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Summary

One major finding of chronic inflammatory diseases of various origins is the establishment of inflamma-
tory infiltrates, bearing different leukocyte subpopulations, including activated T lymphocytes. Integrins are 
among the large series of molecular interactions that have been implicated as players in both triggering 
and maintenance of leukocyte influx from the blood into a given organ parenchyme. Accordingly, blocking 
the interaction between VLA-6 integrin and laminin, experimentally abrogates heart graft rejection. Many 
reports have shown that VLA-4 is used by T cells to cross endothelial barriers, as well as to migrate within 
target tissues. In this respect, a humanized IgG4 anti-VLA-4 monoclonal antibody (specific to the α4-integrin 
chain of VLA-4) has been successfully applied to treat multiple sclerosis as well as inflammatory bowel 
disease. Anti-VLA-4 monoclonal antibody has also been applied to block transendothelial passage in other 
autoimmune diseases, such as rheumatoid arthritis. On this same vein is the action of such a reagent in 
impairing in vitro transendothial and fibronectin-driven migration of CD4+ and CD8+ T cells expressing 
high densities of VLA-4 from Duchenne muscular dystrophy patients, thus potentially enlarging the use of 
this strategy to other diseases. Yet, in a small number of patients, the use of Natalizumab has been correl-
ated with the progressive multifocal leukoencephalopathy, a serious brain infection caused by the John 
Cunningham virus. This issue restricted the use of the reagent. In this respect, the development of smaller 
and more specific antibody reagents should be envisioned as a next-generation promising strategy.

Keywords:   cell trafficking, immunotherapy, neuroimmunology, T cells

Abbreviations:BBB: Blood–brain barrier; CD: Crohn’s disease; DMARDs: Disease-modifying antirheumatic drugs; DMD: Duchenne muscular 
dystrophy; Fab: Antigen-binding fragment; Fv: Variable fragment; IBD: Inflammatory bowel disease; MS: Multiple sclerosis; PML: Progressive 
multifocal leukoencephalopathy; RA: Rheumatoid arthritis; scFv: Single-chain Fv; TNF: Tumor necrosis factor; UC: Ulcerative colitis; VH: 
Variable portion of the heavy chain of immunoglobulin; VLA: Very late antigen; VL: Variable portion of the light chain of Immunoglobulin.

https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://orcid.org/0000-0002-3938-9514
mailto:wilson.savino@fiocruz.br?subject=
mailto:savino.w@gmail.com?subject=


2� Immunotherapy Advances, 2021, Vol. 1, No. 1

Introduction

A large series of molecular interactions have been impli-
cated as players in triggering and maintenance of the influx 
of leukocytes, from the blood, through the blood vessel 
walls, into the given parenchyma. Integrins correspond to 
a large protein family of membrane receptors involved in 
this migratory path. They are integral cell membrane pro-
teins; several of them being directly involved in cell migra-
tion. Additionally, a number of integrins able to bind to 
extracellular matrix moieties (e.g. laminin and fibronectin) 
are relevant for cell migration within tissues in a variety 
of organs. Lastly, integrin-directed interactions also play 
a role in the adhesion of leukocytes to cells in various or-
gans, belonging or not to the hemopoietic system.

Chronic inflammatory diseases of various origins col-
lectively correspond to a major public health issue, both 
in terms of social and economic consequences. One major 
common finding, in autoimmune and chronic inflammatory 
diseases, is the establishment of inflammatory infiltrates, 
bearing different leukocyte sub-populations, including ac-
tivated T lymphocytes. Such infiltrates, harmful for the tar-
geted tissue, can be either the origin of the illness, and/or 
play a significant role in the pathophysiological process per-
petuating and providing a positive feedback to the disease.

Although steroids and other broad spectrum 
anti-inflammatory drugs are effective in treating a variety of 
inflammatory diseases, long-term usage has important side 
effects, such as bleeding, upper gastrointestinal complica-
tions, and opportunistic infections. Therefore, development 
of drugs that inhibit specific cellular functions without af-
fecting normal immune surveillance is desirable. Herein, 
we will discuss selected examples, aiming at providing a 
discussion on the integrin-mediated immunotherapy, po-
tentially applied as a further tool to treat inflammatory dis-
eases as well as in survival of organ or tissue grafts.

