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Summary
Background: Peroxisome proliferator-activated receptors (PPARs) are ligand-
activated transcription factors known to regulate glucose and fatty acid metabolism, 
inflammation, endothelial function and fibrosis. PPAR isoforms have been exten-
sively studied in metabolic diseases, including type 2 diabetes and cardiovascular 
diseases. Recent data extend the key role of PPARs to liver diseases coursing with 
vascular dysfunction, including nonalcoholic fatty liver disease (NAFLD) and nonal-
coholic steatohepatitis (NASH).
Aim: This review summarises and discusses the pathobiological role of PPARs in car-
diovascular diseases with a special focus on their impact and therapeutic potential in 
NAFLD and NASH.
Results and Conclusions: PPARs may be attractive for the treatment of NASH due to 
their liver-specific effects but also because of their efficacy in improving cardiovas-
cular outcomes, which may later impact liver disease. Assessment of cardiovascular 
disease in the context of NASH trials is, therefore, of the utmost importance, both 
from a safety and efficacy perspective.
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1  | BIOLOGY OF PEROXISOME 
PROLIFER ATOR-AC TIVATED RECEPTORS

Peroxisome proliferator-activated receptors (PPARs) are a subfamily of 
nuclear receptors involved in metabolism and inflammation. There are 
three isotypes of PPARs (PPARα, PPARβ/δ and PPARγ) which are ex-
pressed in different cell types and tissues and have different functions 
(Figure 1).

PPARα is mainly expressed in tissues with high metabolic rates 
(including the liver, skeletal muscle, heart, kidney or neural and brown 
adipose tissue). Natural ligands of PPARα are mostly products of lipid 
catabolism, lipogenesis or oxidation, as well as eicosanoid derivates. 
Therefore, PPARα can act as a sensor of metabolism-regulating pro-
cesses such as fatty acid degradation, intracellular lipid transport 
and oxidation or ketone body synthesis.1 In rodents, it also regu-
lates glucose metabolism, although these effects are less obvious in 
human. Global PPARα knockout in mice lead to overweight, whilst 
specific deletion in hepatocytes induced hepatic steatosis in ageing 
animals and had additional systemic effects on lipid homeostasis.2

PPARβ/δ is probably the least studied of the PPARs. It is mainly 
expressed in the skeletal muscle, stimulating fatty acid oxidation, 
although it may also participate in cell proliferation and differen-
tiation. This isotype of PPAR is also expressed in endothelial cells, 
smooth muscle cells and macrophages and may be involved in the 
regulation of their phenotype and function.3

Finally, PPARγ is found ubiquitously, although one of its splic-
ing isoforms (γ2) is exclusively found in adipocytes. In contrast to 
the other PPAR family members, which promote the catabolism of 
fatty acids, PPARγ induces the storage of fatty acids by acting as a 
strong insulin sensitizer. In addition, PPARγ plays an important anti-
inflammatory role.4 In adipocytes, PPARγ regulates glucose metab-
olism, lipogenesis and adipocyte differentiation, whilst promoting 
the production of adiponectin.5 Indeed, rare monogenic mutations 

in PPARγ in humans may lead to severe insulin resistance, partial li-
podystrophy, type 2 diabetes mellitus (T2DM) and hypertension.6

The expression of the different PPAR isoforms across tissues may 
vary in certain pathologic conditions. PPARs have been extensively 
studied in metabolic diseases, including T2DM, cardiovascular diseases 
and non-alcoholic steatohepatitis (NASH). In the last years, NASH has 
become one of the major etiologies for chronic liver disease worldwide 
and it is an important risk factor for hepatocellular carcinoma. NASH 
is defined by hepatic steatosis associated with lobular inflammation 
and hepatocyte ballooning with or without liver fibrosis.7 Severity of 
NASH in humans inversely correlates with hepatic PPARα and PPARγ 
expression,8 suggesting that advanced patients may be less responsive 
to endogenous PPAR ligands. Therefore, pharmacologic modulation of 
PPAR expression in different pathologic conditions could be a rational 
approach to regulate their target pathways. However, as transcription 
factors, the activity of PPARs may be regulated at other multiple levels.

As members of the nuclear receptor superfamily, all isotypes of 
PPARs share a similar structure and function.1 In order to regulate 
gene expression, PPARs usually require heterodimerization with 
the retinoid X receptor (RXR) in order to bind to the peroxisome 
proliferator response element (PPRE) of the DNA. In the unligated 
state, PPARs are bound to co-repressors (such as nuclear receptor 
co-repressor 1, NCoR1), which possess the histone-deacetylase 
activity and, therefore, prevent transcription.9,10 However, in the 
presence of ligands, co-activators can modulate PPAR activity in 
various ways. On the one hand, they may have intrinsic histone 
acetylase activity (such as steroid receptor co-activators, SRC or 
CBP/p300), directly affecting transcription. On the other hand, 
other co-activators (such as the PPARγ co-activator-1a, PGC-1a) 
may promote the recruitment of additional proteins with such 
transcriptional activity.11 Additionally, PPAR activity may be fur-
ther regulated through post-translational modifications, such as 
phosphorylation at different sites (mediated by different protein 

F I G U R E  1   PPARs expression by tissue and their main functions
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kinases including MAPK, PKA or PKC) or SUMOylation, which can 
occur as a result of negative feedback induced by products of their 
target metabolic pathways.10,12

