce any
sort of product like electronic components, mined stones,
seeds, fish or agricultural products, and many more. The aim
of securing the whole ecosystem and ensuring transparency
among the processes is to deliver the product to the end-user
in a timely, secure, transparent, reliable, and reputable state.
The product from the supplier is transited by using some

10 Computational Intelligence and Neuroscience
TaBLE 2: Literature review on consensus mechanisms for IoT.
Authors Year Approach Contribution Limitations
. . Proposed PBFT consensus
Li et al. [31] 2001 Practical byzantine fault mechanism based on punishment RS erasure code made storage an

tolerance (PBFT).

Wang et al. [30] 2021 systems (UAS).
Raghav et al. [29] 2020 Probabilistic consensus
approach.
. Enterprise grade business
Biswas et al. [28] 2020 blockehain.
Khalid et al. [27] 2020 Authentication mechanism

based on fog computing.

Directed Acyclic Graph based
blockchain.

Illustrated core behind PoW,

Huang et al. [26] 2019

Cao et al. [25] 2019 PoS and DAG consensus
mechanisms.
Dorri et al. [24] 2017 Smart homes with HPC
miners.

Analysis of the applicability of Identified deficiencies in centralized
systems and challenges in IoT
enabled blockchain systems.

Proposed lightweight consensus

Yeow et al. [23] 2017 blockchain consensus
mechanisms in IoT.
Christidis and 2016 Consensus via the white-list

Devetsikiotis [22] scheme.

Proposed lightweight proof of block
and trade (PoBT) consensus

Efficient as compared to traditional
blockchain authentication

Proposed credit-based consensus

Identified challenges and
applicability of DAG-based
consensus mechanisms.
Lightweight and efficient consensus

efficient compute-intensive solution.
and rewards.

Routing in unmanned aircraft Proposed lightweight proof of traffic Security vulnerabilities of PoT are not
(PoT) consensus mechanism.
Proposed proof of elapsed work and Lacks in-depth analysis on security

discussed significantly.

luck (POEWAL). resistance against cyberattacks.

Proposed mechanism not addressed
. public blockchain.
mechanism.
Authentication mechanisms in private

. blockchain are not discussed.
techniques.

Security threats due to the
asynchronous nature of the consensus
mechanism.

Very few directions on how DAG-
based consensus methods could be
made suitable for IoT networks.

mechanism.

climinating PoW. Vulnerable due to PoW exclusion.

Very few insights on consensus
mechanisms related to permissioned
blockchain.

Security concerns due to preselected

mechanism. consensus nodes.

transport medium that has embedded sensors like tem-
perature sensors, compressor sensors, GPS tracking sensors,
or any other sensor as per the use case requirements,
depending on the nature of the product being transported.
The rationale behind embedding the facility with sensors is
to deliver everything in a controlled and monitored manner.
For instance, as we know, the temperature must be under
bounds for perishable products, so temperature sensors will
help regulate temperature. In disaster cases, it will let the
audit committee check that high temperatures could be the
cause of food wastage; this will ensure transparency in the
delivery process. All the data will be recorded in each step of
the pipeline, and that data is to be stored on the blockchain,
the mechanism of which will be described later. The bulk of
the product is delivered from the supplier to the distribution
center or warehouse in a controlled fashion. It could be
observed that even this small-scale digitization of the in-
dividual stage of the supply chain management process
could be very helpful in determining the inefficiencies along
the transport process.

3.1.1. Distribution Center Module. The delivered products
have now reached the distribution center. However, it has a
long way to travel to the final destination, the retail market
where customers could buy the product. They know the
product they are paying for is a quality product and every
entity in the whole supply chain management process has
track and proof of its legitimacy and quality standard. From
the distribution center, now products have to be delivered
to the wholesale market. The exact mechanism will be

adopted as it was adopted from supplier to warehouse that
is the transportation of the product in a controlled and
monitored environment. In the described hypothetical
scenario, the generic form of the supply chain management
process is being discussed; however, there is a difference
among supply chain management processes of different
products. Lastly, the product is delivered from the
wholesale market to the retail market for selling to cus-
tomers in the same controlled and monitored fashion. The
intelligent supply chain management workflow and storage
of information over blockchain ledger provide crypto-
graphic security that allows suppliers to undergo supply
chain operations based on their unique identity. On the
other hand, customers can view profiles of their concerned
distributors to get the details of the originality of the
product and the respective timelines of all the activities
from the supplier of the product to the destination of the
customer. Recording this information and IoT device
transactions onto the blockchain allows immutable storage
of all the events that have taken place in the long way of
supplier, distributor, and wholesaler, which is also excellent
for supporting auditing capabilities around the whole
ecosystem.

3.1.2. Blockchain Data Storage Module. The storage of
transactions between IoT devices on the blockchain is based
on the secure and immutable smart supply chain manage-
ment solution. The core architecture and infrastructure of
the proposed solution will be discussed onwards. Before
describing the respective research work on the consensus

Computational Intelligence and Neuroscience

11

Door
Sensor

Sengor Sepsor

zv Location

Supply Chain
Ecosystem

Supplier

O
@.. f

oo

User Actions —) .
‘ 91 Request / Updates
User View
Analytics Fabric Client
Temperature Compressor

1 Temperature

4
1

N

i

WAREHOUSE

(=

--------- Wholesale Market ~
Customers
.. /
Certificate Request——] (1]
Certificat — []
e (S (@ (D] B |[1]
Certificate Device-1 Device-2 Device-3 Device-4 Device-5
\ IoT Devices / Nodes
> . h
. ° l€—Transactions
[]
0 ° <
0 °
’ o
‘ ° [€——Block
[]
i °

Peer Nodes / Vahdat

ing Entities Ledger

Certificate
Request 1:
i s> -
Certificate:

Orderer-1

Certificate Request

(S

Orderer-2

Transactions
Orderer-3

Odering Service / Ordering Cluster

FIGURE 3: Blockchain-enabled supply chain system design.

method across blockchain distributed nodes, it is worth
explaining the internal transaction flow and architecture of
an enterprise-grade blockchain Hyperledger Fabric with a
supply chain management-based case study. The proposed
solution in this research is implementable with other
blockchain frameworks; however, choosing Hyperledger
Fabric is because of its characteristics of being open source,
flexible, and modular architecture; moreover, it is the most
stable frameworks among all permissioned blockchains. The
transactional mechanics in a standard transaction execution
between supply chain IoT devices will be discussed now. As
in permissioned blockchains, this is the responsibility of the
Membership Service Provider (MSP) to handle the task of
approving only permissioned participants to join the net-
work. In cooperation with the Administrator and Certificate

Authority (CA) as its submodule, MSP manages the supply
chain IoT device IDs and authenticates them to use the
network. The administrator will create the channel between
the related IoT nodes inside the respective unit of the supply
chain ecosystem that allows them to transact confidentially
as only concerned entities must be allowed to access their
related information. IoT devices register and enroll them-
selves with the CA of their respective unit and, in return,
receive the required cryptographic material that they could
use to authenticate themselves to the network. The smart
contract of the Fabric that is chaincode representing the
initial state of the ledger is installed on peers and deployed to
the channel. Chaincode contains the endorsement policies
that infer the terms and conditions for legitimate transac-
tions over the network.

