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INTRODUCTION
Rapidly evolving, imaging is now the key diagnostic 
tool for many diseases and plays an important role in 
monitoring treatment response and predicting patient 
outcome.1 Radiation oncology is a pluri-disciplinary 
medical specialty combining clinical knowledge, 
medical physics, and imaging. In routine practice, radia-
tion oncologists use different imaging modalities such as 
computed tomography (CT), positron emission tomog-
raphy (PET-CT), or magnetic resonance imaging (MRI) 
to guide them at the different steps of patient treat-
ment. New imaging sequences, modalities and analysis, 
have led to dramatic medical innovation, paralleled by 
improvements in computer hardware and software. For 
example, functional imaging such as diffusion-weighted 
imaging (DWI) has been widely used in radiation 
oncology for tumor segmentation and to predict tumor 
response.2–6 Recently, a new field of medical images 
analysis named radiomics has been proposed and tend 
to play an increasing role in personalized medicine.7 It 
consists in the extraction and analysis of multiple quan-
titative imaging features to create algorithm models 
correlated with clinical outcomes (mainly diagnosis, 
prediction of prognosis and treatment response).8 The 

analysis methods commonly use artificial intelligence 
(AI) tools such as machine or deep learning.9 The 
concept underlying radiomics is that solid cancers are 
heterogeneous (at cellular or genomic level, in terms of 
oxygenation, spatial organization, etc.), and this hetero-
geneity could be captured by radiomics analysis offering 
a more precise image evaluation by quantifying the 
internal conditions of the tumor invisible to a human 
observer.10

Combined with clinical data, radiomics may offer 
massive input in the scope of radiation oncology. The 
radiotherapy treatment workflow consists of different 
steps (radiotherapy planning, radiotherapy treatment, 
radiotherapy follow-up), and each of these steps could 
find applications in radiomics. Indeed, using radio-
mics in radiation oncology may help stratify patients 
according to their outcome (prediction of response 
to treatment or prediction of toxicity), improve tumor 
segmentation (tumor delineation), and finally optimize 
dose delivery (adaptive radiotherapy) and response 
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ABSTRACT

Radiomics is the extraction of a significant number of quantitative imaging features with the aim of detecting informa-
tion in correlation with useful clinical outcomes. Features are extracted, after delineation of an area of interest, from a 
single or a combined set of imaging modalities (including X-ray, US, CT, PET/CT and MRI). Given the high dimensionality, 
the analytical process requires the use of artificial intelligence algorithms. Firstly developed for diagnostic performance 
in radiology, it has now been translated to radiation oncology mainly to predict tumor response and patient outcome 
but other applications have been developed such as dose painting, prediction of side-effects, and quality assurance. In 
gynecological cancers, most studies have focused on outcomes of cervical cancers after chemoradiation. This review 
highlights the role of this new tool for the radiation oncologists with particular focus on female GU oncology.
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assessment (follow-up, differential diagnosis between recur-
rence or radionecrosis)

The objective of this review is to highlight the recent studies 
useful for the radiation oncologists in the field of radiomics with 
particular focus on female GU oncology.

WORKFLOW OF RADIOMICS-SPECIFICS OF 
RADIOTHERAPY EVALUATION
Different authors have described the usual workflow of radiomics 
procedure.8,10–12 Briefly, the method consists of five different 
steps (Figure 1). Please refer to article from Rizzo et al. from the 
same issue for a more detailed description (ref to be inserted).

IMAGE ACQUISITION: CAN BE DONE ON CT, MRI 
OR PET/CT, PET/MRI
Image segmentation and data pre-processing
Segmentation is a time-consuming step during whicha physician 
has to delineate manually a region of interest (ROI). Current-
ly,there are different tools trying to automatize this process.13,14 
Historically, interest has been given to the visibletumor, but 
recently peritumoral environment has been shown to be infor-
mative aswell.15,16This may be of great interest in cervical cancer 
inevaluating parametrial invasion for example following radio-
therapy. Despite the recent advances in the field ofcomputer 
vision and deep learning more specifically, fully automaticseg-
mentation remains a challenge, particularly when dealing with 
complexanatomy such as in the case of GU malignancies.17–19 
Data pre-processing encompasses all the techniques,following 
image acquisition and preceding feature selection, aiming atho-
mogenization of the samples. These include pixels resampling, 
normalizationand bin discretization.20

