TABLE 3.
DenseNet121 architecture with Soft Attention Block for classification of PD and HC cases.
Layers | Output shape | Kernel size and details |
Convolution 2D | 112×112 | 7× 7conv, stride 2 (Rui et al., 2019) |
Max Pooling 2D | 56×56 | 3×3 max−pool,stride 2 |
Dense Block (Pahuja et al., 2019) | 56×56 | |
Transition Layer (Pahuja et al., 2019) | 56×56 | 1× 1conv |
28×28 | 2×2average pool, stride 2 | |
Dense Block (Prediger et al., 2014) | 28×28 | |
Transition Layer (Prediger et al., 2014) | 28×28 | 1× 1conv |
14×14 | 2×2average pool, stride 2 | |
Dense Block (Blesa et al., 2015) | 14×14 | |
Transition Layer (Blesa et al., 2015) | 14×14 | 1× 1conv |
7×7 | 2×2average pool,stride 2 | |
Dense Block (Zhou et al., 2009) | 7×7 | |
Soft Attention Block | 7×7 | SoftAttention× 1 |
Classification | 1×1 | 7× 7global average pool |
Layer | 2 | Fully Connected Dense Layer, Softmax |