12

All the interaction between the supply chain-based
ecosystem is done via the connected peer; through that peer,
they will send the transactions and interact with the ledger.
As shown in Figure 4, consider a supply chain-based sce-
nario in which the transport information related to the
supply chain products like temperature, GPS location,
compressor sensor value is to be recorded on the blockchain
as a piece of exchange information. During shipment at a
time instant, the transport information is stored to the
ledger; for that, a request is generated to the connected peer
node. According to the endorsement policy, the peers
connected to the respective unit must endorse the trans-
action before further proceeding. Before sending the request
to a peer, an application leveraging supported SDK uses
available APIs to generate a transaction proposal. The
transaction proposal is a complete request to invoke a
chaincode method with related input parameters, the aim
behind that is to read or update the state of the ledger. SDK,
in return, takes the request and binds it in the required
format along with signatures (cryptographic credentials) of
the IoT devices such that peers could verify that transaction
is from a legitimate source. After receiving the transaction
proposal, the endorsing peers verify it as per the required
standards. It is verified that the transaction proposal is well-
formed, it is not resubmitted to the peer, the signature is
valid, and the respective source is authorized to perform that
operation (as per the writing policy of the channel).-
Transaction proposal resubmission is a form of replay-attack
in which an exact copy of the previous transaction is again
submitted to the peer that could wrongly modify the state of
the ledger. Chaincode in the described case is about storing
the IoT sensor device values to the blockchain ledger; upon
successful verification of the required standards, the peer
executes the chaincode with the input parameters on the
current state of the ledger. It is important to note here that
the execution result is response value, write set, and read set
only; however, no changes are committed to the ledger at
this point. The resultant values and the endorsement peer
signatures are sent back to the SDK as transaction proposal
response. Suppose the transaction proposal is only querying
the ledger. In that case, the response is displayed to the user.
There is no need to submit the transaction response to the
ordering service; however, there is a need to update the
ledger in our case. For that, the transaction response is
submitted from SDK to the ordering service to update the
ledger after inspecting that the required number of peers
endorsed the transaction or not. Fabric SDK broadcasts the
IoT device signatures, endorsing peer signatures, read/write
sets, and channel ID to the ordering service. The ordering
service receives transactions from all the channels in the
network, orders them chronologically, and creates blocks of
transactions for each channel. Blocks of transactions are
delivered to all peers, including the endorsing peer, and it is
verified that there have been no changes in the ledger since
the transaction execution by the endorsing peer. Upon re-
ceiving blocks, each peer appends the blocks to the re-
spective chain of the channel, and for each valid transaction,
the write sets are committed to the current state of the
blockchain ledger.

Computational Intelligence and Neuroscience

3.2. Raft Consensus Execution Overview. Many distributed
public blockchains like Ethereum and Bitcoin use proba-
bilistic consensus algorithms to agree on the single state of
the ledger. This consensus guarantees the ledger consistency
with a high level of probability; however, they are still
vulnerable to forks in which different network participants
have different views about the state of the ledger. In
Hyperledger Fabric, everything works in a deterministic
fashion in which orderers working in collaboration with
other orderers form an ordering service responsible for
doing transaction ordering. The consensus mechanism used
inside the ordering service is deterministic; there are no
forks like permissionless blockchain networks. In Fabric,
endorsement of chaincode execution is isolated from the
ordering of transactions inside the ordering service that
provides Fabric an edge over other blockchain networks in
terms of scalability and performance; moreover, it hinders
the bottlenecks that occur when the same nodes perform
ordering and execution. As discussed in the previous section,
each peer belongs to an organization; similarly, each orderer
belongs to the organization and uses the certificate issued by
the CA for the organization. IoT client SDK receives cor-
responding transactions endorsed by the endorsing peers,
respectively, and sends each transaction to orderers, or-
dering service upon receiving numerous transactions
package them together into block. The order of transactions
must be agreed upon between the orderers in an ordering
service through consensus. It is also the responsibility of the
ordering node to distribute the packaged blocks to peers, and
then peers apply these blocks consistently to the ledger over
the blockchain network.

Now diving deep into the mechanism of orderers for
reaching the strict singleton order of the transactions inside
an ordering service. In Fabric, the consensus mechanism to
achieve this is based on Raft protocol [34]. Raft is a crash
fault-tolerant (CFT) consensus algorithm that represents
the leader and follower model in which inside an ordering
service, a leader is elected per channel, and all the followers
replicate its decisions. Raft consensus protocol keeps a
replicated log, an append-only data structure. The leader is
responsible for adding new entries to the log and asking its
followers to replicate it. Every coming request is forwarded
to the leader in charge of the replicated log, and a response
is delivered to the IoT client SDK upon storing the data
safely. Raft consensus protocol comprises the leader se-
lection phase, log replication phase, and safety principles to
ensure log safety. There are three states possible for every
node in Raft: “leader,” “follower,” and “candidate” state.
Upon startup of the system or a node recovering from the
crash, the node is in a “follower” state. Each node has a
random timeout; the node that times out first converges to
the “candidate” state and starts the selection process.
Quorum is the term used in Raft to represent the majority
of the nodes in the Raft network. Upon receiving votes from
the quorum of nodes which means majority of nodes, the
candidate node converges to the “leader” state and sends
heartbeat messages to its followers. Empty append entry
messages are considered as heartbeat messages and are
periodically sent to the followers so they could be alerted

Computational Intelligence and Neuroscience

13

- valid endorsement
L~ that satisfies
= .
endorsementPolicy
De (chaincodeID) 4~ ~"="===-aa
Ea broadcast E
De: 4 (endorsement) !

Collect 1 ' :
@] oo :
Device-2 messages into a /:

Supply Chain . Endorsing | | Endorsing Endorsing Committing
IoT Devices it SOIX Peer A Peer B Peer C Oxia® Peer
dispatch :
Store transport I
vehicles IoT sensor E
(GPS, temp etc.)
alues g‘
Format tx=<clientID, - E &
chalncodeID,.lea}yload, "<—?—."
timestamp, clientSig> '
2

Simulate/Execute tx
Sign TX-ENDORSED

9D1AI2S FULIDPIQ SNSUISUOY) ey

e - .
S T

VA

Verify endorsement, readset
If OK Save to
apply writeset to state blockchain ledger

FIiGURE 4: Transaction execution flow.

about the liveliness of the leader. Subsequently, in case of a
leader crash, a random timeout on some follower node will
be triggered, and the node will converge to the “candidate”
state and start a similar selection process. Suppose no leader
could receive the votes from the quorum nodes and se-
lection times out or two nodes timeout at the same instant,
which would result in a split vote. In that case, the selection
process is repeated until the new leader is elected suc-
cessfully. While in a “candidate” state, the candidate re-
ceives a heartbeat message and discovers a leader with a
higher term,; it will step down immediately and converge to
the “follower” state. In Raft consensus, all transactions pass
through the leader node that causes congestion at the leader
side; to mitigate the leader bottleneck overhead is a sig-
nificant research challenge in Raft consensus [35]. There is
no logical time in Raft; in fact, time is based on a sequential
counter called a Term that is the period from the start of a
selection process to the instant when a node does not
receive a heartbeat from the leader, times out, and starts a
new selection. Nodes in Raft consensus protocol transit
from one state to another as shown in Figure 5, in a
particular term, at most only one leader could be elected
that guarantees selection safety.

3.3. Modified RAFT (mRAFT) Consensus Protocol. Raft
undergoing all operations and proceeding requests through
the leader has a high probability of becoming a bottleneck
point. So, in the proposed mRAFT consensus protocol,
instead of loading all the transactions through the single
leader, the follower nodes also aid in disseminating the
information over the network that would reduce workload
from the leader and make it available for fulfilling the IoT
client SDK requests. Table 3 describes the different modules
of the Raft algorithm and maps their improved mRAFT
versions and their explanation that helps in increasing the
efficiency of the overall consensus process between orderers

in an ordering service and ultimately reduce the transaction
latency of the resource constrained IoT nodes and help them
scale at large.