Integrins are regarded as central adhesive molecules 
able to regulate the intricate pathway of leukocyte traf-
ficking into tissues. They correspond to a large protein 
family of membrane receptors involved in this migratory 
path. For example, in a variety of tissues and organs, 
including the central nervous system (CNS), the pancreas 
and the skeletal muscle, inflammatory cells, particularly T 
lymphocytes, use the integrins to move toward and within 
the given tissue, as for example VLA-6 (α6β1, CD49f/
CD29 – a laminin receptor) and VLA-4 (α4β1, CD49d/
CD29 – which binds to VCAM-1 and fibronectin). In this 
respect, it is noteworthy that VLA-4 can be applied as 
a marker of T-cell activation in both humans and mice, 
being involved in leukocyte cytoskeleton dynamics [1–7]. 
Other integrins can direct the migration toward one spe-
cific tissue, as the integrin α4β7, which directs lymphocyte 
migration toward and within mucosal cell layers [4].

Consequently, blocking the establishment and/or 
maintenance of such a deleterious adhesive system in 
inflammatory reactions by using inhibitors of these in-
tegrins, should bring benefits to patients suffering from 
chronic inflammatory diseases, regardless their patho-
genesis, including transplanted patients.

Consequently, blocking the establishment and/or 
maintenance of such a deleterious adhesive system in 
inflammatory reactions by using inhibitors of these in-
tegrins, should bring benefits to patients suffering from 
chronic inflammatory diseases, regardless their patho-
genesis, including transplanted patients.

Role of VLA-6-mediated interactions in graft 
rejection

The integrin VLA-6 (α6β1, CD49f/CD29) is a laminin re-
ceptor able to bind various laminin isoforms and plays a 
role in T-cell development, migration, and activation [8]. 
Previous studies strongly indicated that VLA-6 can be 
placed as a potential target to abrogate T-cell-mediated 
immune reaction, as for example graft rejection. Using 
implants of neonatal hearts into the subcutaneous tissue 
of the ears from adult syngeneic recipients, we showed 
that blocking VLA-6-mediated interactions with anti-
VLA-6 prevented heart graft rejection by autoreactive 
spleen-derived CD4+ T lymphocytes obtained from mice 
previously infected with the parasite Trypanosoma cruzi, 
the causative agent of Chagas disease [9]. Similar data 
were observed when we applied an allogeneic transplant 
into normal adult recipients: both anti-laminin and anti-
VLA-6 antibodies could prevent graft rejection [10, 11]. 
Moreover, specific blockade of the α5 laminin chain in 
the lymph nodes prevent activated cells to migrate from 
the lymph node toward the transplanted tissue, thus 
impacting graft survival [12].

These findings indicate that laminin/VLA-6-mediated 
infections can be envisioned as immunotherapeutic 
targets in controlling autoimmunity, as well as graft 
maintenance, not only at the rejection site, but also in 
lymph nodes. Yet, despite the consistent experimental 
data corresponding clinical assays have not yet been 
developed.

Targeting VLA-4 as immunotherapeutic 
strategy to treat specific inflammatory 
diseases

As compared to VLA-6, much more data are avail-
able establishing VLA-4-mediated interactions as 
immunotherapeutic targets. VLA-4 is highly expressed in 
different activated T cell subsets; having vascular cell ad-
hesion molecule-1 (VCAM-1, CD106), osteopontin, and 
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fibronectin are natural cognate ligands. In this respect, it 
has been shown that CD49d-overexpressing T cell lines 
are autoreactive and proliferate in response to antigen-
presenting cells, in an MHC class II-dependent manner, 
even in the absence of the cognate antigen [13].

VLA-4 is broadly expressed in cells of both innate and 
adaptive immune responses. Accordingly, this integrin is 
constitutively seen on the membranes of eosinophils and 
monocytes, as well as on T and B lymphocytes [14, 15]. 
Furthermore, it is expressed in all stages in intrathymic 
T-cell differentiation, particularly in the immature CD4/
CD8 double-negative thymocytes [16].

Additionally, VLA-4 overexpression in circulating 
T lymphocytes is associated with an increased in vitro 
adhesion to endothelial cells [3]. Accordingly (Fig. 1), 
blockade of VLA-4/VCAM-1 interaction should impair 
transendothelial migration of leukocytes to inflamma-
tion sites. Moreover, the blockade of VLA-4/fibronectin 
interaction should impair migration of leukocytes within 
the given target tissue, as well as binding to putative 
target cells. Of note, VLA-4 has an anti-apoptotic role 
in T lymphocytes [17]. In keeping with these findings, in-
duction of apoptosis in lymphocytes has been shown as 
consequence of corresponding antibody therapy, in the 
model of autoimmune neuritis [18].