Feature extraction
Radiomics features are the translation of information contained 
within regions of interest (ROI) pixels and/or voxels. Four types 
of features are usually described:.21,22

•	 Shape features are features describing the geometrical aspects 
of the tumor such as diameter, volume, sphericity etc..23

•	 First-order statistics or histogram-based features are based on 
the distribution of pixel intensities throughout the entire ROI. 
They depict histogram characteristics.24 Their inconvenient is 
that they do not consider relationship between pixels/voxels.

•	 Second-order statistics also known as textural features 
represent, as their ‘’texture’’ denomination indicates, spatial 
relationships between pixels/or voxels. The most famous is the 
grey level run-length matrix (GLRLM) described in 1975 by 
Galloway et al.25 It is the number of consecutive pixels having 
the same grey level intensity. We can also find the grey level 

co-occurrence matrix (GLCM)26 or neighborhood gray-level 
different matrix (NGLDM).

•	 Higher-order statistics features are obtained after applying 
filters on the original images to highlight or reveal a specific 
kind of information, such as increasing enhancing tumor 
conspicuity when using the square filter for instance.23

Predictive modeling and model validation
Predictive model construction is a two-step process. It requires 
features selection, then model training. Feature selection refers 
to the process by which, redundant features are removed, and 
relevant ones are selected as a potential signature for model 
training. This step helps reduce the overfitting risk, given the 
high dimensionality of radiomics features.23 A wide variety of 
algorithms are available to select appropriate features and no 
consensus has been achieved as to which one should be used for 
a specific dataset.

In oncology, model training is usually carried out in a supervised 
way, meaning that each sample is labeled before the training 
phase.27 In other areas, such as robotics, unsupervised learning 
could be an alternative if labeled data is lacking.

Algorithms for model training are based on conventional 
machine learning. Among these algorithms, neural networks 
offer promising results and seem to outperform the more tradi-
tional techniques.28 Model validation and testing is necessary to 
assess for model robustness.29 Two types of models exist: model 
validation performed throughout cross-validation and model 
testing with an independent cohort.

The quality metrics of a predictive model are usually reported 
with the area under the curve (AUC), the receiver operating 
characteristic curve (ROC), the sensitivity and the specificity 
among others.30

Application of radiomics in radiation oncology with 
specific focus on gynecological malignancies
In gynecological cancers, radiotherapy takes an important place 
in treatment of endometrial and cervical cancers. It is associ-
ated with chemotherapy, followed by brachytherapy, for cervical 
cancers staged FIGO stage IB-IVA31 or prescribed as an adjuvant 
treatment for endometrial cancers.32 As for other cancers, the 
first development in radiomics have focused primarily in diag-
nostic performances of radiomic methods.10,33,34

In cervical cancer for example, MRI radiomic, FDG-PET 
radiomic, and/or their combination have been linked with 
stage, histology, lymph nodes status, and/or lymphovascular 

Figure 1. Work flow of radiomics process
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space invasion (LVSI). For example, Yu et al evaluated MRI-
based radiomics performance (including DWI sequences) on 
153 patients with stage IB-IIA cervical cancers. The radiomics 
model (including clinical stage, MR-reported lymph node status 
and grey-level non-uniformity) showed better performance than 
usual clinical and radiological factors (AUC 0.870).35 Lympho-
vascular space invasion (LVSI) is another unfavorable prognostic 
factor. Li et al have investigated the relationship between LVSI 
and MRI radiomics features in 105 patients. In their study, radio-
mics model showed favorable discrimination between LVSI and 
non-LVSI groups with an AUC of 0.754 in the training cohort and 
0.727 in the validation cohort using T1 post contrast sequence.35 
More recently, radiomics model derived from the combination 
of T2, ADC, and T1 contrast images in a study of 168 patients 
was significantly associated with lymph nodes metastases and 
showed better predictive performance than signatures derived 
from either of them alone in both sets.36