Alternatively, PPARs may act as transrepressors of alterna-
tive molecular pathways. Indeed, PPARα may dimerize with other 
transcription factors such as nuclear factor κB (NF-κB), activator 
protein-1 (AP-1) and signal transducers and activators of transcrip-
tion (STATs), preventing them from interacting with the DNA and 
repressing their transcriptional activity.13 This mechanism of tran-
srepression has been associated with reduced expression of inter-
leukin 6 (IL-6) in vascular endothelial cells.14 PPARα has also been 
reported to dimerize with Sirtuin 1 (Sirt1), thus competing with 
oestrogen-related receptors and inhibiting their target genes.15 In 
this regard, some studies have reported the existence of a truncated 
form of PPARα in various tissues that is unable to interact with the 
DNA, reinforcing its regulatory role independent of transcription.16

2  | PPARS A S RHEOSTATS OF LIVER 
VA SCUL AR CHANGES OCCURRING IN NA SH

PPARs regulate main molecular pathways including metabolism, in-
flammation, fibrosis, and cell proliferation and differentiation, all of 

which play important roles in liver diseases' pathophysiology. For 
this reason, PPARs represent a promising therapeutic target for 
NASH. Considering that hepatic microvascular dysfunction is key 
in the development and aggravation of NASH,17 and that its clinical 
consequences (including portal hypertension) have high morbid-
ity and mortality, the development of new therapeutics targeting 
vascular dysfunction in NASH represents an unmet clinical need. 
Below we summarise the current knowledge regarding PPARs and 
vascular functionality, which indeed may be relevant for the treat-
ment of the hepatic microvascular dysfunction occurring in NASH 
(Figure 2).

2.1 | PPARs and vascular relaxation

The hepatic microvasculature plays a crucial role in health and 
chronic liver disease. In the normal liver, liver sinusoidal endothelial 
cells (LSECs) are in tight communication with hepatic stellate cells 
(HSCs) in order to regulate intrahepatic blood flow. In this healthy 
scenario, LSECs synthesise nitric oxide (NO) and other vasodilators 
that are detected by HSCs, which subsequently induces vasodila-
tion. However, during chronic liver disease, LSECs lose their special-
ised phenotype and their ability to produce NO decreases, which 

F I G U R E  2   Schematic representation of potential mechanisms mediating increased CVD in NAFLD and how systemic activation of 
different PPARs could influence CVD progression.
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altogether with the reduced sensitivity of HSCs to vasodilators leads 
to microvascular dysfunction.18 Activated HSC in diseased liver re-
sponds by cell contraction and proliferation, which further affects 
intrahepatic blood flow. These vascular abnormalities are known as 
the dynamic component of the increased intrahepatic vascular re-
sistance in liver disease, being the primary factor in the development 
of portal hypertension.19

All three subtypes of PPARs participate in the synthesis of NO 
by endothelial cells and prevent vascular dysfunction in diabetic 
animals20 (Figure  3). Vascular dysfunction is indeed commonly as-
sociated with a pro-oxidant phenotype of endothelial cells.21,22 
Studies using PPARβ/δ agonists describe the increased expression 
of the anti-oxidant enzymes heme-oxygenase 1 (HO-1), superoxide 
dismutase (SOD), catalase and thioredoxin, leading to a reduction in 
reactive oxygen species (ROS).3,23 PPARα activation showed similar 
effects, specifically in the liver microvasculature of cirrhotic rats.24

On the contrary, specific PPARγ deletion in vascular smooth 
muscle cells led to exacerbated response to angiotensin-II and vas-
cular dysfunction.25 These effects of PPARγ interference in smooth 
muscle cells may be due to impaired degradation of the small GTPase 
RhoA (involved in cytoskeleton contraction), leading to RhoA accu-
mulation and an over-contractile phenotype.26 Furthermore, PPARα 
and PPARγ would prevent smooth muscle cell proliferation and vas-
cular remodelling by blocking the PDGF and TGF-β pathways, sug-
gesting that these could be additional PPAR-related mechanisms 
that regulate vascular tone.27

Specifically, in the hepatic milieu, the pan-PPAR agonist lanifibra-
nor displayed beneficial effects on hepatocyte phenotype in an in 
vitro model of steatosis only when cocultured with non-parenchymal 
cells, suggesting that PPAR signalling in the liver microvasculature 
could have paracrine effects on hepatocyte function in the context 
of NASH.28 In fact, in a recent study, pan-PPAR activation led to im-
provement in vascular dysfunction and portal hypertension in two 

pre-clinical models of chronic liver disease, which was accompa-
nied by ameliorated hepatic function and reduced inflammation.29 
Observations in pre-clinical rodent models were further validated 
in primary liver cells isolated from human cirrhotic livers, altogether 
reinforcing the vasoprotective benefits of PPAR activation in chronic 
liver disease (Figure 3).

In agreement with these last observations, studies performed in 
pre-clinical models of vascular diseases such as pulmonary arterial 
hypertension and cardiac fibrosis, which share common pathways 
with chronic liver disease (endothelial dysfunction, imbalance in 
vasoconstrictors/dilators, activation and proliferation of smooth 
muscle cells, inflammation, and vascular remodelling), demonstrated 
that PPARγ activation reduces arterial hypertension and improves 
NO-dependent endothelial vasodilation and fibrosis.30 This is in ac-
cordance with the observation that humans with dominant-negative 
PPARγ mutations are typically hypertensive.31

Although this review focuses on the intrahepatic vasculature as 
the main target for the treatment of NASH, it is worth noting that 
PPAR modulation could also have beneficial extra-hepatic effects 
that indirectly regulate chronic liver disease and its complications. 
Indeed, in the partial portal vein ligation model (a model of non-
cirrhotic portal hypertension), treatment with pioglitazone (PPARγ 
agonist) improved portosystemic shunting due to amelioration of 
splanchnic inflammation and angiogenesis.32 In pre-clinical mod-
els of chronic liver disease, PPAR agonists also showed benefits, 
as demonstrated by improvement in splanchnic vasoactivity and 
neoangiogenesis.33

