Skip to main content
. 2022 Jul 26;15:15. doi: 10.1186/s13040-022-00300-2

Table 4.

Median AUCPR scores for different AutoML models scaled according to median random forest performance. Models with the best performance for each disease are indicated in bold

Metric: Average Precision Lung Cancer Prostate Cancer Rheumatoid Arthritis Type 2 Diabetes IBD CKD
Model
AutoSklearn (Average Precision) 1.957 1.787 1.471 1.675 1.212 1.395
AutoSklearn (Balanced Accuracy) 2.043 1.260 1.647 1.608 1.259 1.300
AutoSklearn (ROC AUC) 1.870 2.102 1.353 1.592 1.235 1.337
H2O (AUC) 3.217 2.213 1.706 1.750 1.259 1.428
H2O (AUCPR) 3.261 1.961 1.706 1.767 1.259 1.420
TPOT (Average Precision) 2.565 1.346 1.147 1.650 1.200 1.160
TPOT (Balanced Accuracy) 0.696 0.457 1.324 1.033 0.976 0.984
TPOT (ROC AUC) 1.522 1.087 1.559 1.650 1.129 1.074
Random Forest 1.000 1.000 1.000 1.000 1.000 1.000