3.3.1. Leader Selection Phase. In Algorithm 1, in the
blockchain network initialization phase of the Raft protocol,
the node initializes the variables; presentTerm represents the
term in which node is operating, votedForNode represents
the candidate node for which the node has voted for,
committedLength represents the length of immutable log
records that are committed and log data structure represents
the mapping of log entries with their corresponding term.
All these variables are stored on the local storage that in node
crash scenario will let the node recover from its last active
state of the log. Other variables initialized at the start are
stored in volatile memory, and their contents will be lost if a
node crashes. When a node recovers from the crash, it sets
the variables in its volatile memory to default values, and the
default state will be the “follower” state. Now coming to the
scenario when a node did not receive a heartbeat from the
leader node, it will suspect the leader node has failed or if one
candidate node selection times out and it is unsuccessful in
receiving quorum votes, the selection process starts. With
the selection process, the node increments the presentTerm
by 1, changes its state to the “candidate” state, votes for itself,
adds its nodeld to the votesReceived set of nodes. If a log is
empty then the recentTerm will be initialized to 0; otherwise,
it will be set to the corresponding term of the last entry in the
log. After that, the candidate node packs all the required
information and has to send the VoteRequestMsg message
to all the follower nodes, due to which this instant could
become a bottleneck for the candidate node for dissemi-
nating the VoteRequestMsg message to a large number of
follower nodes. In the improved version mRAFT proposed
by this research, instead of the candidate node sending the
VoteRequestMsg messages to all the nodes itself, it only

14

Discovers
higher
term

OR

Follower

Starts up
OR
Recovers from
crash

Leader

Discovers leader

Higher term

Times out,

Computational Intelligence and Neuroscience

quorum
votes

Candidate

Split vote

OR |
Election times out,
Start new election

FIGURE 5: State machine model for the Raft consensus algorithm.

selects k random nodes and sends them the message. Upon
receiving the message, it will be the responsibility of the
receiving follower nodes to disseminate the message to
further k random nodes that will follow the same message
sending mechanism again and ultimately, the message is
delivered to the whole Raft network. The purpose of this
broadcast is to reduce the load from the candidate node via
triggering the follower nodes, which will share that load and
in result, reduce the latency of the VoteRequestMsg message
efficiently. As soon as the candidate node sends the Vot-
eRequestMsg message to the k random nodes, it starts the
selection timer, and the selection must be completed in the
selection timeout; otherwise, the selection process will be
repeated as stated earlier.

In Algorithm 2, when a follower node receives VoteR-
equestMsg message from the candidate it first checks that its
local log is consistent with the candidate node or not, it will
let the follower node decide on whether to vote for the
candidate or reject the request. To check log consistency, the
follower node compares the term of the last entry in the log
with the term of the last entry in the log of the candidate that
is passed as an argument in the VoteRequestMsg message.
The log of the candidate is considered good if the term of the
last entry in the candidates’ log is greater than or equal to the
term on the last entry in the followers’ log and log length of
the candidate is greater. It is also possible that outdated
VoteRequestMsg from the old term is received by the fol-
lower, due to the fact on the follower node it checks if the
term is greater or equal to the candidate term or not. If
duplicate VoteRequestMsg with the same term is received by
the follower then votedForNode must be for the same
candidate or null. If logOk and termOk are true then the
follower node updates its term to the candidates’ term, its
current state to the “follower” state updates its vote-
dForNode variable to the candidate ID for which it is voting
for. The follower node then disseminates the VoteR-
equestMsg message to the k random follower nodes and
sends the VoteResponseMsg back to the candidate as true. If
logOk and termOk are false then the follower node sends
back the rejection VoteResponseMsg as false to the
candidate.

3.3.2. Log Replication Phase. In Algorithm 3, candidate
upon receiving VoteResponseMsg compares the current
term of the follower node that is passed in arguments with its

presentTerm. The desired case is when candidates’ term is
equivalent to followers’ term and VoteResponseMsg is
granted true, in that case, the candidate will add ID of the
follower node as voterNodeld to the votesReceived list; this
operation will be an idempotent operation that means du-
plicate VoteResponseMsg from the same follower will not
increase the votesReceived count. With each VoteR-
esponseMsg as true, candidate also checks if the number of
votesReceived is equal to the quorum nodes, in that case, the
candidate will win the selection and transit to “leader” state
and cancels the selection timer. The candidate will then
update the variables for the follower nodes, sentEn-
triesLength that represents the number of entries already
sent to the follower node from the beginning of the log, and
ackedEntriesLength that represents the number till which
acknowledgments for log have been already received from
the follower node and then the elected leader disseminates
the log entries to the k random nodes. ReplicateLogMsg
function is called with arguments as nodeld that represents
the leaderNodeld, follower that represents the node to which
the message is being sent and sentEntriesLength that rep-
resents the list of the count of the entries already sent to each
of the follower. The reason to pass sentEntriesLength as an
argument to the ReplicateLogMsg function is to make the
receiver follower nodes further disseminate the log entries to
the k random follower nodes. The main aim of calling the
ReplicateLogMsg function is to alert the followers about the
presence of the new leader in the system.

In Algorithm 4, when a write request is received at the
node, it checks if it is the “leader” state. If not, then it
forwards that request to the current leader node. Upon
receiving the broadcast message, the leader node appends
the record to the log that includes the message and the
current term. The message is only appended at this stage to
the log as a new log entry. This message will be committed
once the leader sends that append entry request to the
follower nodes and receives acknowledgments from quorum
nodes. Leader upon appending the log with the new entry
updates its ackedEntriesLength to the new length of the log
and selects k random nodes and calls the ReplicateLogMsg
function for them so their log is also updated till the latest
entry and then those followers disseminate the broadcast
message with ReplicateLogMsg function to further k random
nodes. In parallel, in the background, the leader node keeps
on calling the ReplicateLogMsg function periodically for
each of the follower nodes, so they might get an update if

Computational Intelligence and Neuroscience 15

TaBLE 3: Raft algorithm modules and their corresponding improved versions.

Modified

Algorithm title .
version

Brief description

At the start, the Raft protocol initializes the variables on the local
storage and variables on volatile storage. The selection process is
started on startup, leader failure, or selection timeout to elect a new
leader. The leader asks the k random follower nodes for the vote, starts
the selection timer, and upon receiving the VoteRequestMsg, those
followers disseminate the message to further k random follower nodes.
Upon receiving VoteRequestMsg, the follower node first checks its log
consistency with the candidates’ log, then checks its term with the
candidates’ term, if both okay then follower disseminates the

Algorithm-2. VoteRequestMsg message to k random follower nodes and
VoteResponseMsg with true vote is returned, otherwise,
VoteResponseMsg with false vote is returned to candidate which
means candidate has outdated log.

Upon receiving VoteResponseMsg as true, the candidate node checks
if its term is the same as the term of the follower node and then
updates the votesReceived list, checks if it has received the quorum
votes. If successful then it transits to ‘leader’ state, cancels the selection
timer and disseminate the message to k random nodes and call
ReplicateLogMsg function for them.

Upon receiving the write request at the follower node it forwards that
request to the leader node. Leader appends the record to its log,
updates its ackedEntriesLength and calls ReplicateLogMsg function
for k random follower nodes to disseminate the message. Leader also
periodically sends heartbeats by calling ReplicateLogMsg function
with empty entries for the each of the follower nodes.
ReplicateLogMsg function checks the sentEntriesLength of the
follower node and collects the suffix of log entries ahead from the

Unchanged. sentEntriesLength and sends the LogRequestMsg message with
required information to the follower node so it could update its log

with the new entries.
Upon receiving LogRequestMsg, the follower node checks the log

consistency and term, then calls AppendEntriesMsg function to

update the entries in the log of the follower. Also updates the

Algorithm-5. ackedEntriesLength, send entries to k random nodes by calling
ReplicateLogMsg function and sends LogResponseMsg to the leader
with true result otherwise sends LogResponseMsg with false result to

ask for old log entries from the leader.
AppendEntriesMsg function checks the log of the follower for
inconsistent entries and truncates them. After truncating,
Unchanged. AppendEntriesMsg function adds the new entries to the prefix of the
log of the follower and commits the entries as dictated by the leader
and deliver the message to the IoT client SDK.