2.2 | PPARs and inflammation

The progression from non-alcoholic fatty liver (NAFL) to NASH is 
characterised by hepatic inflammation, usually as a consequence of 

F I G U R E  3   Potential effects and 
underlying mechanisms of PPAR agonists 
on liver vascular dysfunction. CAM, cell 
adhesion molecules; hep, hepatocyte; 
HM, hepatic macrophages; HSC, hepatic 
stellate cell; LSEC, liver sinusoidal 
endothelial cell.



     |  213GUIXÉ-­MUNTET et al.

hepatocellular damage. In this scenario, LSECs express cell adhesion 
molecules, and immune cells are recruited to the liver, acquiring a 
proinflammatory phenotype and triggering fibrosis.34

PPARα deficiency is known to promote NASH features in high-
fat diet (HFD)-fed animals, such as increased triglyceride accumu-
lation, hepatocyte ballooning, hepatic inflammation and elevated 
transaminases, whilst its activation protects these animals from 
NASH due to anti-inflammatory effects in addition to increased lipid 
catabolism.35 In this regard, both the pan-PPAR agonist lanifibranor 
and the PPARα agonist fenofibrate reduced the recruitment of circu-
lating macrophages in animal models of NAFLD-NASH whilst having 
no effects on Kupffer cells (KC, the resident liver macrophages).28 
Furthermore, PPAR agonists seem to regulate the inflammatory pro-
file of leukocytes, whilst PPARβ/δ regulates the pro-inflammatory 
profile of macrophages,28 suggesting profound changes in gene ex-
pression. In this regard, transcriptomic studies in mice and primates 
revealed that PPARα activation leads to a potent downregulation of 
the complement cascade36 and upregulation of anti-inflammatory 
mediators such as IL-1ra and IκB.37

In addition to direct activation of transcription, and as indicated 
above, PPARs may regulate the transcriptional activity of other tran-
scription factors, such as NFκB, through direct protein–protein in-
teractions.38 On the contrary, IL-1b treatment was shown to reduce 
the expression of PPARα,39 which suggests that inflammation per 
se could induce negative feedback on PPAR anti-inflammatory path-
ways. This is in accordance with the observations of reduced PPARα 
and PPARγ expression in the liver of NASH patients40 and should be 
considered when using PPAR agonists.

2.3 | PPARs and coagulation

Coagulation disorders constitute a key factor in the pathophysiology 
of liver diseases. Indeed, the hypercoagulable state of the cirrhotic 
liver actively contributes to disease progression, and its ameliora-
tion using anti-coagulants improves chronic liver disease complica-
tions and patients' prognosis.41,42 In NASH, in particular, there is a 
prothrombotic state derived both from the hepatic alterations of 
NASH and obesity and the metabolic syndrome, with some data 
supporting that these prothrombotic alterations may be relevant for 
the progression of the disease.43 It has been shown, in humans, that 
treatment with fibrates (PPARα agonists) diminishes plasminogen 
concentration.44 Transcriptomic studies performed in mouse and pri-
mate livers showed that the anti-coagulation effects of fibrates are 
also observed at the mRNA level. Indeed, the coagulation pathway 
was one of the most downregulated ones in these studies, including 
the expression of fibrinogen, plasma kallikrein B and several coagu-
lation factors.36,45 Additionally, fibrates are known to potentiate the 
effect of the anticoagulant drug warfarin and increase bleeding risk 
when taken together. Therefore, these observations encourage fur-
ther studies on the role of PPARs and their anticoagulation effects 
in NASH and the contribution of these effects to the modulation of 
disease progression.

2.4 | PPARs in HSCs activation and fibrogenesis

Upon chronic liver damage, HSCs get activated and become the 
main source of hepatic extracellular matrix components. This ac-
tivation may occur due to both increased inflammation or altered 
communication with LSECs.46 As seen above, PPAR agonists may 
prevent the recruitment and activation of immune cells and confer 
a vasoprotective phenotype to endothelial cells. Therefore, most 
studies assessing PPAR agonists in NASH in vivo showed improved 
microvascular function or inflammation, accompanied by a reduc-
tion/prevention of fibrosis and liver stiffness.29,35,47–52 This is also 
observed in non-hepatic vascular diseases such as cardiac ischemia 
and reperfusion.27

PPARs could also have a direct effect on HSCs. Indeed, PPARγ 
is normally expressed in HSCs, but its expression is reduced during 
their activation. Treatment of isolated primary HSCs with pan-PPAR 
or PPARγ agonists prevents spontaneous or TGFβ-induced in vitro 
activation,53 and even promotes the de-activation of HSCs isolated 
from human cirrhotic livers.29 The mechanisms by which PPAR ag-
onists achieve this include inhibition of proliferation, expression of 
extracellular matrix proteins, inhibition of senescence and even in-
duction of hepatic autophagy, which has recently been described to 
play a complex role in liver fibrosis and NAFLD.3,35