Different authors have evaluated radiomics as a tool for improving 
pre-treatment staging in endometrial cancer. Yan et al published 
a multicenter study evaluating MRI-based radiomics to predict 
the pelvic lymph node metastasis in endometrial cancer. They 
included 622 patients divided in training and validation sets. The 
objective was to compare the diagnostic performance between 
radiologists alone and radiomics-aided radiologists. The AUC 
values were 0.623 and 0.643 for the radiologists of different 
centers versus 0.814 and 0.842 for radiomics-aided radiologists.37 
The same question was asked by De Bernardi et al using 18F-F-
DG-PET/CT. They extracted imaging features from the primary 
tumor and created different univariate and multivariate models. 
They identified a unique heterogeneity feature able to predict 
lymph node metastasis with a sensitivity of 89% and a specificity 
of 80%, outperforming usual visual detection.38

Besides diagnosis performance, the direct applications of radio-
mics for the radiation oncologists are more recent and have 
focused mainly on predicting tumor response.27,39 However, 

additional benefits have been investigated with promising results 
discussed below and in Figure 2.

Radiotherapy planning
Delineation is a crucial step in radiotherapy planning consisting 
of the determination of the target volume to treat, by drawing 
this volume on planning images (CT and MR scan). In radia-
tion oncology, we use different volumes: GTV for gross tumor 
volume (macroscopic tumor), CTV for clinical target volume 
(microscopic extension around GTV) and PTV for planning 
target volume (volume treated). It has been shown that radio-
mics may help better volume delineation by visualizing more 
precisely tumor borders. The use in uterine cervical cancer yet 
need to be determined, since there are some evidences of utility 
in other cancers. Some authors already demonstrated the good 
accuracy of autosegmentation models, for example in prostate 
cancers delineation with model using deep decision forest algo-
rithm.14 In prostate cancer, Shiradkar et al evaluated the potential 
use of radiomics-based on targeted radiotherapy planning with 
MRI. They demonstrated that using such detected tumor regions 
to generate treatment plans would result in significant reduced 
doses in organs at risk (rectum, bladder, penile bulb, femoral 
heads) and the possibility to deliver a boost dose to lesions up 
to 85.8 Gy with external beam radiotherapy.40 Nailon et al have 
proposed an automatic segmentation of the GTV and OAR in 
bladder cancer based on CT radiomics features. The approach 
significantly offered an accurate classification on axial, coronal 
and sagittal CT imaging planes of GTV using an unsupervised 
classification.41

Besides better tumor margin delineation, radiomics may help 
distinguish intratumor heterogeneity which is known to be a 
cause of poor outcome and of progression after radiotherapy.42 
For now, radiation therapy is usually applied assuming that 
the target tumor volume is homogeneous. However, it is well-
known that tumor are heterogeneous. This heterogeneity and 
its link with radiomics has been particularly highlighted in 
ovarian cancer. For example, Vargas et al developed 12 quanti-
tative metrics to capture spatial inter-site imaging heterogeneity 
in high-grade serous ovarian cancer. The authors demonstrated 
that radiomics features capturing the differences in texture simi-
larities across sites were significantly associated with shorter 
overall survival (inter-site similarity entropy, similarity level 
cluster shade, and inter site similarity level cluster prominence) 
and incomplete surgical resection (similarity level cluster shade, 
inter site similarity level cluster prominence and inter site cluster 
variance).43 As such, the use of radiomics could offer the great 
advantage to describe more precisely this heterogeneity with the 
aim for example to deliver a boosted dose in more radioresis-
tant/aggressive areas named as “dose painting”.44 Initial works 
using PET imaging have been recently proposed.45 Some authors 
used FDG-PET in cervix cancers as a tool to semi-automatically 
drawn the metabolic tumor volume and prescribe different 
doses with EBRT between this volume (central pelvis) and the 
latero-pelvis volume, in order to boost the tumor volume using 
brachytherapy.46 Other works have been also realized in other 
cancers. In prostate cancer, PET guided boost showed a higher 
biochemical recurrence-free survival (92% vs 85% without 

