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Objective. Approximately 30–40% of rheumatoid arthritis (RA) patients who are initially started on low-dose meth-
otrexate (MTX) will not benefit from the treatment. To date, no reliable biomarkers of MTX inefficacy in RA have been 
identified. The aim of this study was to analyze whole blood samples from RA patients at 2 time points (pretreatment 
and 4 weeks following initiation of MTX), to identify gene expression biomarkers of the MTX response.

Methods. RA patients who were about to commence treatment with MTX were selected from the Rheumatoid 
Arthritis Medication Study. Using European League Against Rheumatism (EULAR) response criteria, 42 patients were 
categorized as good responders and 43 as nonresponders at 6 months following the initation of MTX treatment. 
Data on whole blood transcript expression were generated, and supervised machine learning methods were used to 
predict a EULAR nonresponse. Models in which transcript levels were included were compared to models in which 
clinical covariates alone (e.g., baseline disease activity, sex) were included. Gene network and ontology analysis was 
also performed.

Results. Based on the ratio of transcript values (i.e., the difference in log2-transformed expression values between 
4 weeks of treatment and pretreatment), a highly predictive classifier of MTX nonresponse was developed using 
L2-regularized logistic regression (mean ± SEM area under the receiver operating characteristic [ROC] curve [AUC] 
0.78 ± 0.11). This classifier was superior to models that included clinical covariates (ROC AUC 0.63 ± 0.06). Pathway 
analysis of gene networks revealed significant overrepresentation of type I interferon signaling pathway genes in non-
responders at pretreatment (P = 2.8 × 10−25) and at 4 weeks after treatment initiation (P = 4.9 × 10−28).

Conclusion. Testing for changes in gene expression between pretreatment and 4 weeks post–treatment initiation 
may provide an early classifier of the MTX treatment response in RA patients who are unlikely to benefit from MTX 
over 6 months. Such patients should, therefore, have their treatment escalated more rapidly, which would thus po-
tentially impact treatment pathways. These findings emphasize the importance of a role for early treatment biomarker 
monitoring in RA patients started on MTX.

INTRODUCTION

Low-dose methotrexate (MTX) is the key therapy for the 
majority of patients with rheumatoid arthritis (RA). However, in 
~30–40% of patients treated with MTX, disease activity is not 
adequately controlled (1), but current guidelines suggest that 
MTX treatment be administered for 6 months before a decision 

is made as to its efficacy (2). It is now well-established that early, 
effective therapy prevents long-term joint damage and disability 
(3), and the availability of biologic agents emphasizes the impor-
tance of identifying those patients who will not do well with MTX 
therapy, and who should, therefore, be fast-tracked to more 
targeted therapies in order to protect against progressive and 
irreversible joint damage.
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Although MTX has been used for more than 2 decades 
to treat RA, our ability to predict who will experience a good 
response versus nonresponse remains very limited. Clinical 
and demographic factors are only moderately predictive of the 
clinical response to MTX. For example, age and seropositivity 
(e.g., seropositive for rheumatoid factor, anti–cyclic citrullinated 
peptide antibodies [ACPAs]) are not robustly associated with 
MTX response (4–6), whereas male patients tend to respond 
better than female patients (7). Furthermore, patients with low 
levels of disease activity tend to respond better than those 
with higher disease activity. Finally, patients who take non-
steroidal antiinflammatory drugs tend to respond better to MTX 
than those who do not (7), while prior treatment with disease-
modifying antirheumatic drugs has been associated with MTX 
nonresponse (8).

Several studies have tested whether genetic and genomic 
factors can predict the response to MTX (9). However, many of 
the published studies have been small and have assessed a 
limited number of genes, with limited coverage. Moreover, the 
results of those studies have not been validated.

Expression microarrays have been investigated as a poten-
tial source of biomarkers that may be predictive of the treatment 
response in RA (10). The majority of studies have focused on 
response to biologic therapies, and not MTX (11,12), and there 
has been little consistency in the findings. These inconsistencies 
could be attributable to differences in study design and inclu-
sion criteria, the time point assessed, the sample sizes investi-
gated, lack of appropriate model validation, the drugs studied, 
and the assessment of individual, rather than combined, groups 
of related transcripts (10). Nonetheless, in other diseases, gene 
expression has been used to stratify the underlying disease into 
subgroups with differing responses to treatments. For exam-
ple, several markers that can predict the responsiveness to 
endocrine therapies in patients with breast cancer have been 
identified (13–17).