Upon receiving LogResponseMsg as true from the follower, the leader
updates the sentEntriesLength and ackedEntriesLength of that
follower and calls CommitLogEntries function. On receiving
LogResponseMsg as false the leader calls ReplicateLogMsg function
with one previous entry so the log of the follower becomes consistent
with the log of the leader.

Upon receiving the acknowledgments from the quorum of nodes, the
leader commits the entries in its log, after committing, the log entries
become immutable. Even the leader could not remove the entries from

Unchanged. the ledger afterward. Ultimately the leader updates its
committedLength variable, and on the next heartbeat, the leader node
will pass this value as an argument so follower nodes could also
commit their log entries.

Initialization of the blockchain network at the

start. (Leader Selection phase) Algorithm-1.

Voting on a candidate node to become a new
leader. (Leader Selection phase)

Leader node collecting votes from the follower

nodes. (Log Replication phase) Algorithm.-3.

Broadcasting the messages to the follower nodes.

(Log Replication phase) Algorithm-4.

Replicating from the leader node to the follower
nodes. (Log Replication phase)

Followers receiving the messages from the leader
node. (Log Replication phase)

Updating the logs of the follower nodes. (Log
Replication phase)

Leader receiving the log acknowledgments from

the follower nodes. (Log Replication phase) Unchanged.

Leader committing the log entries. (Log
Replication phase)

some messages get lost or sometimes for the commit pur- getan alert of the liveliness of the leader node. The definition
poses. The ReplicateLogMsg function, which does not of the ReplicateLogMsg function is unchanged in the pro-
necessarily always contain the new entries, is also called to ~ posed research; however, an additional parameter as sen-
send heartbeats to each of the follower nodes so they could tEntriesLength is added that has to be passed as an argument

16

Computational Intelligence and Neuroscience

(1) on initialization do

(5) end
(6) on recovery from crash do

(9) end

(13) if loglength > 0 then

(15) end

(18) for each node € kNodes send
19) msg to node

(20) end
(21) start selection timer
(22) end

(2) presentTerm = 0; votedForNode = null; log = < >; committedLength = 0
(3) presentRole = follower; presentLeader = null
(4) votesReceived = { }; sentEntriesLength = < >; ackedEntriesLength = < >

(7) presentRole = follower; presentLeader = null

(8) votesReceived = { }; sentEntriesLength = < >; ackedEntriesLength = < >
(10) on node nodeld suspects leader has failed, or on selection timeout do

(11) presentTerm = presentTerm+1; presentRole = candidate

(12) votedForNode = nodeld; votesReceived = {nodeld}; recentTerm = 0

(14) recentTerm = log[log.length — 1].term

(16) msg = (VoteRequestMsg, nodeld, presentTerm, log.length, recentTerm)
(17) kNodes = kRandomNodes < nodes

ALGORITHM 1: Blockchain network initialization.

(3) myLogTerm = log[log.length — 1].term

(1) on receiving (VoteRequestMsg, candidateld, candidateTerm, candidateLogLength, candidateLogTerm) at node nodeld do
(2) if candidateTerm # presentTerm A votedForNode # candidateld then

(4) logOk = (candidateLogTerm > rbin myLogTerm) V (candidateLogTerm = myLogTerm A candidateLogLength > log.length)

(5) termOk = (candidateTerm > presentTerm) V (candidateTerm = presentTerm A votedForNode € {candidateld, null})
(6) if logOk A termOk then
(7) presentTerm = candidateTerm; presentRole = follower; votedForNode = candidateld
(8) msg = (VoteRequestMsg, candidateld, candidateTerm, candidateLogLength, candidateLogTerm)
9) kNodes = kRandomNodes C nodes

(10) for each node € kNodes send

@11) msg to node

12) end

13) send (VoteResponseMsg, nodeld, presentTerm, true) to node candidateld

(14) else

(15) send (VoteResponseMsg, nodeld, presentTerm, false) to node candidateld

(16) end

(17) end

(18) end

ALGORITHM 2: Voting on a new leader, at FOLLOWER side.

so when the follower node disseminates the message re-
ceived by the leader node, it could access the sentEn-
triesLength of each of the follower nodes to which it is
sending the message. ReplicateLogMsg function is called on
the leader node when there is a new message entry in the log
or the leader also calls it with empty entries for sending
periodic heartbeat messages to each of the follower nodes to
alert them that the leader is still alive. In ReplicateLogMsg
function, information related to the number of entries that
are already sent to each of the follower nodes is taken from
sentEntriesLength and then entries variable is assigned the
suffix of the log entries ahead from sentEntriesLength. In the

next step, the variable prevlogRecentTerm is assigned the
value of the term in the last entry of the log; this variable will
be used afterward for consistency check at the follower node.
After that, the LogRequestMsg message is packed with a
whole bunch of information related to log characteristics as
well as the new entries and is sent to the follower node that
the follower node will use to update its log.

In Algorithm 5, when the LogRequestMsg message to
update log is received at the follower node from the Rep-
licateLogMsg function; it first compares the argument
variable term with its presentTerm if the argument passed
value is greater, then it updates its term to the latest term,

Computational Intelligence and Neuroscience

17

(1) on receiving (VoteResponseMsg, voterNodeld, term, voteGranted) at node nodeld do

(2) if presentRole = candidate A term = presentTerm A voteGranted then
3votesReceived = votesReceived U {voterNodeld}

(4) if] votesReceived | >, [(|nodes| + 1) / 2]then

(5) presentRole = leader; presentLeader = nodeld;

(6) kNodes = kRandomNodes < nodes

7) for each follower € kNodes/ {nodeld}do

(8) sentEntriesLength[follower] = log.length; ackedEntriesLength[follower] = 0
9) ReplicateLogMsg(nodeld, follower, sentEntriesLength)

(10) end

(11) end

(12) end

(13) else if term > rbin presentTerm then

(14) presentTerm = term; presentRole = follower; votedForNode = null
@15) cancel selection timer

(16) end

(17) end

ALGorITHM 3: Collecting votes at CANDIDATE side.

resets its votedForNode variable to null, converges to
“follower” state, and updates its presentLeader variable with
the new leader. Then, follower node will then do a consis-
tency check of its log so that it could decide either it had to
accept those log entries or ask the leader for more entries
from the history to make its log consistent with the log of the
leader and fill the gap in its log. If the term of the follower
node is the same as on the leader node and log is consistent
then the follower is in the situation to update its log with the
new entries. To add the new entries to the log of the follower,
the AppendEntriesMsg function is called with the new
entries and required information. After calling Appen-
dEntriesMsg function as now, the follower has received the
new entries hence its ack variable that represents the number
of entries received by the respective follower is updated. The
new entries are then disseminated through ReplicateLogMsg
function to the k random follower nodes as per the sen-
tEntriesLength of each follower so the follower node could
also update its log with the new entries and disseminate
them to further k random nodes. The LogResponseMsg
message with true result is packed with all the required
information and is sent as an acknowledgment to the leader
node as a success response. On the other hand, if the log of
the follower is not consistent with that of the leader then
LogResponseMsg with the false result is sent to the leader so
that the leader node sends back some previous entries from
its log and then the follower node could make its log
consistent with the leader node.