2.5 | PPARs in NAFLD clinical trials

Given the aforementioned complex and key role of PPARs in mech-
anisms that are highly relevant for NAFLD pathophysiology and 
based on pre-clinical evidence as mentioned, several PPAR agonis-
tic drugs have been explored for their clinical utility. Fibrates did 
not result in histological improvement. The dual PPARα/δ agonist 
elafibranor showed an impact on steatohepatitis in patients with 
higher degrees of disease activity in phase 2,54 but did not reach the 
endpoint of NASH resolution in Phase 3 (Harrison et al, oral com-
munication). Pioglitazone clearly induces resolution of NASH after 
18 months of treatment or longer, with a trend of improving also 
fibrosis.55 Lanifibranor is to date the only compound that achieved 
both the endpoints of NASH resolution and fibrosis improvement 
after 24 weeks of treatment.54 A detailed discussion of the reasons 
behind these results is beyond the scope of this review. Briefly, 
steatohepatitis is considered the driver of fibrogenesis and is itself 
driven by upstream metabolic derangements, including adipose 
tissue dysfunction. Despite their important role, tackling just the 
intrahepatic mechanisms, leaving extrahepatic drivers of disease 
untouched, will presumably not be powerful enough to achieve the 
high barrier endpoints of NASH resolution and/or fibrosis regres-
sion that are required by the regulatory authorities. Conversely, 
tackling the upstream drivers together with the intrahepatic mecha-
nisms of inflammation and fibrogenesis has conceptually a higher 
likelihood of achieving positive results, seen to some extent with 
pioglitazone and even more convincingly with the panPPAR agonism 
of lanifibranor.
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3  | ROLE OF PPARS FOR THE INCRE A SE IN 
C ARDIOVA SCUL AR DISE A SE IN NAFLD

Cardiovascular diseases (CVD) are the first cause of death in pa-
tients with NAFLD, accounting for approximately 40% of deaths 
in total. There is a strong association between NAFLD and com-
mon cardiovascular risk factors and, interestingly, recent epide-
miological data suggest that NAFLD is an independent CVD risk 
factor.56,57 Nevertheless, this question is also subject to some 
controversy since some reports suggest no association between 
NAFLD and increased risk of stroke nor myocardial infarction,58 
or increased death from cardiovascular events.59 However, this 
lack of association could be due to study limitations, showing 
NAFLD in only 0.5% of the population instead of the expected 
23%. This question has been approached in detailed recent 
reviews.60

With the data available today, which is mostly of epidemiologi-
cal nature, it is difficult to entangle the effects due to extra-hepatic 
CVD risk factors associated with NAFLD and the effects due to 
NAFLD in itself. There are several proposed mechanisms by which 
NAFLD progression could influence cardiovascular risk (Figure 4), as 
reviewed elsewhere.61

Apart from their role in the liver, PPARs have pleiotropic actions 
in the body, amongst others in the heart, vessels and macrophages, 
where their activation exerts mostly protective effects.

4  | MECHANISMS OF AC TION OF PPARS 
IN C VD: POSSIBLE ROLE OF THE LIVER

Assessing the effects of PPAR agonism on a specific diseased organ, 
independently of other organs, is challenging given the cross-talk 
between organs. The effects of PPAR agonism observed in patients 
result from additive or synergic effects of these receptors on differ-
ent organs including the liver but also adipose tissue, muscle, vessel 
and heart. As an additional level of complexity, distinct cell types in 
organs may respond via specific PPAR isotypes, whilst the specificity 
of PPAR agonists on effective PPAR activation vs off-target effects is 
not usually assessed. The liver is a prominent example of this notion, 
since hepatocyte metabolism, endothelial dysfunction, macrophage 
activation and stellate cell transdifferentiation are triggered or ham-
pered by different PPAR isotypes preferentially. Therefore, under-
standing the mechanisms and the exact contribution of each PPAR 
in each organ and cell type is crucial in the perspective of modulating 
the delicate balance of PPARs to improve patients' outcome. The un-
derlying mechanisms mediating the effects of systemic PPARα and 
PPARγ activation on reduced risk for CVD are not clear. Because of 
their pleiotropic actions directly on the vasculature but also on the 
liver, action on PPAR proteins is appealing to modulate CVD risk in 
NAFLD. In the next section, we will detail mechanisms implicated 
in CVD progression and discuss whether they are susceptible to be 
liver-mediated and implicate PPAR proteins (Figure 4).

F I G U R E  4   Effects of PPAR agonists 
on major adverse cardiovascular events, 
atherosclerosis, myocardial infarction and 
stroke. Dotted lines represent effects 
suggested in the literature but that 
warrant further studies. Rosiglitazone and 
clofibrate have been withdrawn from the 
market because of unwanted side effects.
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4.1 | Type II diabetes and systemic insulin resistance

T2DM is a risk factor for the development of CVD. PPARγ agonists 
thiazolidinediones have been used for diabetes mellitus manage-
ment for years and are very potent insulin-sensitising agents, as 
they have effects both on adipose tissue and beta-cells.62 Also, 
the dual agonist PPARα/γ saroglitazar improved insulin resistance 
more than pioglitazone alone in mice, suggesting a potential addi-
tive or synergistic effect of dual PPARα/γ agonism.63 Moreover, a 
meta-analysis of the use of saroglitazar in patients with diabetic 
dyslipidemia non-invasively diagnosed with NAFLD demonstrated 
that it induces a statistically significant decrease in ALT levels (and 
liver stiffness in some patients) and improved cardiometabolic 
profile.64 As there is no PPARβ/δ agonist available on the market 
for humans, most of the evidence is preclinical but indicates that 
PPARβ/δ favorises insulin sensitivity in adipocytes, skeletal muscle 
and hepatocytes.65