Figure 2. Application of radiomics to the different steps of 
radiotheraphy treatment
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simultaneous integrated boost) with a significant trend.47 In 
pancreatic cancers, a correlation has been identified between 
baseline FDG-PET and residual metabolic activity after chemo-
radiotherapy, paving the way to escalated dose to this area.48,49

Predictive and prognostic value
Prediction of outcomes/prognosis after radiotherapy is one of 
the most interesting and studied field of radiomics. In radia-
tion oncology, it plays a crucial role as the need of individual 
prognostic assessment is of great interest, allowing to intensify 
the treatment for patients with unfavorable prognostic or de-in-
tensify for those with favorable prognostic (in order to prevent 
“unnecessary” toxicities). Exponential numbers of studies have 
been published during the last decade, focusing either on recur-
rence and/or survival. Radiomics as a noninvasive biomarker 
of response in uterine cervical cancer has particularly demon-
strated increased interest. Studies on the value of radiomics in the 
prediction of survival and prediction of recurrence for patients 
with cervical cancer are outlined in Table 1. For example, Takada 
et al evaluated MRI-based radiomics for predicting prognosis of 
cervical cancers after definitive radiotherapy. On 107 patients, 25 
presented a relapse. The radiomics AUC calculated for ADC MRI 
sequence with absolute rescaling was of 0.79 vs 0.52 for conven-
tional factors such as tumor volume (p = 0.001).50 Lucia et al 
evaluated 18F-FDG-PET/CT and MRI-based radiomics features 
for prediction of outcomes in patients treated with chemotherapy 
for a locally advanced cervical cancer. They included 102 patients, 
with a median follow-up of 3.0 years. In multivariate analysis, 
they identified two radiomics features as independent prognostic 
factors: the Grey Level Non-Uniformity (GLRLM) in PET/CT 
and the entropy for apparent diffusion maps on DWI MRI. These 
two features largely outperformed usual clinical, biological and 
radiological factors, with accuracy of 94% (sensitivity 90% spec-
ificity 96%) for predicting recurrence and 100% for predicting 
locoregional control. At 3 years, the locoregional rate control was 
98% for patients with high GLRLM versus 41% for patients with 
low GLRLM and 98% for patients with high entropy versus 45% 
for patients with low entropy.39 These results are consistent with 
other authors evaluating PET/CT-based features.51

Prediction of prognosis was also evaluated in endometrial 
cancers (Table 2) Fasmer et al developed an MRI-based radio-
mics signature for the pre-treatment evaluation of aggressive 
endometrial cancers. The whole-tumor radiomic signatures 
predicted presence of high grade-endometrioid tumors or poor 
progression-free survival, more efficiently than tumor volume 
(HR 4.6–9.8; p < 0.05).52

Usually, the gross tumor volume (GTV) is used as the region 
of interest (ROI) for the development of prognostic radiomics-
based models, but we currently know that peritumoral envi-
ronment is an important factor for treatment resistance and 
metastatic spread. Hao et al analyzed this peritumoral envi-
ronment on PET/CT images of cervical cancers developing a 
radiomic feature named “shell feature”, which corresponds to 
the periphery of the tumor at the interface between tumor and 
peri-tumoral environment. They demonstrated that this shell 
feature could predict more efficiently distant failure than other 

usual radiomics GTV-based features (AUC 0.83, sensitivity 0.81, 
specificity 0.80, accuracy 0.80, p < 0.005).53 Those results are 
particularly interesting highlighting the prognostic role of the 
peritumoral environment.

The predictive value of radiomics is also well evaluated in other 
cancers, such as rectal cancers. Using radiotherapy treatment 
planning CT, Wang et al demonstrated that radiomics features 
can improve the prediction of overall survival from 0.672 with 
clinical features to 0.730 with clinical and radiomics features.54 
Good results were also obtained in hematologic oncology, where 
a radiomic feature has been identified as an independent prog-
nostic predictor of PFS and OS on pre-treatment 18F-FDG PET 
in patients treated for Hodgkin lymphoma55 or diffuse large 
B-cell lymphoma.56