The purpose of the AppendEntriesMsg function is to
update the log of the follower node with the entries that have
been received by the leader node. For that first log con-
sistency of the follower and the leader is checked by com-
paring the length of the logs, if the length of the log of the
follower is greater and the term of last entry of log is
nonequivalent, then it is obvious that it contains garbage
entries hence its log is truncated and those entries are de-
leted. Raft guarantees that those discarded entries are not
committed entries. On the other hand, if the log of the leader

is greater than the log of the follower node, then the new
entries are appended to the log sequentially in an idempotent
manner so that if any entries are repeated, then they are not
added again to the log. After that, if the leader has more
committed entries than the follower node, then the new
messages are delivered to the IoT client SDK, and com-
mittedLength of the follower is updated equivalent to the
leader node. As the follower node returned the LogRes-
ponseMsg acknowledgment message to the leader, now the
leader has to receive those messages and take action. If the
term in the LogResponseMsg message from the follower
node is lower than the term of the leader node, then it will
ignore the message as it is outdated. Contrary to that, if the
term in the LogResponseMsg message from the follower
node is greater than the term of the leader node, then that
means there is a new leader in the system; hence the old
leader steps down, resets its votedForNode variable, and
converges to “follower” state. If terms are equivalent and
LogResponseMsg is true then that means the follower has
accepted those log entries and now acknowledging the re-
ceipts hence sentEntriesLength that represents the entries
sent to the follower node and ackedEntriesLength that
represents the entries acknowledged by the follower node
both are updated. After that, CommitLogEntries function is
called that checks for the acknowledgments from the quo-
rum nodes and commits the entries to the log. If terms are
equivalent and LogResponseMsg is false then that means the
follower has some missing entries hence the leader decre-
ments the sentEntriesLength variable for that follower and
calls ReplicateLogMsg function with one old log entry in-
cluded, this could happen multiple times until the log of the
follower node becomes consistent with the leader node.

A leader can commit the log entry once the quorum of
nodes has acknowledged it, as it is then safe to commit that
message afterward. When an entry is committed to the log,
its message is delivered to the IoT client SDK, which means
that the request is successful. CommitLogEntries function
checks for the length of the log till which the

18

Computational Intelligence and Neuroscience

(1) on request to broadcast msg at node nodeld do

(2) if presentRole =leader then

3) append the record (msg: msg, term: presentTerm) to log
(4) ackedEntriesLength[nodeld] = log.length

(5) kNodes = kRandomNodes < nodes

(6) for each follower € kNodes \{nodeld} do

(7) ReplicateLogMsg(nodeld, follower, sentEntriesLength)
(8) end

(9) end

(10) else

@1n) forward the request to presentLeader via a FIFO link
(12) end

(13) end

(14) periodically at node nodeld do
(15) if presentRole =leader then
(16) for each follower € nodes/{nodeld} do

17) ReplicateLogMsg< >(nodeld, follower, sentEntriesLength)
(18) end

(19) end

(20) end

ALGORITHM 4: Broadcasting messages.

(10) if term = presentTerm A logOk then

(1) on receiving (LogRequestMsg, leaderNodeld, term, logRecentLength, logRecentTerm, leaderCommittedEntries, entries) at node

nodeld do
(2) if term >rbin presentTerm then
(3) presentTerm = term; votedForNode = null
(4) presentRole = follower; presentLeader = leaderNodeld
(5) end
(6) if term = presentTerm A presentRole = candidate then
(7) presentRole = follower; presentLeader = leaderNodeld
(8) end

(9) logOk = (log.length > logRecentLength) A (logRecentLength = 0 V logRecentTerm = log[logRecentLength — 1].term)

(11) AppendEntriesMsg< >(logRecentLength, leaderCommittedEntries, entries)
(12) ack = logRecentLength + entries.length

13) if entries.length > 0 then

(14) kNodes = kRandomNodes < nodes

@15) for each follower € kNodes/{nodeld} do

(16) ReplicateLogMsg< >(leaderNodeld, follower, sentEntriesLength)

17) end

(18) end

19) send (LogResponseMsg, nodeld, presentTerm, ack, true) to leaderNodeld
(20) end

(21) else

(22) send (LogResponseMsg, nodeld, presentTerm, 0, false) to leaderNodeld
(23) end

(24) end

ALGORITHM 5: Followers receiving messages at FOLLOWER side.

acknowledgments have been received from the quorum of
the nodes. Suppose that acknowledged length of the log
entries is greater than the already committed log length, and
the log is consistent as per the current term. In that case, each
entry since the last committed entry is committed one by
one, and the message is delivered to the IoT client SDK. After
that, the committedLength is updated to the newly com-
mitted length of the log so when the next LogRequestMsg

message will be sent by the leader to the followers, the value
of this committedLength will be included that will tell the
followers up to which point they could commit their entries
of the log. In our mentioned IoT-based supply chain sce-
nario, there are a lot of transactions between the IoT nodes. If
the leader node directs all the operations, it will become the
bottleneck point. However, the follower nodes are sitting idle
most of the time that creates an imbalance in the workload of

Computational Intelligence and Neuroscience

the peers. The proposed improvements in the Raft consensus
mechanism for Hyperledger Fabric utilize the follower nodes
in disseminating the VoteRequestMsg messages, Appen-
dEntriesMsg message, and also the replication of the log
messages via ReplicateLogMsg function among the fol-
lowers. Follower nodes, upon receiving the messages, dis-
seminate the messages to a further subset of nodes, due to
which finally the message is propagated through the whole
network.

4. Experimental Evaluation

4.1. System Configuration and Inputs. The system build and
test environment are implemented using Linux virtual
machine services. The Hyperledger Fabric network is built,
run, and tested using the Raft and mRAFT consensus
protocol. The environmental parameters for software and
hardware are shown in Table 4. The prototype solution for
experimental evaluation and testing is based on a virtual
server hosted on a laptop computing machine with limited
computational resources and capabilities. It must be kept in
mind that in the production environment, the blockchain
nodes will be held on server machines with heavy compu-
tational capabilities whose performance could differ in terms
of scale. However, the rationale behind the results would be
the same.

The blockchain performance benchmark tool used is the
official Hyperledger Caliper tool that measures the perfor-
mance of the various blockchain systems by using a set of
predefined cases. Hyperledger Caliper uses a set of neutral
and agreed upon rules to evaluate different blockchain so-
lutions. In addition to a customizable test flow and work-
load, Caliper produces a report that contains performance
indicators such as transaction success rate, transaction and
read throughput, transaction and read latency, and resource
utilization. In this study, Hyperledger Caliper is used to test,
analyze, and compare the performance of the different
configurations of the blockchain solution based on Raft
consensus and modified mRAFT consensus mechanism.
Caliper is a benchmark service that generates a workload
against a specific System under test (SUT) and constantly
monitors its execution responses in each cycle. After care-
fully monitoring the responses against a whole bunch of
cycles, generate a comprehensive report of SUT responses.
Hyperledger Caliper requires predefined inputs independent
of the used system under test to run a benchmark.

As shown in Figure 6, these inputs include a Benchmark
Configuration File that contains the information on how the
benchmark should be executed. It also includes the rounds
needed to be executed and the rate at which transactions
should be submitted. This file is independent of the SUT;
hence this file will remain the same for testing both the
blockchain systems with Raft consensus and the system with
mRAFT consensus. The second is the Network Configura-
tion File which is partially SUT specific; this file also contains
the topology of the SUT, the endpoint addresses of its nodes,
a list of the identities and clients present in the network, and
what smart contracts Caliper has to interact with. To
maintain the standard configuration for both the systems

19

under test, the network configuration files will be set the
same to meet the benchmark standard except the topology
configuration. The third input to the Caliper is workload
modules that generate the content for the transaction when
Caliper schedules transactions for a given round. Workload
modules are set to default for both the systems under test.