Systemic insulin resistance has several hepatic-related drivers, 
such as liver insulin resistance, closely linked to the pathophysiol-
ogy of NAFLD. In insulin-sensitive conditions, insulin signalling in the 
liver drives nutrient storage, in the forms of glycogen synthesis and 
de novo lipogenesis. In insulin-resistant conditions, gluconeogenesis 
is diminished, excess glucose and circulating free fatty acids (FFAs) 
in the liver increase triglyceride (TG) synthesis, which in turn wors-
ens insulin resistance by several mechanisms. One of these mecha-
nisms is the activation by diacylglycerols (DAG) of protein kinase C 
epsilon (PKCε), which promotes inhibitory phosphorylation of insulin 
receptor substrate (IRS) by the insulin receptor, hindering insulin sig-
nalling.66 Additionally, excess of FFAs in the liver causes lipotoxic 
inflammation, with increased levels of pro-inflammatory cytokines 
such as tumour necrosis factor-alpha (TNF-α) and IL-6, which are 
both promoted by different pathways inhibitory phosphorylation 
of IRS, contributing to shutting down insulin signalling.67 PPARα 
has pleiotropic effects in the liver, particularly in fatty acid metabo-
lism. PPARα activation enhances fatty acid catabolism, allowing the 
liver to adapt to excess FFAs.2 Notably, PPARα activation decreases 
the quantity of DAG in the liver of mice fed a high fructose diet,68 
thereby contributing to the restoration of insulin signalling, whilst 
treatment with the dual PPARα/δ agonist elafibranor or the pan-
PPAR agonist lanifibranor have positive effects on hepatic and mus-
cle insulin sensitivity69,70 and improved glycemic control in NASH 
patients.54,70 PPARβ/δ liver-restricted overexpression also improved 
insulin resistance in mice fed a high fat, high carbohydrate diet71 and 
similar effects were observed using the selective PPARβ/δ agonist 
seladelpar, which improved insulin sensitivity and steatohepatitis in 
mouse models of NAFLD.72 In humans, the effects of seladelpar are 
mainly on atherogenic dyslipidaemia (e.g. a reduction of apolipopro-
tein B-100 by 20%–38% and LDL cholesterol by 18%–43%) and are 
rather modest on insulin sensitivity or steatosis compared with other 
PPARβ/δ agonists.73 Finally, thiazolidinediones, PPARγ agonists, 
have long been known to be highly effective insulin-sensitising mol-
ecules,74 although treatment of liver-specific PPARγ-defective mice 
fed a high-fat diet with rosiglitazone remains effective, indicating 

that its main insulin-sensitising action does not take place in the liver, 
but is probably due to effects in adipose tissue and beta-cells.75

4.2 | Altered lipid metabolism

Lipid profile has an influence on CVD development: low high-density 
lipoprotein (HDL) cholesterol and high triglycerides are recognised 
risk factors.76 The liver occupies a central place in global lipid me-
tabolism. Dyslipidemia and NAFLD are closely linked, both associ-
ated with metabolic syndrome. NAFLD is associated with higher 
fasting serum triglycerides and lower serum HDL-C.77 Whilst it is 
likely that this dyslipidaemia globally contributes to the CVD burden 
in NAFLD patients, the association between NAFLD and increased 
cardiovascular events remains significant even after adjustment for 
dyslipidaemia.78 Agonism of all PPARs seems to improve atherogenic 
dyslipidemia. Mechanistically, PPARα has an important action acti-
vating lipids catabolism in the liver, but the implicated pathways are 
not as clear for the other PPARs and warrant further investigation.

The metabolic syndrome is usually associated with changes in 
the composition of the gut microbiota. Microbial byproducts contain 
small-chain fatty acids, which are known PPAR activators, such as 
butyrate,79 suggesting that changes in microbial composition would 
lead to PPAR deregulation. Indeed, faecal microbiota transplantation 
and microbiota byproducts have been shown to regulate PPARs and 
prevent hepatic fat accumulation.79

4.3 | Systemic inflammation

Metabolic syndrome and insulin resistance are clearly associated 
with systemic low-grade inflammation with activation of inflam-
matory pathways in many organs. Importantly, and albeit CRP is 
produced by the liver, circulating markers of inflammation such as 
CRP poorly correlate with the severity of NAFLD and hence do not 
reflect liver inflammation but rather systemic inflammation.80 One 
of the drivers of NAFLD development and progression is the exces-
sive presence of pro-inflammatory toxic lipids in the liver, such as 
cholesterol, FFAs, DAG or ceramides. They provoke hepatic insulin 
resistance and hepatocyte injury-mediated liver inflammation.81 
Independent association between NAFLD and several circulating 
factors exhibiting systemic inflammation has also been consistently 
reported,82 suggesting that liver inflammation can lead to systemic 
inflammation and vice versa.

The PPARα agonist fenofibrate decreased circulating levels of 
CRP and inflammatory cytokine IL-6 in metabolic syndrome patients 
in whom the liver disease was not assessed,83 and CRP in patients 
with impaired glucose tolerance, also decreasing pro-inflammatory 
cytokines secretion by monocytes isolated from these patients after 
LPS stimulation.84 Additionally, the PPARγ agonist rosiglitazone 
also decreased systemic inflammation in non-diabetic patients with 
metabolic syndrome85 and the dual PPARα/δ agonist elafibranor 
as well as the panPPAR agonist lanifibranor also achieved systemic 
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anti-inflammatory effects in patients with NASH vs the placebo 
group.54,70 However, the underlying mechanisms are not clear, but 
it is possible that some of it are mediated by the anti-inflammatory 
effects of PPARs in the liver, which have been described above.

In summary, activation of all PPARs plays anti-inflammatory roles 
in the liver that possibly contribute to decrease systemic inflamma-
tion associated with NAFLD.

