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Abstract
Experimental design applications for discriminating between models have been ham-

pered by the assumption to know beforehand which model is the true one, which

is counter to the very aim of the experiment. Previous approaches to alleviate this

requirement were either symmetrizations of asymmetric techniques, or Bayesian, min-

imax, and sequential approaches. Here we present a genuinely symmetric criterion

based on a linearized distance between mean-value surfaces and the newly introduced

tool of flexible nominal sets. We demonstrate the computational efficiency of the

approach using the proposed criterion and provide a Monte-Carlo evaluation of its

discrimination performance on the basis of the likelihood ratio. An application for a

pair of competing models in enzyme kinetics is given.
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1 INTRODUCTION

Besides optimization and parameter estimation, discrimination between rival models has always been an important objective
of an experiment, and, therefore, of the optimization of experimental design. The crucial problem is that one typically cannot
construct an optimal model-discrimination design without already knowing which model is the true one, and what are the
true values of its parameters. In this respect, the situation is analogous to the problem of optimal experimental design for
parameter estimation in nonlinear statistical models (e.g., Pronzato & Pazman, 2014), and many standard techniques can be
used to tackle the dependence on the unknown characteristics: local, Bayesian, minimax, and sequential approaches, as well as
their various combinations.

A big leap from initial ad hoc methods for model discrimination (see Hill, 1978, for a review) was Atkinson and Fedorov
(1975) who introduced 𝑇 -optimality, derived from the likelihood-ratio test under the assumption that one model is true and
its parameters are fixed at nominal values chosen by the experimenter. There, maximization of the noncentrality parameter is
equivalent to maximizing the power of the likelihood-ratio test for the least favorable parameter of the model assumed to be
wrong. Thus, 𝑇 -optimality can be considered a combination of a localization and a minimax approach.
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When the models are nested and (partly) linear, 𝑇 -optimality can be shown to be equivalent to 𝐷𝑠-optimality for a single
parameter that embodies the deviations from the smaller model (see, e.g., Dette & Titoff, 2009; Stigler, 1971). For this setting
the optimal design questions are essentially solved and everything hinges on the asymmetric nature of the NP-lemma with respect
to the null- and alternative hypotheses. However, for a nonnested case the design problem itself is often inherently symmetric
with respect to the exchangeability of the compared models and it is the purpose of the experiment to decide which of those two
different models is true.

The aim of this paper is to solve the discrimination design problem in a symmetric way focusing on nonnested models. Thus,
standard methods that are inherently asymmetric like 𝑇 -optimality, albeit being feasible, are not a natural choice. We further
suppose that we do not use the full prior distribution of the unknown parameters of the models, which rules out Bayesian
approaches such as Felsenstein (1992) and Tommasi and López-Fidalgo (2010). Nevertheless, as we will make more precise
in the next section, we will utilize what can be perceived as a specific kind of prior knowledge about the unknown parameters,
extending the approach of local optimality. Our goal is to provide a lean, computationally efficient and scalable method as
opposed to the heavy machinery recently employed in the computational statistics literature, for example, Hainy, Price, Restif,
and Drovandi (2018). Furthermore, we strive for practical simplicity, which at first prohibits sequential (see Buzzi-Ferraris &
Forzatti, 1983; Müller & Ponce De Leon, 1996; Schwaab et al., 2006) or sequentially generated (see Vajjah & Duffull, 2012)
designs.

A standard solution to the symmetric discrimination design problem is to employ symmetrizations of asymmetric criteria such
as compound 𝑇 -optimality, which usually depend on some weighting chosen by the experimenter. Also the minimax strategy
recently presented in Tommasi, Martín-Martín, and López-Fidalgo (2016) is essentially a symmetrization. Moreover, the usual
minimax approaches lead to designs that completely depend on the possibly unrealistic extreme values of the parameter space
and their calculation again demands enormous computational effort.