4.2. Results and Discussion. In the leader selection phase, as
shown in Figure 7, the mRAFT consensus algorithm and the
Raft consensus algorithm work the same on the small
number of nodes as the dissemination of the vote request
messages through the follower nodes has minimal effect on
the small number of nodes till 11 number of nodes. How-
ever, it could be seen on greater than 12 nodes that on a large
number of nodes in the Raft consensus protocol, the se-
lection time is greater because of the bottleneck point for the
leader to disseminate the vote request messages to the fol-
lower nodes. In this scenario, the mRAFT consensus pro-
tocol has less selection time, as discussed in Chapter 3. The
idle follower nodes are being used to disseminate the
messages to further random follower nodes, and no bot-
tleneck occurs on the leader side. There is a linear increase in
leader selection time after the 13 number of nodes on the
Raft consensus algorithm. While increasing the number of
nodes, the mRAFT consensus algorithm provides a more
efficient leader selection time and inhibits the leader node
from queuing and delaying the transactions.

In the log replication phase, the experiment is done for
concurrent 350 transaction requests on a varying number of
nodes to look for the comparative behavior of throughput
for both the systems under test. As shown in Figure 8, it
could be seen that the network throughput on the different
number of nodes is almost the same for the smaller number
of nodes for both the Raft consensus and mRAFT consensus
algorithm. However, when the number of nodes crosses 13,
the mRAFT consensus algorithm provides better throughput
as the follower nodes are efficiently sharing the workload of
the leader node. In return, the leader node utilizes the spare
power in the validation of the remaining transactions. As a
result of which the better throughput is delivered in the
overall Hyperledger Fabric network. It can also be observed
that the increasing number of nodes is inversely propor-
tional to the throughput performance. Utilizing the follower
nodes in disseminating the information also limits the ca-
pacity of the follower nodes for doing operations other than
the Hyperledger Fabric ecosystem.

Figure 9 shows the comparative latency on 350 se-
quential transaction requests on the Raft consensus algo-
rithm and the mRAFT consensus algorithm on a varying
number of nodes. This experiment aims to observe the
behavior of the mRAFT consensus if transaction requests
come in sequence one after the other. The sequential
transaction injection means the new transaction always
comes after the full completion of the previous transaction
request. This experiment helps analyze the latency of the
single transaction and determine how much time the al-
gorithm is consuming to complete a transaction on a varying
number of nodes. The results show that the latency for the

20

Computational Intelligence and Neuroscience

TABLE 4: Software and hardware system configurations.

Software & Hardware Environment

Version

Server Machine (PC)
Operating System
Hyperledger Fabric
Docker Engine
Hyperledger Caliper

Intel ® CoreTM i5-6500 Processor, 8gb Memory, 512gb Hard disk
Ubuntu 18.04
21
18.06.0
0.4.0

Benchmark
Configuaration
‘Workload
Module
Network
Configuration

Input

Hyperledger Caliper

Benchmark
Report

' Workload '
Monitoring

System Under Test (SUT)

FIGURE 6: System benchmark testing environment.

35—

30

25—

20

Time consumed (ms)

-6 Raft
mRAFT

20 30

No. of nodes

FIGURE 7: Leader selection time on varying number of nodes.

sequential transactions is not fascinating as each log repli-
cation message in mRAFT consensus takes more time than
the Raft consensus algorithm. More latency for sequential
transactions in mRAFT is due to the mechanism introduced
in mRAFT of utilizing follower nodes parallel to the leader
node. However, when transactions are injected one after the
completion of the previous, then the parallelism is of no use.

The concurrent transactions throughput experiment
shows the behavior of both the consensus algorithms when a
varying number of transaction requests come at the same
instant. Figure 10 depicts the comparative throughput of the

mRAFT consensus and Raft consensus algorithm upon re-
ceiving the concurrent transaction requests in a 5-20 nodes
network. This experiment illustrates the throughput effi-
ciency of both the systems under test if the leader node
receives multiple concurrent transaction requests in Raft
consensus. The results show that the successful transactions
per second rate for mRAFT consensus are relatively higher
than the Raft consensus algorithm because of the more
efficient utilization of the leader and follower nodes.
However, after reaching a threshold, the throughput rate of
both the systems under test is leveled off due to the machine

Computational Intelligence and Neuroscience

21

160 —

140

120 —

Through put (TPS)

100 —

-6 Raft
mRAFT

20 30

No. of nodes

FiGure 8: Throughput of the network on varying number of nodes.

[[[
50 —
3 45 —
o
[
£
2
=]
S 40 -
(o)
E
H
35+ =
G-
| | |
10 20 30
No. of nodes
-O— Raft
mRAFT

FIGURE 9: Network latency on 350 transactions and varying number of nodes.

resource capacity. Similarly, it could be observed in 5, 10, 15,
20 number of nodes that the throughput is greater as per the
injected transactions under a small number of nodes.
However, with the increasing number of nodes, the
throughput also reduces because of the large number of
nodes participating in the consensus process.

As shown in Figure 11, it is significant to experimentally
analyze the latency of the systems under test upon receiving
the concurrent transaction requests at almost the same
instant on a 5-20 fixed number of nodes. This depicts
whether the system handles concurrent transactions effi-
ciently or not. There is a confusing difference between
Figures 9 and 11 as both show the latency results in ex-
perimentation. However, the former shows the latency when

sequential transactions are received one after the completion
of the previous, while the latter shows the latency for
concurrent transaction requests. The result shows that the
latency of the mRAFT consensus algorithm is better as
compared to the Raft consensus algorithm when concurrent
transaction requests are injected into the system because the
system is now capable of executing transactions in parallel.
Similarly, it could also be observed that the latency of the
concurrent transactions increased with the increasing
number of nodes.

The performance of the mRAFT consensus protocol is
evaluated with the help of experiments. The parameters
such as leader selection time, network latency, and
throughput are considered to perform extensive

22

5 NODES
I I I
300 —
)
9
£
H
= 200 —
b
3
2
E
100 —
| | |
100 200 300
No. of transaction requests
- Raft
mRAFT
15 NODES
I I I
» 150 — —
=¥
£
=1
oy
<
b
=
o
-
E 100 — —
| | |

100 200 300
No. of transaction requests

-©— Raft
mRAFT

Computational Intelligence and Neuroscience

10 NODES
I I I
200 : : B ; ; R R
7
o
2 150 - -
=]
=¥
=
o0
=)
2
E
100 |~ —
| | |
100 200 300
No. of transaction requests
—-©— Raft
mRAFT
20 NODES
I I I
200 : : B . : R R
2
= 150 |- —
5
2,
=
oo
=]
g
= ‘
100 — —
| | |
100 200 300
No. of transaction requests
-o— Raft

mRAFT

Ficure 10: Throughput on concurrent transactions under 5-20 nodes.

experiments to determine the effectiveness of the mRAFT
in the Hyperledger Fabric system. The experiment is
conducted to test the efficiency of the mRAFT consensus
and Raft consensus in leader selection time. The results
indicate the improvement in the mRAFT consensus algo-
rithm when the number of nodes is increased. Then the
experiment is conducted to measure the throughput on a
concurrent fixed number of transactions and a varying
number of nodes. The respective experiment signified the
superiority of the mRAFT consensus algorithm. Similarly,
an experiment to measure network latency is conducted on
a fixed number of sequential transactions. However, the
individual transaction latency of mRAFT is not much
different from the Raft consensus, which shows mRAFT is

efficient when concurrent transactions are available. When
there are concurrent transactions injected into the system,
the other idle follower nodes share the hectic workload of
the leader node and boost the efficiency of the system. In
another experiment, throughput on varying concurrent
transaction requests is observed under several fixed number
of nodes. The results of the respective experiment dem-
onstrate the efficiency of the mRAFT consensus algorithm
compared to the Raft consensus. Finally, the experiment is
conducted to test the network latency on varying con-
current transaction requests under several fixed number of
nodes. The results of the respective experiment indicate the
mRAFT consensus algorithm consumes less time in
comparison to the Raft consensus; however, the concurrent

Computational Intelligence and Neuroscience

5 NODES
T T T

Time consumed (s)

| | |
100 200 300

No. of transaction requests

-6 Raft
mRAFT

15 NODES
I I I

25

o
(=]
I

Time consumed (s)
_
w
I

,_.
o
I

| | |
100 200 300

No. of transaction requests

-©— Raft
mRAFT

23
10 NODES
BFE T j j T j T j i
20 — —
= 15+ —
L
g
2
=}
S 10 -
L
E
H
5 — —
0+ —
| | |
100 200 300
No. of transaction requests
—-©— Raft
mRAFT
20 NODES
I I I
30 — —
- 251 —
1
£
5 20 — —
=
S
o 15 —
E
=
10 |~ —
5 — —
| | |
100 200 300
No. of transaction requests
-©— Raft

mRAFT

FIGURE 11: Network latency on concurrent transactions under 5-20 nodes.

transactions must be available in the transaction pool to get
the required efficiency.