4.4 | Endothelial dysfunction and activation

Endothelial dysfunction and control of vascular tone are one of the 
earliest detectable changes in the process of atherosclerotic lesion 
formation and in the pathogenesis of systemic hypertension. The 
implication of PPARγ in the pathogenesis of hypertension is dem-
onstrated by the fact that patients with mutations in the DNA or 
ligand-binding domains of PPARγ and endothelial PPARγ-deficient 
mice develop severe early-onset hypertension,86,87 showing an ef-
fect at least partly directly mediated in the endothelium. However, 
PPARγ agonist pioglitazone treatment induced no change in systolic 
blood pressure and only a modest decrease in diastolic blood pres-
sure in NAFLD patients in a meta-analysis.88

The main mediator of vascular dilatation is NO, but the endothe-
lial function is also sensitive to certain circulating factors, some of 
which are altered in the case of liver disease.18 As detailed above, 
PPAR proteins are protective against endothelial dysfunction, in 
particular by promoting NO production. NO production is especially 
sensitive to oxidative stress, which is defined as an imbalance be-
tween the production of reactive oxygen species (ROS) and the anti-
oxidant capacities of the cell. In the presence of oxidative stress, NO 
is inactivated and transformed into peroxynitrite, and endothelial ni-
tric oxide synthase (eNOS) becomes uncoupled and shifts from NO 
production to superoxide anion production, a very powerful ROS,89 
perpetuating a vicious circle. Therefore, endothelial dysfunction is 
closely linked to oxidative stress.

ROS are highly unstable molecules with half-lives below one milli-
second and exert their action at a cellular level. It is, therefore, highly 
unlikely that liver-generated ROS can have a direct impact on heart 
and vasculature, nor that PPAR action on CVD is mediated through 
modulation of liver ROS production. More stable circulating media-
tors can induce oxidative stress at a distance, which explains the role 
played remotely by the liver modulating systemic endothelial oxida-
tive stress. For instance, excess of circulating FFAs in NAFLD causes 
oxidative stress in the endothelium,90 as well as pro-inflammatory 
cytokines.91 Both dyslipidemia and chronic inflammation associated 
with NAFLD are factors that can be modified by PPAR agonist treat-
ments, and, therefore, may indeed modulate systemic ROS.

Another interesting example of a circulating mediator influ-
encing endothelial dysfunction is homocysteine, a by-product 
of methionine metabolism, which mainly takes place in the liver, 
making it a major source of circulating homocysteine. High homo-
cysteinemia is a risk factor for CVD.92 Several studies have demon-
strated that homocysteine promotes endothelial dysfunction and 

atherosclerosis by different pathways such as NO synthesis im-
pairment, deregulation of hydrogen sulfide signalling pathway or 
increased oxidative stress.93 There is an association between high 
blood homocysteine levels and biopsy-proven NAFLD, as demon-
strated in a meta-analysis.94 Because of this association, increased 
circulating homocysteine could contribute to explain the increased 
incidence of CVD in NAFLD patients.

There is only scarce data available on the relationship of PPARs 
with homocysteine metabolism. It has been demonstrated that PPARα 
activation increases homocysteinemia in patients with dyslipidemia95 
and healthy mice and rats treated with fenofibrate,96,97 although not in 
diabetic rats.97 This could potentially be explained by PPARα-mediated 
repression of the irreversible conversion of homocysteine into cysta-
thionine, catalysed by the cystathionine-β-synthase (CβS) enzyme.98 
Indeed, it was demonstrated in the mouse that partial or total CβS 
deletion causes hyperhomocysteinemia.99 Interestingly, treatment 
with rosiglitazone or troglitazone, PPARγ agonists, decrease hyper-
homocysteinemia, respectively, in rats under methionine diet100 and 
in hyperphagic rats.101 It has been reported that either pioglitazone or 
rosiglitazone combined with antidiabetic medication glimepiride de-
crease blood homocysteine after 1 year of treatment in patients with 
diabetes mellitus and metabolic syndrome.102 Interestingly, there is 
a report that rosiglitazone-mediated PPARγ activation increases CβS 
activity in the rat, which would be an indirect mechanism of diminu-
tion of homocysteinemia.103 Thus, PPARα and PPARγ seem to have 
opposite effects on the homocysteine blood level, although this sub-
ject warrants further research, as does the role of PPARβ/δ.

Hepatic methionine metabolism also influences hydrogen sulfide 
(H2S) levels. H2S, like NO, is a gaseous mediator implicated in endothe-
lial vasorelaxation. Its half-life is in the range of minutes in the blood, 
which makes an effect of liver production of H2S on plasma levels con-
ceptually possible. It is synthesised by several alternative pathways, 
mainly CβS and gamma cystathionase.104 It could be hypothesized 
that PPAR-mediated modulation of CβS in the liver also influences H2S 
production and plasma concentration. There is no data on potential 
regulation of gamma cystathionase activity by PPAR proteins. As for 
homocysteine regulation, it warrants further investigations.

Asymmetric dimethylarginine (ADMA) is a competitive inhibitor 
of eNOS and has been associated in a recent meta-analysis with an 
increased risk of a major adverse cardiovascular event and increased 
all-cause mortality in patients with pre-existing CVD.105 ADMA is 
formed by methylation of arginine residues in proteins and released 
after proteolysis. ADMA can be degraded in the liver by dimethy-
larginine dimethylaminohydrolase 1 (DDAH1). ADMA plasma in-
crease in NAFLD patients is not clearly established, but fenofibrate 
decreases ADMA plasma level in cholesterol-fed rats106 and rosigli-
tazone decreases plasma ADMA level in insulin-resistant patients,107 
although their mode of action remains to be determined. Along this 
line, symmetric dimethylarginine (SDMA) can impact vascular ten-
sion via NO pathways, and its plasma levels correlate with the mor-
tality risk in patients with liver cirrhosis.108

In summary, endothelial PPARs are protective against endothelial 
dysfunction. The liver-mediated action of PPARγ seems also mostly 
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protective but this is less clear for PPARα, with a demonstrated 
increase in homocysteinemia in patients treated with fibrates. 
Globally, the effect of PPAR activation in the liver on endothelial 
function warrants further investigation.