Therefore, biological products able to inhibit 
the alpha-4 integrin subunit represent potential 
immunotherapeutic agents to be applied in a larger spec-
trum of T-cell-related inflammatory diseases. Actually, 
since several years, large numbers of pre-clinical and clin-
ical data strongly placed the integrin VLA-4 as a target 
for immunotherapy, particularly with the use of the anti- 
α4 integrin antibody [19–22].

Lastly, it is noteworthy that, as briefly mentioned 
above, the integrin α4β7, that binds to MAdCAM-1 
(Mucosal Addressin Cell Adhesion Molecule-1), and also 
to VCAM-1 and fibronectin, is involved in lymphocyte 
migration to mucosal inflammatory sites, and has been a 
target for immunotherapy in gut inflammation [23, 24].

Natalizumab: therapeutic role in multiple 
sclerosis and inflammatory bowel disease

Multiple sclerosis (MS) is a neurological autoimmune 
disease, being highly frequent in northern countries such 
as USA, Canada, and western European countries, and to 
a lesser extent in Latinoamerican and African countries, 
varying from less than 30 patients per 100,000 popula-
tion in Brazil, to more than 150 per 100,000 in Canada. 
Additionally, it is more prevalent in females than males 

Figure 1  Anti-VLA-4 antibodies can potentially abrogate transendothelial and intra-tissular T cell migration and adhesion. 
1.  Extravasation of lymphocytes can be impaired by blocking VLA-4/VCAM-1 interaction at the endothelial of blood vessels; 
2. Intratissular migration of lymphocytes in the inflammatory sites can be significantly diminished by blocking VLA-4/fibronectin 
interaction; 3. Adhesion of the activated lymphocyte to a potential organ specific cell type can be abolished by blocking fibronectin/
VCAM-1/VLA-4 mediated cell–cell interaction. EC: endothelial cells; fibronectin is represented by the double waves in the extracel-
lular space.
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and represents the most common autoimmune disease 
in young adults. The disease has three main forms: re-
lapsing and remitting MS, characterized by episodes of 
neurological dysfunction interspersed with periods of 
stability; primary-progressive MS, in which progres-
sive neurological disability occurs from the outset; and 
secondary-progressive MS, in which progressive neuro-
logical disability occurs later in the course of the disease 
[25]. Axonal loss is the major determinant of the accu-
mulation of irreversible (progressive) disability as a result 
of inflammation during both the relapsing and remitting 
and progressive phases of MS [26, 27].

MS is considered to be initiated by activated, self-
reactive CD4+ T lymphocytes that recognize components 
of the myelin sheath, which surrounds and insulates 
nerve fibers. T cells enter the CNS through postcapillary 
venules and are reactivated by antigen-presenting cells 
in the perivascular space. These steps are followed by 
the recruitment of additional inflammatory cells, such 
as macrophages, which cause inflammation, edema and, 
eventually, destruction of the myelin sheath (28).

A largely used animal model for human MS is the ex-
perimental autoimmune encephalomyelitis (EAE), which 
can be induced in mice by immunization with myelin-
derived peptide aa139-151. Animals develop clinical signs 
of disease, with intermittent episodes. This occurs with 
leukocyte infiltration within the CNS. Such an infiltration 
can be abrogated by anti-VLA-4 antibodies [19, 29–31]. 
Interestingly, not only VLA-4 is involved in the migration 
of T lymphocytes through the brain endothelium, but also 
in the recruitment of immature dendritic cells [32].