Therefore, the aim of the current study was to identify gene 
transcripts in patients with recent-onset RA that could potentially 
be used to classify nonresponse to MTX at 6 months following 
the initiation of treatment, when tested either before MTX is initi-
ated or at a time point (4 weeks) shortly after treatment initiation.

PATIENTS AND METHODS

Patients and samples. Patients in this study were par-
ticipants in the Rheumatoid Arthritis Medication Study (RAMS), 
a national multicenter, longitudinal observational study in the 
UK that recruits patients with RA who have commenced MTX 
monotherapy for the first time. MTX was prescribed according 
to local practice. Patients were seen by a research nurse prior 
to commencement of MTX and at 3, 6, and 12 months there-
after. Clinical assessments included 28-joint counts of swollen 
and tender joints. Patients completed health status question-

naires, including a self-report of current functional disability 
using the Health Assessment Questionnaire (HAQ) (a score of 
≤1 was considered low) (18). Blood samples were obtained 
at each visit, and serum was stored at −80°C prior to mea
suring the C-reactive protein (CRP) level and ACPAs. The Dis-
ease Activity Score in 28 joints using CRP level (DAS28-CRP) 
was calculated at baseline and at 6 months, and established 
European League Against Rheumatism (EULAR) response cri-
teria were applied (19) to categorize patients as either MTX 
good responders or MTX nonresponders over the course of 6 
months of treatment.

Samples of whole blood from the patients was drawn into 
Tempus blood tubes at the pretreatment and 4-week time points, 
before being shipped to the central processing laboratory at the 
Arthritis Research UK Centre for Genetics and Genomics. The 
samples were logged onto a laboratory information management 
system and stored at −80°C.

Expression profiling. Total RNA was extracted using a 
Tempus Spin RNA isolation kit, according to the manufacturer’s 
protocol. After extraction, RNA was quantified using a Thermo Sci-
entific Nanodrop ND-1000 spectrophotometer, and RNA integrity 
was assessed using an Agilent Technologies 2100 Bioanalyzer. An 
optical density at 260/280 nm (OD260/280 nm) of ~2 and an OD260/230 nm  
of 2–2.2 suggests that no contaminants were present within a 
sample, and an RNA integrity number of >6 was deemed to indi-
cate sufficient RNA quality.

RNA samples were labeled with biotin and amplified using 
an Illumina TotalPrep RNA amplification kit. Following labeling and 
amplification, the RNA was re-quantified and 750 ng was hybrid-
ized onto Illumina HumanHT-12-v4 Expression BeadChips (which 
target 47,000 probes), in accordance with the direct hybridiza-
tion protocol. Scanning was performed using an Illumina iScan 
system, in order to collect raw intensity data from the expression 
BeadChips prior to export into GenomeStudio for further analysis.

Data quality control. GenomeStudio software was 
used to assess control probe summary statistics and sum-
marize bead-level expression data. Quality control was per-
formed using the limma Bioconductor package (20). Probes 
not expressed on any array or probe sequences with unde-
sirable properties (e.g., poor mapping) were removed, and 
data were quantile normalized and log2 transformed. Potential 
batch effects were assessed by visual inspection of multidi-
mensional scaling plots, and principal components analysis 
and hierarchical clustering of samples was performed to iden-
tify sample outliers.

Statistical analysis. Classifier performance. We built sta-
tistical machine learning models to distinguish therapeutic non-
responders from responders (assessed at 6 months) using gene 
expression data at pretreatment and 4 weeks, and using the ratio 
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of gene expression (i.e., the difference in log2-transformed tran-
script expression intensity between 4 weeks of treatment and 
pretreatment [a total of 6 contrasts]). In addition, we built models 
based on clinical variables at pretreatment and 3 month. These 
models included sex, age at disease onset, HAQ score, smok-
ing habits, ACPA positivity (titer >10 units/ml), number of swollen 
joints, number of tender joints, CRP levels, and patient’s assess-
ment of overall well-being (on 100-mm visual analog scale [VAS]).

For each contrast, we employed 3 state-of-the-art machine 
learning methods with different characteristics: a linear method 
(regularized logistic regression), a nonlinear method (random for-
est), and, in the case of the contrasts using gene expression data, 
a pathway-supported approach (21). Standardization was applied 
to all input data, and each method was run under a 10-fold nested 
cross-validation scheme (where hyperparameters were computed 
in each of the strata using an inner 5-fold cross-validation loop) 
to give accurate estimates of predicted performance. The perfor-
mance of resulting models was reported using balanced accu-
racy and receiver operating characteristic (ROC) curves. Balanced 
accuracy and area under the ROC curves (AUCs) are reported as 
the mean ± SEM. To estimate feature importance, we averaged 
the model regression coefficients (mean ± SD) from across the 
cross-validation runs.