5. Conclusion and Future Work

The respective research work initially provided a detailed
review of the literature and analyzed the impact of block-
chain technology in solving scalability, transparency, and
fault tolerance issues in enterprise IoT networks. The review
helped in understanding the rationale behind blockchain
and IoT and their core difference from traditional tech-
nologies in providing digital solutions. Moreover, the
technical characteristics are analyzed for the most appro-
priate blockchain-based consensus algorithm concerning

resource-constrained IoT devices networks. The literature
related to the analysis of the applicability of different
blockchain consensus mechanisms in IoT is reviewed to
understand the suitable consensus mechanism for IoT better
as the respective devices are resource-constrained in terms of
storage and power consumption. There is also a concept
reviewed in literature in which IoT devices resource-con-
strained nature smart homes are loaded with high-perfor-
mance computing resources to provide additional resources
for the computational tasks of IoT resource-constrained
devices such that providing them aids in undergoing
lightweight consensus among IoT devices. Moreover, the
literature review revealed strategies that introduce rewards
in consensus algorithms that ultimately proposed the

24

evolution of credit-based consensus mechanisms that work
by increasing the computational workload for malicious
nodes while decreasing the workload for honest nodes.
Analysis of the technical characteristics of IoT-focused
consensus algorithms identified the best suitable parameters
in designing consensus algorithms for IoT-based blockchain
frameworks. This study also analyzes the consensus algo-
rithms in specifically permissioned blockchains for their
applicability in IoT devices networks and proposed im-
provements in the Raft consensus algorithm based on
Hyperledger Fabric in the form of mRAFT consensus. The
aim behind the improvements is to make blockchain
adoption more convenient for resource-constrained IoT
devices via improving the throughput and latency of the
consensus algorithm. In our mentioned IoT-based supply
chain scenario, there are a lot of transactions between the
IoT nodes. If the leader node directs all the operations, it will
become the bottleneck point. However, the follower nodes
are sitting idle most of the time that creates an imbalance in
the workload of the peers. The proposed improvements in
the Raft consensus mechanism for Hyperledger Fabric
utilize the follower nodes in disseminating the VoteR-
equestMsg messages, AppendEntriesMsg message and also
the replication of the log messages via ReplicateLogMsg
function among the followers. In the improved algorithm
mRAFT, the workload from the leader node is reduced. In
return, the leader efficiently utilizes the idle follower nodes
in disseminating the vote request and log replication mes-
sages. The effectiveness of the improvements in the proposed
algorithm is demonstrated with the help of a detailed ex-
perimental study. The results reveal that the proposed im-
provements in the Raft consensus protocol provide a better
selection time, latency, and throughput. The follower nodes
efficiently flood vote request messages for consensus in a
larger number of nodes. Moreover, the mRAFT consensus
provides significantly better network throughput on a
varying number of nodes than the original Raft consensus
for a larger than 13 number of nodes. Another experiment is
done to analyze the latency in conducting 350 transactions
on a varying number of nodes. The proposed mRAFT al-
gorithm took more time when sequential transaction re-
quests were injected, one after the completion of the other as
individual transactions consume more time. The throughput
of the algorithm is also improved on concurrent transaction
requests under several fixed number of nodes. Ultimately,
the experiment is conducted to analyze network latency on
concurrent transaction requests under several fixed number
of nodes, demonstrating the superiority of the proposed
algorithm mRAFT. In general, the latency of the individual
transaction is greater in the improved version mRAFT as the
transaction requests are disseminated through the follower
nodes. However, in a system with numerous transaction
requests per unit of time, the algorithm provides better
throughput, making it best useable in resource-constrained
IoT devices networks. A number of considerations to im-
prove the read and write operations of the Raft consensus
algorithm for Hyperledger Fabric are also in the pipeline.
For instance, the research challenges related to utilizing the
quorum nodes in read or write transactions as their

Computational Intelligence and Neuroscience

reliability is equivalent to the leader would further optimize
the consensus process. Moreover, the consideration of non-
occurrence of byzantine failures in the consensus process
reduces the real-life applicability. There is room for research
in making byzantine fault-tolerant consensus algorithms for
permissioned blockchains.

Abbreviations

API: Application PROGRAMMING INTERFACE
CA: Certificate authority

CFT: Crash fault tolerance

DAG: Directed acyclic graph

DLT: Distributed ledger technology

FIFO: First In, First Out

GPS: Global Positioning System

HPC: High performance computing

ICT: Information and communications technology

IoT: Internet of Things

mRAFT: Modified Reliable, Replicated, Redundant, And
Fault Tolerant

MSP: Membership service provider

PBFT: Practical byzantine fault tolerance

PKI: Public key infrastructure

PoBT: Proof of block and trade

PoC: Proof of capacity

PoEWAL: Proof of elapsed work and luck

PoS: Proof of stake

PoT: Proof of traffic

PoW: Proof of work

RAFT: Reliable, Replicated, Redundant, And Fault
Tolerant

REST: Representational state transfer

RS: Reed-Solomon

SDK: Software development kit

SUT: System under test

UAS: Unmanned aircraft system.

Data Availability

The project source code and dataset are available at https://
github.com/anasbaigmughal/fabric-main-mraft.

Conflicts of Interest

The authors declare that they have no conflicts of interest.

References

[1] O. Pal, B. Alam, V. Thakur, and S. Singh, “Key Management
for Blockchain Technology,” ICT Express, vol. 7, no. 1,
pp. 76-80, 2019.

[2] S. Suzuki and J. Murai, “Blockchain as an audit-able com-
munication channel,”vol. 2, pp. 516-522, in Proceedings of the
2017 IEEE 41st Annual Computer Software and Applications
Conference (COMPSAC), vol. 2, IEEE, Turin, Italy, 2017.

[3] S. Zhang and J. H. Lee, “Analysis of the main consensus
protocols of blockchain,” ICT Express, vol. 6, no. 2, pp. 93-97,
2020.

[4] M. Muzammal, Q. Qu, and B. Nasrulin, “Renovating
blockchain with distributed databases: an open source

https://github.com/anasbaigmughal/fabric-main-mraft
https://github.com/anasbaigmughal/fabric-main-mraft

Computational Intelligence and Neuroscience

system,” Future Generation Computer Systems, vol. 90,

pp. 105-117, 2019.

Z.Zheng, S. Xie, H. Dai, X. Chen, and H. Wang, “An overview

of blockchain technology: architecture, consensus, and future

trends,” in Proceedings of the 2017 IEEE International congress
on Big Data (BigData congress), pp. 557-564, IEEE, Honolulu,

HI, USA, 2017.