As mentioned above, beneficial effects of α4-integrin 
blockade were demonstrated in animal models as well as 
in clinical trials with MS patients. Based on these findings, 
the humanized whole monoclonal antibody Natalizumab 
[33], targeting the α4-integrin subunit, and that has been 
approved for treating relapsing-remitting MS. It has been 
demonstrated that Natalizumab was able to reduce the 
annual rate of MS relapse by 2/3 and to decrease the 
development of new gadolinium-enhancing lesions by 
±90%, as ascertained by magnetic resonance imaging of 
MS patients [34]. Natalizumab is part of the therapeutic 
arsenal of drugs efficient against MS. Actually, a com-
parative study revealed that was not only more effica-
cious than fingolimod and dimethyl fumarate, but also 
was better tolerated by the patients [35]. Nonetheless, 
the use of Natalizumab has been correlated with the ap-
pearance of progressive multifocal leukoencephalopathy 
(PML), a serious and rare opportunistic infection of the 
brain caused by the John Cunningham virus (JCV). Since 
PML is a viral disease, such an adverse effect is likely 
to be due to the induction of immunodeficiency. These 
studies revealed that, despite the good general tolerability 

and sustained efficacy of Natalizumab for patients with 
severe MS, the risk of PML remained a concern [36]. At 
present, the use of Natalizumab has been restricted, as a 
monotherapy for MS patients presenting a highly active 
progressing disease in Europe and in the USA [37–40].

Natalizumab has also been applied in inflammatory 
bowel disease (IBD), a group of inflammatory conditions 
of the colon and small intestine of unknown etiology. 
The two major autologous types of IBD are Crohn’s 
disease (CD) and ulcerative colitis (UC), in which the 
immune system recognizes gastrointestinal tract moi-
eties, causing what is considered an autoimmune inflam-
mation. Treatment of CD comprises anti-inflammatory 
biologicals such as TNF antagonists, that target inflam-
matory pathways to induce remission in CD patients. 
However, approximately one third patients do not re-
spond to anti-TNF therapy, and in some cases severe sys-
temic side-effects have been reported [41]. In this context, 
Natalizumab has been applied to target a pathway other 
than TNF inhibition. The drug has demonstrated efficacy 
in inducing and maintaining remission in moderate-to-
severe refractory CD patients with active inflammation 
[42]. However, due to possible occurrence of PML, the 
use of Natalizumab as a therapeutic strategy to treat CD 
is also rather restricted.

Migration to the intestines involves the presence of 
α4β7 and α4β1 integrins on the lymphocyte membrane 
[43, 44]. In this respect, it is noticeable that treatment with 
specific humanized anti-α4β7 antibodies revealed con-
sistent good results in patients with UC [45, 23, 46, 47].

As α4β7 integrin is a central molecule for selective mi-
gration of T lymphocytes to the intestines [44], the treat-
ment with specific humanized antibodies that target the 
interaction of MadCAM with α4β7 seems to overcome 
such a restriction. Interestingly, several clinical studies re-
ported consistent good results in both UC and CD pa-
tients [47] and elicit new comprehensive studies on the 
migration-targeting immunotherapy of IBD [48].

Potential use of anti-VLA-4 immunotherapy 
in other inflammatory diseases

Rheumatoid arthritis

Rheumatoid arthritis (RA) is a systemic inflammatory 
disease affecting the joint lining tissue called synovium. 
The chronic character of autoimmune diseases has an 
important socio-economic impact. RA is the most fre-
quent autoimmune disease with a prevalence of about 
0.3 to 1% of the population worldwide and often associ-
ated with reduced mobility, increased social dependency, 
and finally work disability. RA patients are frequently at 
working age and the inability to work causes major fi-
nancial and psychological issues for the person with the 
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disease and their family. There is also the social and eco-
nomic burden placed on the community resulting from a 
person’s incapacity to maintain employment.

RA patients are in general treated with a group 
of small molecular drugs called disease-modifying 
antirheumatic drugs (DMARDs). DMARDs suppress the 
body’s overactive immune and/or inflammatory systems 
in some way, thereby slowing down disease progression. 
RA patients not responding to DMARDs are treated 
with biological agents such as tumor necrosis factor 
(TNF) antagonists. Though TNF antagonists are effective 
in about two-thirds of the patients, the responding pa-
tients frequently become non-responsive within 5 years. 
Therefore, alternative treatments are required.