Weighted genetic coexpression network analysis (WGCNA). 
For modular analysis by WGCNA (details on the workflow are 
provided in ref. 22), we first calculated Pearson’s correlations 
between all genes present in the data set. Next, an adjacen-
cy matrix was calculated by raising the absolute values of the 

correlation matrix to a power β, to penalize weak correlations 
and preserve stronger ones. The β value for the soft thresholding 
was chosen in each data set using the “scale-free topology cri-
terion.” Topologic overlap was then calculated to quantify gene 
coexpression relationships, considering each pair of genes in 
relation to all of the other genes in the coexpression network.

Hierarchical clustering was then used to construct a den-
drogram with branches corresponding to genes within mod-
ules, determined using a dynamic tree-cutting approach (22). 
For visualization, gene modules were given arbitrary color 
labels. Genes that were unassigned (i.e., not coexpressed) 
during network construction were arbitrarily labeled with a 
grey color. Gene counts in the intersection of corresponding 
modules between nonresponders and the consensus group of 
good responders and nonresponders at pretreatment and at 4 
weeks were compared using the hypergeometric test P value 
for the overlap of the 2 modules.

In order to identify hub genes from the gene modules, an 
adjacency matrix was constructed for each gene, and connec-
tivity was calculated as the sum of the adjacency to all other 
genes. Genes were then ranked by connectivity, and the top 
20% of genes were selected from each module, the rationale 
being that only a fraction of genes in modules are likely to relate 
to the main biologic function (23).

Pathway analysis. Functional analysis of hub genes 
derived from the modules were analyzed by hypergeometric 
testing on gene ontology terms (24). In addition, previous evi-

Table 1.  Pretreatment characteristics of the patients with rheumatoid arthritis*

Characteristic

EULAR 
good responders 

(n = 42)

EULAR 
nonresponders 

(n = 43) P

Female, no. (%) 32 (76) 33 (77) 0.95
Age at onset, mean ± SD years 59 ± 15 55 ± 14 0.28
HAQ score, median (IQR) 1.18 (0.9–1.7) 1.0 (0.3–1.6) 0.07
MTX start dose, median (IQR) mg 12.5 (10–15) 10 (10–15) 0.87
Taking oral steroids, no. (%) 5 (12) 12 (27) 0.07
Disease duration, median (IQR) months 9.1 (4.2–15.3) 5.8 (3.1–21.7) 0.94
Smoking habits, no. never/past/current 23/11/8 16/17/10 0.25
ACPA positive, no. (%) 27 (64) 25 (58) 0.56
DAS28, mean ± SD 4.8 ± 1.0 4.0 ± 1.3 0.001
CRP, mean ± SD mg/liter 2.2 ± 1 1.7 ± 1 0.01
28-joint swollen joint count, median (IQR) 5 (3–11) 3 (2–8) 0.02
28-joint tender joint count, median (IQR) 8 (6–15) 6 (1–13) 0.05
Patient’s assessment of overall  

well-being, median (IQR)  VAS score
44 (25–64) 32 (15–59) 0.07

* EULAR = European League Against Rheumatism; HAQ = Health Assessment Questionnaire; IQR = 
interquartile range; MTX = methotrexate; ACPA = anti–cyclic citrullinated peptide antibody; DAS28 = 
Disease Activity Score in 28 joints; CRP = C-reactive protein; VAS = 100-mm visual analog scale. 
† P values were derived by t-test, Mann-Whitney U test, and chi-square test for comparisons of vari-
ables expressed as the mean, median, and number (%), respectively. 
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dence of coexpression was investigated using data from Gene 
Expression Omnibus (25,26).

RESULTS

Samples. Following application of data quality control, 
22,771 probes were identified and available for analysis at the 2 
time points in samples of whole blood from 82 RA patients. The 
patients were categorized as either good responders (n = 42) or 
poor responders/nonresponders (n = 43) following 6 months of 
treatment with MTX. The pretreatment demographic and clinical 

characteristics of the patients are shown in Table 1.

Classifier performance. In the models based on tran-
scriptomics data, a high level of prediction of MTX nonresponse 
was observed with the L2-regularized logistic regression (lin-
ear method) model of the gene expression ratio between 4 
weeks and pretreatment (Figures 1 and 2). Using this model, 
the balanced accuracy was a mean ± SEM 0.61 ± 0.10, and 
the ROC AUC was 0.78 ± 0.11. A very limited predictive utility 
was observed at the pretreatment time point. In contrast, the 
network-based models had a good degree of predictive util-
ity at the 4-week time point (balanced accuracy 0.68 ± 0.06, 
ROC AUC 0.78 ± 0.06).

