Skip to main content
. 2022 Jul 26;15:15. doi: 10.1186/s13040-022-00300-2

Table 3.

Median performance ROC AUC scores for different AutoML models scaled according to median random forest performance. Models with the best performance for each disease are indicated in bold

Metric: ROC AUC Lung Cancer Prostate Cancer Rheumatoid Arthritis Type 2 Diabetes IBD CKD
Model
AutoSklearn (Average Precision) 1.107 1.091 1.072 1.081 1.022 1.039
AutoSklearn (Balanced Accuracy) 1.124 1.097 1.082 1.069 1.042 1.034
AutoSklearn (ROC AUC) 1.152 1.109 1.110 1.091 1.048 1.041
H2O (AUC) 1.159 1.107 1.107 1.098 1.042 1.042
H2O (AUCPR) 1.159 1.104 1.106 1.098 1.042 1.043
Random Forest 1.000 1.000 1.000 1.000 1.000 1.000
TPOT (Average Precision) 1.144 1.053 1.055 1.056 1.037 1.012
TPOT (Balanced Accuracy) 1.071 1.013 1.058 1.003 1.032 1.002
TPOT (ROC AUC) 1.128 1.103 1.084 1.075 1.040 1.013
Random Forest 1.000 1.000 1.000 1.000 1.000 1.000