The synovium is normally a relatively acellular struc-
ture with a delicate intimal lining that is one or two cell 
layers deep. It covers the lubricating synovial fluid found 
in the cavities of synovial joints. The rheumatoid synovial 
tissue is characterized by hyperproliferation of fibroblast-
like synoviocytes in the intimal lining layer and infiltra-
tion of the sublining by macrophages, T and B cells, which 
promote inflammation and destruction of bone and car-
tilage. Most leukocytes express VLA-4 on their surface 
and they interact with VCAM-1 expressed on synoviocytes 
and endothelial cells. Moreover, it has been shown that 
VLA-4/VCAM interactions between B lymphocytes and 
synovial fibroblasts upregulating expression of the anti-
apoptotic protein Bcl-xL in B cells thus promoting B cell 
survival in the inflamed synovium [49]. Disruption of 
these VLA-4-mediated interactions between lymphocytes, 
synoviocytes and endothelial cells should put an end to 
the cycle of chronic inflammation, which is the hallmark 
of rheumatoid arthritis [50]. Accordingly, Natalizumab 
has been applied to treat RA patients. Nevertheless, a 
phase II, multicenter, double-blind, placebo-controlled 
clinical trial designed to determine the safety, tolerability 
and efficacy of Natalizumab in subjects diagnosed with 
moderate to severe RA receiving concomitant treatment 
with methotrexate. No statistically significant differences 
were found between Metothrexate-treated patients, in the 
presence or absence of Natalizumab [51]. Deeper investi-
gation on mechanisms, as well as new tools should then 
be searched for.

Potential use of anti-VLA-4 immunotherapy in 
Duchenne muscular dystrophy

Muscular dystrophies are inherited diseases of the muscle 
that are characterized clinically by progressive muscle 
weakness, and pathologically by muscle degeneration. 
Among them, Duchenne muscular dystrophy (DMD) is 
the most common form of muscular dystrophy affecting 
1 in 3500 newborn boys. DMD presents a progressive 

muscle weakness resulting in a loss of ambulation usu-
ally in the early teens and death around 30 years of age 
if modern standard care is applied. Despite the genetic 
cause for DMD, several studies in humans and animal 
models have suggested that the immune system is im-
plicated in the pathophysiology of the muscular lesions 
[52–55]. We studied 74 DMD patients at different stages 
of disease and assayed for CD49d (the α4-integrin sub-
unit) expression in circulating and intramuscular T-cells. 
Functionally, we tested transendothelial and fibronectin-
driven migration, and adhesion to myotube monolayers. 
Increased percentages of circulating CD4+CD49dhigh and 
CD8+CD49dhigh T lymphocytes correlated with the more 
rapid disease progression. Moreover, CD49d+CD4+ and 
CD49d+CD8+ T cells were found in muscular inflam-
matory infiltrates. Importantly, T cells from severely 
affected patients exhibited higher transendothelial and 
fibronectin-driven migratory responses and increased 
adhesion to myotubes, when compared with control in-
dividuals [3]. As shown in Fig. 2, these responses were 
blocked with an anti-CD49d monoclonal antibody.

We also found increased numbers of circulating 
CD49hiCD4+ T lymphocytes in the Golden Retriever 
Muscular Dystrophy (GRMD) dog, a useful pre-clinical 
model for DMD, since it mimics the human disease in 
many aspects more closely than other existing mammalian 
models of dystrophin deficiency, including the classical 
mdx mouse. A significant increase was more important in 
rapid progressors as compared to slow progressors of the 
diseases. Similarly, CD49hiCD4+ T cells were present in the 
inflammatory infiltrates within the muscular tissue [56].

Overall, the data discussed in this item tell us that 
disease progression in DMD correlates with the in-
crease in the relative numbers of CD49dhi T cells (CD4 
and CD8) in the blood. Moreover, increased numbers of 
CD49dhi T cells (both CD4s and CD8s) predict a rapid 
progression of the disease. Additionally, CD49d expres-
sion on T lymphocytes can be used as a biomarker of 
disease progression in DMD (both in humans and in 
dystrophic dogs), including the stratification of patients 
before various clinical trials for other therapeutic strat-
egies. Finally, VLA-4-directed interactions are potential 
therapeutic targets for selected patients in DMD aiming 
to improve their quality of life. Thus, the use of anti-
VLA-4 antibodies is theoretically a promising approach 
to ameliorate the quality of life of DMD patients.