Very limited predictive utility was observed in the models 
based on the clinical data alone, either at baseline or at 3 
months (e.g., with the linear method, at baseline, balanced 
accuracy 0.58 ± 0.5, ROC AUC 0.65 ± 0.06; at 3 months, 
balanced accuracy 0.62 ± 0.04, ROC AUC 0.70 ± 0.05) (see 
Supplementary Figure 1, available on the Arthritis & Rheuma-
tology web site at http://onlinelibrary.wiley.com/doi/10.1002/
art.40810/abstract). The transcripts with the largest pos-
itive impact on the performance of the models, based on 
the transcript ratio analysis, are presented in Supplemen-
tary Figure 2  (available on the Arthritis & Rheumatology web 
site at http://onlinelibrary.wiley.com/doi/10.1002/art.40810/
abstract).

Modular analysis using WGCNA. In samples of whole 
blood from RA patients at pretreatment, 9 modules (arbitrari
ly labeled in midnight blue, light green, royal blue, magenta, 
grey60, black, salmon, green-yellow, and light-yellow colors in 
Supplementary Figure 3, available on the Arthritis & Rheuma-
tology web site at http://onlinelibrary.wiley.com/doi/10.1002/
art.40810/abstract) were identified in nonresponders that had 
not been seen in pretreatment samples from the consensus 
group of good responders and nonresponders (i.e., labeled in 
grey [i.e., unassigned] in the consensus network; see Supple-
mentary Figure 3).

In samples at 4 weeks following initiation of treatment with 
MTX, 4 modules (arbitrarily labeled in salmon, light cyan, grey60, 
and yellow colors in Supplementary Figure 4, available on the 

Arthritis & Rheumatology web site at http://onlinelibrary.wiley.com/
doi/10.1002/art.40810/abstract) were identified in nonrespond-
ers that were unassigned (i.e., labeled in grey) in the consensus 
samples.

Figure 1.  Performance of statistical machine learning models to 
distinguish therapeutic nonresponders from responders (assessed at 
6 months) using gene expression data at pretreatment and 4 weeks 
after treatment initiation, and using the ratio of gene expression (i.e., 
the difference in log2-transformed transcript expression intensity 
between 4 weeks of treatment and pretreatment). Area under 
the receiver operating characteristic (ROC) curves (AUCs) were 
calculated for estimating the predicted performance of a linear 
method (regularized logistic regression), a nonlinear method (random 
forest), and a network-based approach to evaluating methotrexate 
nonresponse in patients with rheumatoid arthritis. Results are the 
mean ± SEM. 

Figure  2.  L2-regularized logistic regression model performance 
using the gene expression ratio between 4 weeks and pretreatment. 
Results are the fraction of true nonresponders found versus false 
negative rate.

http://onlinelibrary.wiley.com/doi/10.1002/art.40810/abstract
http://onlinelibrary.wiley.com/doi/10.1002/art.40810/abstract
http://onlinelibrary.wiley.com/doi/10.1002/art.40810/abstract
http://onlinelibrary.wiley.com/doi/10.1002/art.40810/abstract
http://onlinelibrary.wiley.com/doi/10.1002/art.40810/abstract
http://onlinelibrary.wiley.com/doi/10.1002/art.40810/abstract
http://onlinelibrary.wiley.com/doi/10.1002/art.40810/abstract
http://onlinelibrary.wiley.com/doi/10.1002/art.40810/abstract
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Pathway analysis. Functional analysis of the gene 
lists derived from the identified modules (as described above) 
revealed a number of biologic processes relevant to inflam-
matory processes, such as genes involved in the response 
to type I interferon (P = 2.8 × 10−25) at pretreatment, and the 
type I interferon signaling pathway (P = 4.9 × 10−28) at 4 weeks 
(labeled in light green and light cyan, respectively; see Supple-
mentary Tables 1, 2, and 3, available on the Arthritis & Rheuma-
tology web site at http://onlinelibrary.wiley.com/doi/10.1002/
art.40810/abstract). Using data from the Gene Expression 
Omnibus database, we found that >90% of hub genes from 
within these modules had prior evidence of coexpression, thus 
validating the gene network approach (see Supplementary Fig-
ures 5 and 6, available on the Arthritis & Rheumatology web 
site at http://onlinelibrary.wiley.com/doi/10.1002/art.40810/
abstract).