Prediction of side effects
In radiation oncology, two categories of side-effects exist: acute 
and late side-effects. They are consecutive to irradiation of the 
normal tissue surrounding the tumor. Acute side-effects (during 
and within 3 months after treatment) are transient and usually 
well supported by appropriate symptomatic treatments. On the 
contrary, late side-effects (more than 3 to 6 months after treat-
ment) may be permanent and can be life threatening. They are 
mainly related to treatment and/or patient characteristics. Identi-
fying such radiomics-based characteristics can lead to modify the 
prescribed dose or the target volume offering a more personalized 
medicine. The use in radiotherapy for cervical cancers needs to 
be determined, for example to predict recto-proctitis and cystitis 
after radiotherapy.57 In lung cancers, a model has been devel-
oped on planning CT images to predict radiation pneumonitis 
after SBRT, with a 0.75 AUC.58 Cunliffe et al identified 12 features 
changing significantly between, pre- and post-radiotherapy CT 
scan. These features can discriminate patients with and without 
radiation pneumonitis by identifying lung tissue reaction after 
radiotherapy.59 Other authors also evaluated the ability of radiomic 
features to predict radiation pneumonitis after SBRT and found a 
dose-response relationship.60 A similar work evaluated radiomics 
for urinary and gastro-intestinal toxicities after prostate cancer 
radiotherapy with a 0.71 AUC.57 Such results could lead to change 
the dose prescription for patients with high risk of toxicities. 
Radiation-induced xerostomia is the other side-effect of interest 
for radiomic studies. Sheikh et al demonstrated that using baseline 
CT and MR images-extracted features, we can stratify xerostomia 
risk by evaluation of salivary gland function.61 This is concordant 
with other studies on xerostomia risk prediction using CT where 
models can predict acute xerostomia with a precision of 0.9220 
with a sensitivity of 100%,62 or PET/CT scan where intensity and 
textural features of parotid glands extracted from pre-treatment 
PET/CT were associated with the risk of developing xerostomia 12 
months after radiotherapy.63 These concerns are really helpful for 
the radiation oncologists because xerostomia can be partly avoided 
by greater protection of salivary glands. In prostate radiotherapy, 
models of late toxicity prediction were significantly improved by 
addition of rectal and bladder texture analysis (example for rectal 
bleeding, AUC from 0.58 to 0.73).64
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Table 1. Summary of the recent publications regarding the role of radiomics in cervical cancer

Author Year
Training

/validation set Modality Stage Results
Studies Regarding LNM

Shen et al.69 2017 85/85 PET/CT IB-IVA Homogeneity derived from 
the GLCM was the sole 

feature in predicting LNM

Becker et al.70 2017 23 T2-DWI I-III Skewness and Kurtosis 
were higher in patient with 

LNM

Kan et al.71 2018 100/43 T2-T1 contrast Ia2-IIb Radiomics model including 
10 features was able to 
differentiate LNM and 

non-LNM

Li et al.72 2018 64/30 PETCT IA-IIA Skewness was able to 
predict LNM with AUC 
0.803 in training cohort 
and 0.757 in validation 

cohort

Wang et al.73 2019 96 T2 DWI I-III Radiomics model derived 
from joint T2WI and 

DWI yielded higher AUC 
compared to model derived 
from T2WI or DWI alone.

Wu et al74 2019 126/63 T2-ADC IB-IIB A decision tree combining 
radiomics model of T2 

(tumor +peritumoral area) 
and clinical LN status 

achieved best diagnostic 
performance, with AUC 

and sensitivity of 0.895 and 
94.3%, 0.847 and 100% in 
the training and validation 

cohort, respectively.

Jin et al75 2020 100/32 Ultrasound I-II Radiomics model was 
associated with able to 

predict LNM

Xiao et al76 2020 155/78 T1-T2-DWI-ADC IB-IIB Radiomics model allowed 
the discrimination between 

the LNM and non-LNM 
groups, with a C-index of 

0.856 in the primary cohort 
and 0.883 in the validation 

cohort.

Dong et al.77 2020 176/50 CT IA-IIB A trained deep learning 
model had an area under 
curve (AUC) of 0.99 and 
an accuracy of 97.16% in 
the internal validation to 

predict LNM.