Toward a second generation of anti-VLA-4 
antibodies

Although the use of monoclonal antibodies as thera-
peutic tools is quite well established, most marketed 
antibodies are full-length humanized IgG molecules 
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[57] that provide long half-lives and effector functions. 
However, there is a range of therapeutic applications in 
which other antibody formats may be more desirable. 
For instance, in some conditions, a long antibody serum 
half-life results in poor contrast in imaging applications, 
and inappropriate activation of Fc receptor-expressing 
cells may lead to massive cytokine release and associated 
toxic effects [58]. Furthermore, some IgG4 antibodies, as 
Natalizumab, may undergo half-antibody exchange in 
vivo, which can compromise the performance of the anti-
body even without damages on the clinical effects [59]. In 
addition, due to high molecular weight (~150 kDa), IgG 

antibodies are known to diffuse poorly into solid tissues 
and clear slowly from the body. By contrast, antibody 
fragments with specific antigen-recognition sites seem 
to be versatile stable, cost-effective, and efficient, thera-
peutic solutions for a range of autoimmune and poten-
tially other inflammatory diseases [60].

Antibody fragments are, in general, less immunogenic 
due to the absence of Fc component of immunoglobulin 
[61]. This comprises a huge advantage in comparison to 
full-length antibodies, which induce the production of 
human anti-human antibodies (HAHAs) and therefore, 
activation of the immune system [62].
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Figure 2  Role of VLA-4 in migration and adhesion of T-cells from Duchenne Muscular Dystrophy patients: blockade by anti-VLA-4 
monoclonal antibody. Panel A reveals that transendothelial migration of CD4+ and CD8+ T cells expressing high densities of CD49d 
from DMD patients and unable to walk migrate more than the patients able to walk (upper graphics). Importantly, migration of 
CD49dhi T cells is largely impaired in the presence of anti-VLA-4 antibody (bottom graphics). Similar enhancement of fibronectin-
driven T cell migration is seen in panel B, which also shows that migration of CD49dhi T cell subsets is largely impaired in the pres-
ence of anti-VLA-4 antibody. Finally, panel C provides evidence showing that both CD4+CD49dhi and CD8+CD49dhi T cells subsets 
adhere more to cultured human myoblasts, and that such an increase is abrogated by anti-VLA-4 antibody, as compared to unre-
lated Immunoglobulin. Groups were statistically compared using the Kruskal–Wallis test followed by Dunn’s multiple comparison 
test. *P < 0.05; **P < 0.01; ***P < 0.001. Modified from Pinto Mariz et al. 2015.
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Besides their reduced immunogenicity, one of the 
main aspects of using antibody fragments is their ability 
to cross the blood–brain barrier (BBB) [63]. Most of the 
antibodies currently used for treating neurodegenerative 
diseases act mainly in the periphery, therefore, antibody 
fragments could be useful to perform directly in the CNS 
[64]. In addition, fragments can be applied to drug de-
livery, intracellular targeting, and labeling for imaging 
and diagnosis [64, 64]. In terms of cost-effectivity, it 
is well known that heterologous proteins produced by 
bacteria and yeast are cheaper, faster, and easier to pro-
duce comparing with mammalian, plant, and insect sys-
tems [65]. While full antibodies are recommended to be 
produced by mammalian cells, antibody fragments are 
produced in bacteria and yeast systems, are versatile and 
compatible with all the heterologous systems, which may 
reduce the costs of production by choosing bacteria as 
expression platform.

Considering that beneficial effects of blocking VLA-4 
are evident, at least in severe MS and CD, it seems clear 
that novel α4-integrin blocking antibodies should be de-
veloped, particularly taking into that other autoimmune 
and chronic inflammatory diseases could benefit from 
such treatment. Therefore, smaller antibody molecules 
such as the antigen-binding fragment (Fab) or the vari-
able fragment (Fv) should be envisioned as further anti-
VLA-4 therapeutic agents [66–68]. Single-chain Fv (scFv) 
molecules are fragments of antibodies composed of the 
VH and VL domains of the corresponding immuno-
globulin, joined by a flexible linker peptide of variable 
size. These proteins have an average molecular weight of 
30 kDa [69], and have two disulfide bridges, one related 
to VH and the other to VL sequences. Because scFvs are 
formed by variable domains, they have all six CDRs that 
make up their antigen recognition region [70]. In add-
ition to the composition, the size of the binding peptide 
is fundamental to the scFv molecule. Studies have shown 
that when comparing different scFvs made up of ligand 
peptides of varying sizes, the reactivity and specificity 
properties of scFvs have been can change [71]. Therefore, 
not only the CDRs of these antibody fragments influence 

the affinity and specificity of scFv, but also its structural 
conformation and type of peptide linker.