[6] M. Ertz and E Boily, “The rise of the digital economy: thoughts
on blockchain technology and cryptocurrencies for the col-
laborative economy,” International Journal of Innovation
Studies, vol. 3, no. 4, pp. 84-93, 2019.

[7] A. Pinna, S. Ibba, G. Baralla, R. Tonelli, and M. Marchesi, “A
massive analysis of ethereum smart contracts empirical study
and code metrics,” IEEE Access, vol. 7, pp. 78194-78213, 2019.

[8] T. T. A. Dinh, R. Liu, M. Zhang, G. Chen, B. C. Ooi, and
J. Wang, “Untangling blockchain: a data processing view of
blockchain systems,” IEEE Transactions on Knowledge and
Data Engineering, vol. 30, no. 7, pp. 1366-1385, 2018.

[9] C. Shen and F. Pena-Mora, “Blockchain for cities-A sys-

tematic literature review,” IEEE Access, vol. 6, pp. 76787-

76819, 2018.

L. S. Sankar, M. Sindhu, and M. Sethumadhavan, “Survey of

consensus protocols on blockchain applications,” in Pro-

ceedings of the 2017 4th International Conference on Advanced

Computing and Communication Systems (ICACCS), pp. 1-5,

IEEE, Coimbatore, India, 2017.

[11] H. Magrahi, N. Omrane, O. Senot, and R. Jaziri, “NFB: a

protocol for notarizing files over the blockchain,” in Pro-

ceedings of the 2018 9th IFIP International Conference on New

Technologies, Mobility and Security (NTMS), pp. 1-4, IEEE,

Paris, France, 2018.

O. Novo, “Blockchain meets IoT: an architecture for scalable

access management in IoT,” IEEE Internet of Things Journal,

vol. 5, no. 2, pp. 1184-1195, 2018.

S. Zoican, M. Vochin, R. Zoican, and D. Galatchi, “Blockchain

and consensus algorithms in internet of things,” in Pro-

ceedings of the 2018 International Symposium on Electronics
and Telecommunications (ISETC), pp. 1-4, IEEE, Timisoara,

Romania, 2018.

[14] M. Vukoli¢, “Rethinking permissioned blockchains,” in
Proceedings of the ACM Workshop on Blockchain, Crypto-
currencies and Contracts, pp. 3-7, ACM, United Arab
Emirates, 2017.

[15] M. Risius and K. Spohrer, “A blockchain research frame-
work,” Business & Information Systems Engineering, vol. 59,
no. 6, pp. 385-409, 2017.

[16] C. Saraf and S. Sabadra, “Blockchain platforms: a compen-
dium,” in Proceedings of the 2018 IEEE International Con-
ference on Innovative Research and Development (ICIRD),
pp. 1-6, IEEE, Bangkok, Thailand, 2018.

[17] A. Lasisi and S. Hsu, “Consensus mechanism in enterprise
blockchain,” in Proceedings of the 2019 IEEE International
Conference on Intelligence and Security Informatics (ISI),
p. 228, 2019.

[18] R. M. Nadir, “Comparative study of permissioned blockchain
solutions for enterprises,” in Proceedings of the 2019 Inter-
national Conference on Innovative Computing (ICIC), pp. 1-6,
IEEE, Lahore, Pakistan, 2019.

[19] T. Q. Ban, B. N. Anh, N. T. Son, and T. Van Dinh, “Survey of
hyperledger blockchain frameworks: case study in FPT uni-
versity’s cryptocurrency wallets,” in Proceedings of the 2019
8th International Conference on Software and Computer
Applications, pp. 472-480, New York, NY, USA, 2019.

—
)

[10

[12

(13

25

[20] A. R. Thota, P. Upadhyay, S. Kulkarni, P. Selvam, and
B. Viswanathan, “Software wallet based secure participation in
hyperledger fabric networks,” in Proceedings of the 2020 In-
ternational Conference on COMmunication Systems ¢ NET-
workS (COMSNETS), pp. 1-6, IEEE, Bengaluru, India, 2020.

[21] J. Polge, J. Robert, and Y. Le Traon, “Permissioned blockchain
frameworks in the industry: a comparison,” ICT Express,
vol. 7, no. 2, pp. 229-233, 2021.

[22] K. Christidis and M. Devetsikiotis, “Blockchains and smart
contracts for the internet of things,” IEEE Access, vol. 4,
pp. 2292-2303, 2016.

[23] K. Yeow, A. Gani, R. W. Ahmad, J. J. P. C. Rodrigues, and
K. Ko, “Decentralized consensus for edge-centric internet of
things: a review, taxonomy, and research issues,” IEEE Access,
vol. 6, pp. 1513-1524, 2018.

[24] A. Dorri, S. S. Kanhere, R. Jurdak, and P. Gauravaram,
“Blockchain for IoT security and privacy: the case study of a
smart home,” in Proceedings of the 2017 IEEE International
Conference on Pervasive Computing and Communications
Workshops (PerCom workshops), pp. 618-623, IEEE, Kona,
HI, USA, 2017.

[25] B. Cao, Y. Li, L. Zhang et al., “When Internet of Things meets
blockchain: challenges in distributed consensus,” IEEE Net-
work, vol. 33, no. 6, pp. 133-139, 2019.

[26] J. Huang, L. Kong, G. Chen, M. Y. Wu, X. Liu, and P. Zeng,
“Towards secure industrial IoT: blockchain system with
credit-based consensus mechanism,” IEEE Transactions on
Industrial Informatics, vol. 15, no. 6, pp. 3680-3689, 2019.

[27] U. Khalid, M. Asim, T. Baker, P. C. Hung, M. A. Tariq, and
L. Rafferty, “A Decentralized Lightweight Blockchain-Based
Authentication Mechanism for IoT Systems,” Cluster Com-
puting, vol. s, pp. 1-21, 2020.

[28] S. Biswas, K. Sharif, F. Li, S. Maharjan, S. P. Mohanty, and
Y. Wang, “PoBT: a lightweight consensus algorithm for
scalable IoT business blockchain,” IEEE Internet of Things
Journal, vol. 7, no. 3, pp. 2343-2355, 2020.

[29] N. Raghav, S. Andola, S. Venkatesan, and S. Verma,
“PoEWAL: a lightweight consensus mechanism for block-
chain in IoT,” Pervasive and Mobile Computing, vol. 69,
Article ID 101291, 2020.

[30] J. Wang, Y. Liu, S. Niu, and H. Song, “Lightweight blockchain
assisted secure routing of swarm UAS networking,” Computer
Communications, vol. 165, pp. 131-140, 2021.

[31] C. Li, J. Zhang, X. Yang, and L. Youlong, “Lightweight
blockchain consensus mechanism and storage optimization
for resource-constrained IoT devices,” Information Processing
& Management, vol. 58, no. 4, Article ID 102602, 2021.

[32] T. Frikha, F. Chaabane, N. Aouinti, O. Cheikhrouhou, N. Ben
Amor, and A. Kerrouche, “Implementation of Blockchain
Consensus Algorithm on Embedded Architecture,” Security
and Communication Networks, vol. 2021, pp. 1-11, Article ID
9918697, 2021.

[33] Y. Zhang, L. Zhang, Y. Liu, and X. Luo, “Proof of service
power: a blockchain consensus for cloud manufacturing,”
Journal of Manufacturing Systems, vol. 59, pp. 1-11, 2021.

[34] D. Ongaro andJ. Ousterhout, “In search of an understandable
consensus algorithm,” in Proceedings of the 2014 (USENIX)
Annual Technical Conference (USENIX-ATC 14), pp. 305-319,
Stanford University, Stanford, CA, USA, 2014.

[35] W. Fu, X. Wei, and S. Tong, “An improved blockchain
consensus algorithm based on raft,” Arabian Journal for
Science and Engineering, vol. 46, no. 9, pp. 8137-8149, 2021.