Hou et al.15 2020 168 T2-ADC-T1 contrast IB-IIA Radiomics model derived 
from the combination 
of T2, ADC, and T1 

contrast images, composed 
of 6 LN-status-related 

features, was significantly 
associated with LNM and 
showed better predictive 

performance than 
signatures derived from 
either of them alone in 

both sets.

(Continued)
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Differential diagnosis between radionecrosis and 
tumor progression
Such tool could be useful for cervical cancers, where the differ-
ence between radiotherapy effect (radionecrosis or fibrosis) 
and recurrence or persistence of tumor is sometimes hard to 
distinguish after radiotherapy, but to our knowledge there is 
no work existing on this topic, contrary to other cancers as 
brain or lung tumors.

This question is frequent for brain metastases after SRS (Stereo-
tactic RadioSurgery) where radionecrosis is hard to distinguish 
from true progression, despite advances of imaging modali-
ties (multimodality MRI, PET scan). The diagnostic certainty 
is only obtained by pathologic confirmation for symptom-
atic patients requiring a resection. Peng et al identified 82 
resected lesions (from 66 patients). With a predictive model 
from MR-based radiomic features, they obtained a sensitivity 
of 66%, a specificity of 87%, with an area under the curve of 
0.81.65 Compared to two expert neuroradiologists, a textural 
feature with support vector machine classifier identified more 
frequently radionecrosis from recurrent brain tumors (12/15 
cases correctly identified vs 7/15 and 8/15). Other authors tend 
to similar results.66

In lung cancer, Mattonen et al found a radiomic signature 
consisting of 5 features which demonstrated an excellent 
discrimination (AUC 0.85) between early recurrence and post 
treatment changes.67

Radiation quality assurance
The quality assurance of a radiotherapy is usually based on a γ 
comparison between irradiated measurement device with the 
treatment plan and the expected dose on the treatment plan-
ning system. Different authors showed an advantage to use 
radiomics and machine learning-based methods to identify 
unexpected treatment delivery errors from patient-specific γ 
images. Using 3 sets of planar doses (error-free case, random 
multileaf collimator (MLC) error case or systematic MLC 
error case) exported from 23 IMRT plans and delivered to 
an electronic portale device, Nyflot et al compared planned 
and and measured doses to obtain γ images using radiomics 
approaches to extract images features The highest accuracy to 
detect presence or absence of error was achieved using deep 
learning-based methods, and both methods were better than 
usual approaches without radiomics.68,69 Similar results were 
obtained by other teams with artificial intelligence-based 
methods of quality assurance.69 In gynecological cancers, as 

Author Year
Training

/validation set Modality Stage Results
Studies regarding overall and disease-free survival

Ho et al.78 2017 44 PETCT IB2-IVA Radiomics features were 
associated with overall 

survival

Ho et al.79 2017 69 DWI-PETCT IB1-IVB Mean ADC value was the 
only features associated 

with DFS

Lucia et al.18 2017 69/33 T1-T2-DWI-PETCT IB1-IVA Radiomics features 
associated with DFS

Shen et al.69 2018 77/65 PETCT IB-IIIB Radiomics features 
associated with overall 

survival

Schernberg et al.80 2018 69/39 PETCT IB1-IVA SUV peak combined with 
neutrophil count predictive 

of overall survival

Lucia et al. (81) 2019 112/78 T1-T2-DWI-PETCT IB1-IVA Externally validated 
radiomics features 

associated with DFS

Other evaluations

Liu et al. (82) 2019 160 T2-ADC IB-IV Whole-tumor volumetric 
3D radiomics analysis had 
a better performance than 
using the 2D center-slice 

of tumor in stratifying 
the histological grade of 

cervical cancer.

Wang et al. (83) 2020 137 T2-ADC IB-IIA Radiomics model was able 
to predict parametrial 

invasion.

Table 1. (Continued)
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for other cancers, the potential benefit is to increase the quality 
assurance of irradiation, minimizing the risk of difference 
between prescribed dose and delivered dose.