In this context, we recently produced a scFv anti-
body fragment able to specifically recognize VLA-4 
(pending patent deposited at the Brazilian National 
Institute of Intelectual Property – INPI –, number BR 
10 2020 016890 8). The scFv nucleotide sequence was 
previously designed by using in silico tools as database 
search, molecular modeling and docking, site-directed 
mutagenesis, and molecular dynamics. Docking results 
showed that the scFv presented favorable parameters, 
namely Haddock Score, Cluster size and RMSD, for its 
interaction with VLA-4, as compared with two other in-
tegrins (LPAM-1 and VLA-5). Molecular dynamics con-
firmed the docking results and further showed that the 
main interactions involved are salt bridges, electrostatic 
and Van der Waals interactions. The scFv sequence thus 
obtained was cloned and expressed in Escherichia coli. 
Functionally, this scFv antibody was able to significantly 
impair the adhesion of T cells (Jurkat T cell line), on sur-
faces coated with VCAM-1 (Table 1). Furthermore, ex-
periments performed under flow conditions showed that 
the scFv reduced the adhesion frequency of primary T 
lymphocytes over VLA-4 ligands. This scFv product also 
interfered with the pattern of distribution of actin and 
phosphotyrosine in CD8+ T cells activated by anti-CD3 
and fibronectin. Overall, this reagent seems promising, 
although it still needs validation in relevant pre-clinical 
models of selected autoimmune and chronic inflamma-
tory diseases is necessary.

Concluding remarks

Although steroids and other anti-inflammatory drugs 
with broad-spectrum activities are effective in treating 
a variety of inflammatory diseases, long-term usage is 
known to have unacceptable side effects, such as greater 
risk of bleeding, upper gastro-intestinal complications, 
and infection caused by alteration of phagocytic leuko-
cyte migration and function. Therefore, in the treat-
ment of chronic inflammatory diseases, it is desirable 

Table 1  Migration of Jurkat T cells over transwell chambers coated with VCAM-1: blockage by Natalizumab and anti-VLA-4 
scFv antibodies

Coating liganda Cell treatmentb Number of transmigrating cellsc P value: versus controld P value: versus natalizumabd

VCAM-1 None 30.41 ± 13.25 ----- 0.0058
VCAM-1 Anti VLA-4 scFv 9.50 ± 4.24 0.0440 0.582
VCAM-1 Natalizumab 1.92 ± 0.29 0.0058 -----
BSA None 3.10 ± 3.10 0.0073 0.993

aVCAM-1 concentration = 2.5 µg/ml; BSA concentration: 2 µg/ml; bAnti VLA-4 scFv and Natalizumab concentration = 20 µg/ml; cCell numbers × 103 ± standard de-

viation. Means of three independent experiments. dDunnett’s multiple comparisons test. Statistically significant P values are shown in bold.
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to develop drugs that inhibit more selectively specific 
cellular functions without affecting normal immune 
surveillance.

The data summarized above provide evidence 
showing that targeting VLA-4, by applying humanized 
anti-VLA-4 antibody was a relevant therapeutic strategy 
to treat at least severe refractory inflammatory diseases. 
Nevertheless, a new generation of inhibitors will certainly 
be welcome, and the development of smaller and more 
selective antibodies should be envisioned. In this respect, 
the design of similar molecules, but only containing the 
single chain variable fragment of the α4 integrin chain 
seems to be a promising strategy.

Using antibody fragments may overcome some limi-
tations related to full anti-VLA-4 antibodies. The ab-
sence of Fc portion avoids unnecessary immune system 
activation and allows penetration across the BBB, which 
could increase the antibody performance directly within 
the CNS. In addition, antibody fragments can be cleared 
from the body faster than full antibodies, which may be 
relevant to prevent harmful effects related to permanent 
VLA-4 blockade.

Specificity for such a reagent could be further im-
proved by constructing double-specific scFVs directing 
the anti-integrin to target specific cells.

Having said that, it should be pointed out that VLA-4 
is not the only α4-containing integrin that deserves more 
research and technology improvement. As mentioned 
above, target α4β7 integrin using the same antibody 
strategy has been proven to be efficient in gut associated 
autoimmune diseases.

Lastly, other integrin-directed cellular interactions 
should be better investigated, so that to enlarge the 
possibility of reagents to tackle specific and potentially 
harmful activated T lymphocytes in chronic inflamma-
tory diseases and controlling organ transplantation.
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