We tested the interferon pathway transcripts for their pre-
dictive accuracy as a classifier of MTX nonresponse. Although 
we observed nonrandom performance (e.g., with the linear 
method at baseline, balanced accuracy 0.52 ± 0.04, ROC AUC 
0.64 ± 0.06), this classifier performed less well than the model 
that included all transcripts present on the array (see Supple-
mentary Figure 7, available on the Arthritis & Rheumatology web 
site at http://onlinelibrary.wiley.com/doi/10.1002/art.40810/
abstract).

DISCUSSION

In this study, we performed gene expression profiling in 
samples of whole blood collected at pretreatment and 4 weeks 
following the initiation of MTX therapy from patients with RA who 
had been started on MTX for the first time. By assessing a num-
ber of cutting edge model-building approaches, we developed 
a gene expression classifier that could potentially provide an 
early-response biomarker of MTX inefficacy. The classifier was 
found to be stable in cross-validation (SEM of 0.11 for the ROC 
AUC) and performed better than models that included the clini-
cal covariates alone.

Pathway analysis revealed that genes involved in the 
response to type I interferon (P = 2.8 × 10−25) and the type I inter-
feron signaling pathway (P = 4.9 × 10−28) were enriched in coex-
pressed gene modules identified in nonresponsive patients at 
pretreatment and at 4 weeks post–treatment initiation, respec-
tively. Importantly, type I IFN signaling activates the JAK/STAT 
pathway and influences the development of innate and adaptive 
immune responses (27). Type I interferon gene responses are 
known to be increased in RA, to be correlated with autoanti-
body production (28), and to potentially be correlated with the 
response to tumor necrosis factor inhibitor therapy (28–34). It is 
important to note that the coexpressed genes were not differ-
entially expressed between responder groups or between time 
points (data not shown).

The results of this study highlight the potential of early treat-
ment biomarker monitoring in RA, and raise important questions 
regarding acceptable levels of performance for complementary 
diagnostic testing. To address this, decisions by key stakehold-
ers (e.g., patient groups, clinicians) need to be made. Accept-
able classifier performance must also be viewed in context, since 
~46% of RA patients started on MTX therapy will discontinue the 
treatment by 3 years, due to intolerance/safety and inefficacy (35). 
Therefore, we believe that high recall (correctly identifying nonre-
sponders) is preferable even at the expense of misclassifying a 
fraction of good responders. For example, the current model was 
able to detect ~50% of nonresponders at the expense of a false 
negative rate of ~20% (Figure 2).

The strengths of the current study include a large sample size, 
the availability of genome-wide transcript data at pretreatment 
and also during early treatment, rigorous internal model validation, 
and a focus on one drug (i.e., MTX). Furthermore, a comparison 
with external data confirmed that the gene expression networks 
identified in the current data have previous evidence of coexpres-
sion, providing external validity.

A limitation in investigating MTX nonresponse is the semi
quantitative nature of the methods used to approximate dis-
ease activity, for example, the DAS28 (36) and related EULAR 
response classification. The DAS28 score is composed of both 
objective (e.g., swollen joint count) and subjective (e.g., tender 
joint count) measures. As a result of it being made up of several 
components, it can be difficult to interpret, particularly because 
the subjective measures receive more weighting in the score cal-
culation, and tend to correlate more strongly with psychological 
variables, such as anxiety (37) and fibromyalgia tender points (38). 
Improved classifier performance might therefore be achieved if a 
biologic measure of disease activity, particularly one that might 
be more strongly reflective of synovitis levels, were to be used to 
assess the treatment response, as opposed to the DAS28 or its 
components.

Another potential limitation to the current study is the use 
of whole blood for transcript profiling. While the purpose of the 
study was not to resolve mechanisms of nonresponse, model 
performance may have been improved by targeting enriched cell 
subsets within the blood.

The utility of a gene expression classifier of MTX nonre-
sponse will now require validation, not only in independent 
samples but also using independent technology. For exam-
ple, more mileage may be gained from RNA sequencing, as 
opposed to array-based data sets. If the predictive utility of 
gene expression data can be confirmed, this could pave the 
way for a paradigm shift in treatment outcomes from clinically 
based treat-to-target approaches to biologically driven preci-
sion medicine.

In conclusion, these data reveal a potential role for early 
treatment biomarker monitoring in RA patients started on MTX, 
and highlight the utility of machine learning and network-based 

http://onlinelibrary.wiley.com/doi/10.1002/art.40810/abstract
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approaches in investigations of treatment response in inflamma-
tory diseases.
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