Challenges
As an emergent post-processing tool, radiomic face some chal-
lenges such as the lack of standardization in the methods used 
for data extraction or analysis.56–59

In radiation oncology, a frequent pitfall shared with radio-
mics workflow is the variability of segmentation. It can first be 
related to the thresholds selected for delineation on the different 
imaging methods.70,71 Then it is also related to inter and intraob-
server variability. The recent development of auto-segmentation 
methods should solve this issue.17 The method already demon-
strated superiority to manual segmentation with better feature 
quantification reproducibility and robustness.72 However, we 
need more studies for the generalization of such procedures.

Repeatability and reproducibility are frequent pitfalls of 
radiomics-based models. Fiset et al evaluated the stability of 
T2W MRI-based features in cervical cancers. For that, they used 
a retrospective cohort of patients who underwent chemoradia-
tion for cervical cancer. This cohort was separated in 3 groups 
of comparison: comparison test – retest (on the same images), 
comparison between diagnostic MRI and simulation MRI, and 
comparison between different observers. They found that the most 
reproducible features were those between different observers but 
on the same images (95.2% with an intraclass correlation coeffi-
cient (ICC) ≥0.75). Conversely, the worst reproducible features 

were those between diagnostic MRI and simulation MRI, high-
lighting the lack of reproducibility between different acquisi-
tion protocols. The most stable features were shape features.73 
The inter observer variability of radiomic features, and the ways 
to improve it, was also evaluated by Traverso et al. Eighty-one 
ADC maps derived from pre-treatment cervical cancers DWI-
MRI were delineated by two observers. They found an approach 
(urine-normalized approach) improving reproducibility (78% of 
features with ICC ≥0.75, vs 63% without normalization).74

Despite promising results, the “dose painting” struggles to 
become a standard of care. Previous studies often focused to 
boosted dose of hypoxic areas identified with different imaging 
modalities. It is now well known that oxygenation is probably not 
the only factor of intra-tumoral heterogeneity. We need to better 
understand this heterogeneity underlying by radiomics to adapt 
the different steps of planning and treatments.75

The ability of radiomics to predict side effects is of great interest 
in our daily practice. The benefits/risks balance is the main ques-
tion raised by the radiation oncologist. To date, the predictive 
performances are not sufficient for changing the radiotherapy 
prescription plan. Before being integrated in clinical practice, 
the methods need to be evaluated in randomized clinical trials, 
as other predictive biomarkers.76

CONCLUSION
Radiomics is an interesting and emergent tool of develop-
ment for the radiation oncology practice. It can be used 
at different steps of treatment preparation or treatment 

Table 2. The summary of the recent publications regarding the role of radiomics in endometrial cancer

Author Year
Training

/validation set Modality Stage Results
Studies Regarding LNM

De Bernardi et al.17 2018 86/29 PETCT I-IV Imaging features from 
primary tumor increase 
nodal staging sensitivity

Xu et al.73 2019 140/60 T2-3D LAVA I-IV Four models show predictive 
ability to predict LNM (AUC 

= 0.883)

Yan et al.74 2020 351/271 T1-T2-DWI-ADC I-IV Radiomics-aided 
radiologists are better than 

radiologists alone

Crivellaro et al. (84) 2020 167 PETCT I-IV Volume density is the most 
predictive feature for LNM

Studies regarding overall and disease-free survival

Fasmer et al.30 2020 108/30 T1 VIBE – DIXON VIBE I-IV Whole-tumor radiomic 
signature help to predict PFS 

and aggressive disease

Other evaluations

Stanzione et al. (85) 2020 43/11 T2-ADC I-IV Radiomics can predict deep 
myometrial infiltration with 

accuracy of 91%

Luo et al. (86) 2020 101/43 T1-T2-DWI I-IV Radiomic-based machine-
learning model can predict 

LVSI with AUC of 0.820

http://birpublications.org/bjr
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evaluation. A few researches have been performed in the 
female GU oncology field, requiring more data for the 
generalization of radiomics in routine practice (mainly due 
to the lack of reproducibility). Overcoming these challenges, 

we can imagine that “radiotherapy-radiomics” could be 
incorporated into routine practice as decision-support or 
computer-aided diagnosis tools to predict tumor aggressive-
ness and response to therapy.
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