4.5 | Cardiovascular effect of hepatokines

The liver synthesises and secretes several proteins collectively 
called hepatokines that have a plethora of biological effects in multi-
ple tissues across the body. Some of them may play a role in NAFLD 
co-morbidities.109

Fetuin A (TLR4 agonist) is a hepatokine that promotes endothelial 
dysfunction and activation, correlating with subclinical atheroscle-
rosis in patients with NAFLD.109 Interestingly, fetuin A is decreased 
by treatment with pioglitazone,110 and its plasma levels in humans 
are associated with PPARα and PPARγ mutations.111 Therefore, the 
protective effect of pioglitazone against CVD could be partly medi-
ated by lowering the blood level of Fetuin A.

Fibroblast Growth Factor 21 (FGF21; FGFR1c agonist) is a well-
characterised hepatokine inducing systemic insulin sensitization. 
Treatment of cultured hepatocytes, mice, and diabetic patients 
with PPARα agonists increased FGF21 expression and secretion.112 
FGF21 also exerted a protective cardiac effect post-myocardial in-
farction in mice, in a manner dependent on the liver—but not heart—
IL-22 signalling pathway.113 This latter study is relevant because it 
conceptually demonstrates the importance of liver signalling on 
heart homeostasis in the mouse and supports the hypothesis of a 
direct effect of the liver on cardiovascular health.

Leukocyte cell-derived chemotaxin-2 (LECT2; CD209 agonist) 
is a hepatokine that is increased in NAFLD patients.114 In vitro, 
LECT2 causes endothelial activation by increased pro-inflammatory 
and adhesion proteins in endothelial cells and increased adhesion 
of monocytes, suggesting it can contribute to the progression of 
atherosclerosis.115 Whilst its mRNA expression is not modified in 
PPARα-deficient mouse hepatocytes,116 whether it can be regulated 
by PPARγ or PPARβ/δ, remains to be investigated.

Tsukushi (TSK; Frizzled4 ligand) is a recently discovered hepato-
kine synthesised by the liver in response to NAFLD and obesity.117 
Its hepatic overexpression decreases plasma HDL cholesterol in 
the mouse and inhibits cholesterol efflux from J774 cells, used as 
a model of macrophages,117 suggesting a detrimental effect in the 
development of atherosclerosis. Interestingly, TSK mRNA is higher 
in PPARα-deficient mouse hepatocytes compared with normal he-
patocytes,116 suggesting that activation of PPARα could be protec-
tive against increased liver TSK expression. Whether TSK can be 
regulated by PPARγ or PPARβ/δ in the liver remains to be elucidated.

4.6 | Coagulation

Whether there is a coagulation imbalance in NAFLD patients is a 
subject to some controversy, with studies describing comparable 

hemostatic profiles in NAFLD and control patients,118 and others 
reporting pro-coagulant imbalance.119 However, independently of 
overall coagulation state, higher activity of liver-produced fibrino-
gen, and factors VIII, IX, XI and XII has been observed in patients 
with NAFLD,120 as well as higher plasma plasminogen activator in-
hibitor-1 (PAI-1),82,121 most of which are associated with CVD.122 In 
addition, platelets in the liver may serve as “sentinels” for immune 
activation in NASH progression.123

PPARα is extensively involved in the regulation of coagulation 
by various mechanisms. It inhibits the increase of tissue factor and 
carboxypeptidase B2 liver production and plasma level124 and, tran-
scriptomics studies have shown downregulation of coagulation-
associated genes in the liver after PPARα agonists treatment in the 
mouse and cynomolgus monkey.36,125 Fibrates also decrease plasma 
fibrinogen levels in humans.126

PPARα can also indirectly modulate the coagulation state by in-
creasing the level of sulfatides in the mouse liver and plasma by mod-
ulating synthesis and export proteins.124,127 Sulfatides are a class of 
sphingolipids with a role in haemostasis debated for decades.128 
High plasma sulfatides are associated with intima-media thickness 
in hypertensive patients129 and patients with familial hypercho-
lesterolemia,130 and with major adverse cardiovascular events and 
in-hospital deaths in patients with ST-segment elevated myocardial 
infarction.131

Overall, the regulation of coagulation by PPARα is complex and 
seems to require a systemic component which remains to be investi-
gated, as a transcriptomics meta-analysis showed that PPARα activa-
tion regulated coagulation pathways only in vivo (mouse) and not ex 
vivo (liver slices) nor in vitro (mouse primary hepatocytes).132

PPARγ systemic activation exerts a general anti-thrombotic ac-
tion in rats.133 Paradoxically, its activation results in increased liver 
production of PAI-1 and blood secretion in several in vitro and in 
vivo models, opposite to PPARα action.134 Remarkably, in the study 
by Verrijken and colleagues, only PAI-1 and not fibrinogen, factor 
VII, factor VIII, factor XI nor von Willebrand factor was still associ-
ated with liver histological lesions after correction for metabolic fac-
tors, suggesting that its production could be linked to liver disease 
in itself rather than underlying metabolic causes.135 Indeed, PPARs 
activation in patients with complex diseases like CVD and NAFLD 
will have a positive impact both on the metabolic (systemic) and he-
patic underlying pathological mechanisms of the disease, which will 
occur simultaneously and might even be synergistic. Further stud-
ies are required to disentangle these organ / vascular bed specific 
contributions.

4.7 | Extracellular vesicles

Extracellular vesicles (EVs) include apoptotic bodies, microvesicles 
and exosomes. EVs are vesicles released by all cells, under both 
physiological and pathological conditions and can act as vectors of 
information that regulate the function of target cells, which can be 
situated in other organs.136,137
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There is scarce data on the relationship between PPAR proteins 
and EVs. It has been demonstrated that fenofibrate treatment de-
creases the EV content of the atherosclerotic lesion but not of the 
liver of mice fed a western diet,138 suggesting that the apparent ac-
tion of PPARα on EVs in NAFLD is not mediated by the liver. PPARα 
can also inhibit tumour-derived exosomal lipid-induced dendritic cell 
dysfunction.139 PPARγ was found in human circulating exosomes 
suggesting a potential for paracrine transfer of nuclear receptors.140

5  | C VD RISK AND NA SH IN CLINIC AL 
TRIAL DESIGN

As mentioned before, given the fact that patients with non-cirrhotic 
NASH mainly die from cardiovascular disease and data indicate that 
NASH contributes to the development of cardiovascular disease, 
PPARs may be attractive for the treatment of NASH beyond their 
efficacy on liver-centred clinical trial endpoints. Improving cardio-
vascular outcomes might be a differentiator for the choice of the 
drug once several compounds will be available on the market spe-
cifically for the treatment of NASH.141 Assessment of CVD in the 
context of NASH trials is therefore of the utmost importance, both 
from a safety and efficacy perspective. To date, this has mainly been 
restricted to studying the impact on classical CV risk factors (mainly 
lipid profile and glycaemic control, as discussed previously) and the 
registration of CV events.

Weight gain is often observed with drugs with a PPARγ activ-
ity (with variable data, but usually reported to be 2%–4% of initial 
body weight after 6 months of treatment or longer). Usually, this is 
considered a “side-effect”, as patients are encouraged to lose weight 
and weight loss is known to associate with histological improvement. 
For pioglitazone, it has been shown that this corresponds to a shift 
from visceral to more metabolically healthy subcutaneous fat and an 
improvement in the metabolic-inflammatory (e.g. an improvement 
in insulin sensitivity) environment, despite the net weight gain.142 
Saroglitazar treatment also induces weight gain143 which goes along 
with increases in adiponectin levels, a sign of improvement in adi-
pose tissue function, and improved insulin sensitivity. Lanifibranor, 
even so, improves liver histology despite a modest increase in body 
weight, and also with an increase in adiponectin and improved insu-
lin sensitivity.70 It hence appears that the observed weight gain is 
related to an improvement in the capacity of the adipose tissue to 
store energy. This is also reflected in the fact that, for all the afore-
mentioned drugs, insulin sensitivity To further assess this, a more 
detailed anthropometric assessment of the patients, both at baseline 
and in follow-up, should be incorporated into the clinical trial design.

Fluid retention and heart failure have also been reported in as-
sociation with PPAR drugs, in particular in those with PPARγ activ-
ity. As mentioned, pioglitazone reduces the risk of CV events, but 
significant confusion remains about its effects on cardiac function. 
Cardiac failure was reported in more (~2%) patients on pioglitazone 
than on placebo in the PROACTIVE trial.144 This was, however, not 
observed in other placebo-controlled studies.145,146 A recent large 

RCT in 3851 patients did even so not find a difference in the 5-year 
heart failure risk (4.1% pioglitazone, 4.2% placebo).147 It has been 
shown that pioglitazone improves myocardial insulin sensitivity, left 
ventricular diastolic and systolic function in healthy patients with 
T2DM.148 Nevertheless, undiagnosed “diastolic dysfunction” (i.e. 
heart failure with preserved left ventricular function) may occur in 
≥10% of patients with longstanding obesity, T2DM and/or NASH,149 
if fluid retention occurs during pioglitazone therapy in such patients, 
it may unmask this subclinical heart disease. Very few cases of oe-
dema were reported with lanifibranor70 and no CV events with sa-
roglitazar,143 but this needs of course confirmation in larger trials.

Anyhow, this advocates for the incorporation of some as-
sessment of cardiovascular function in clinical trials for NASH. 
Electrocardiograms and markers like N-terminal-prohormone B-type 
natriuretic peptide can be useful. However, a more detailed analysis 
at baseline and follow-up should be considered. Although within-
patient variability as well as intra- and interobserver variability of 
functional tests like flow-mediated dilation hamper the interpre-
tation of the data, especially in large multicenter trials, some tests 
like imaging test (ultrasound, coronary artery score on computed 
tomography, or cardiac MRI) allow for central reading that can help 
mitigating these methodological issues. This should, of course, be 
balanced against the logistical and financial implications, as well as 
the increased burden of examinations for the patients and workload 
for the clinical trial team. Given, however, the importance of this car-
diovascular aspect, including a more in-depth assessment of cardio-
vascular function in NASH clinical trial design should be mandatory, 
from both a safety and efficacy point of view. Assessment of cardio-
vascular benefit based on clinical event rate is not realistic with the 
current clinical trial design, given the sample size and study duration 
needed to obtain these results. In the future, when non-invasive pa-
rameters will allow assessing treatment efficacy (which is currently 
based on liver biopsy in phase 3), larger trials with an appropriate 
sample size to assess CV benefit on clinical events will hopefully defi-
nitely answer the question of the complex link between NASH and 
CVD and the potential of PPAR drugs to beneficially impact hereon.

6  | CONCLUSION

PPARs agonism may represent a promising treatment for NASH, 
having liver-specific effects but also improving cardiovascular out-
comes, which may later impact liver disease. Therefore, assessment 
of cardiovascular disease within NASH trials is of the utmost impor-
tance, both from a safety and efficacy perspective.
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