As the closest in spirit to our approach could be considered a proposal for linear models in section 4.4 of Atkinson and
Fedorov (1975) and its extension in Fedorov and Khabarov (1986) which, however, was not taken up by the literature. The
probable reason is that it involves some rather arbitrary restrictions on the parameters as well as taking an artificial lower bound
to convert it into a computationally feasible optimization problem.

For expositional purposes we will now restrict ourselves to a rather specific design task but will discuss possible extensions
at the end of the paper.

Let 𝔛 ≠ ∅ be a finite design space and let  be a design on 𝔛, that is, a vector of design points 𝑥1,… , 𝑥𝑛 ∈ 𝔛, where 𝑛 is
the chosen size of the experiment. Hence, in the terminology of the theory of optimal experimental design, we will work with
exact designs. We will consider discrimination between a pair of nonlinear regression models

𝑦𝑖 = 𝜂0(𝜃0, 𝑥𝑖) + 𝜖𝑖, 𝑖 = 1,… , 𝑛, and

𝑦𝑖 = 𝜂1(𝜃1, 𝑥𝑖) + 𝜖𝑖, 𝑖 = 1,… , 𝑛,

where 𝑦1,… , 𝑦𝑛 are observations, 𝜂0 ∶ Θ0 ×𝔛 → ℝ, 𝜂1 ∶ Θ1 ×𝔛 → ℝ are the mean-value functions, Θ0 ⊆ ℝ𝑚0 , Θ1 ⊆ ℝ𝑚1 are
parameter spaces with nonempty interiors int(Θ0), int(Θ1), and 𝜖1,… , 𝜖𝑛 are unobservable random errors. For both 𝑘 = 0, 1 and
any 𝑥 ∈ 𝔛, we will assume that the functions 𝜂𝑘(⋅, 𝑥) are differentiable on int(Θ𝑘); the gradient of 𝜂𝑘(⋅, 𝑥) in 𝜃𝑘 ∈ int(Θ𝑘) will
be denoted by ∇𝜂𝑘(𝜃𝑘, 𝑥). Our principal assumption is that one of the models is true but we do not know which, that is, for 𝑘 = 0
or for 𝑘 = 1 there exists 𝜃̄𝑘 ∈ Θ𝑘 such that 𝑦𝑖 = 𝜂𝑘(𝜃̄𝑘, 𝑥𝑖) + 𝜖𝑖.

Let the random errors be i.i.d. 𝑁(0, 𝜎2), where 𝜎2 ∈ (0,∞). The assumption of the same variances of the errors for both
models is plausible if, for instance, the errors are due to the measurement device and hence do not significantly depend on the
value being measured. The situation with different error variances requires a more elaborate approach, compared with Fedorov
and Pázman (1968).

Eventually we are aiming not just at achieving some high design efficiencies with respect to our newly proposed criterion, but
also want to test its usefulness in concrete discrimination experiments, that is, the probability that using our design we arrive at
the correct decision about which model is the true one. So, to justify our approach numerically, we require a model-discrimination
rule that will be used after all observations based on the design  are collected for evaluational purposes.

The choice of the best discrimination rule based on the observations is generally a nontrivial problem. However, it is natural
to compute the maximum likelihood estimates 𝜃̂0 and 𝜃̂1 of the parameters under the assumption of the first and the second
model, respectively, and then base the decision on whether

𝐿(𝜃̂0|(𝑦𝑖)𝑛𝑖=1)
𝐿(𝜃̂1|(𝑦𝑖)𝑛𝑖=1) <> 1, (1)
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that is, the likelihood ratio being smaller or greater than 1, or perhaps more simply whether log𝐿(𝜃̂0) − log𝐿(𝜃̂1) <> 0. Under
the normality, homoskedasticity, and independence assumptions, this decision is equivalent to a decision based on the proximity
of the vector (𝑦𝑖)𝑛𝑖=1 of observations to the vectors of estimated mean values (𝜂0(𝜃̂0, 𝑥𝑖))𝑛𝑖=1 and (𝜂1(𝜃̂1, 𝑥𝑖))𝑛𝑖=1.

For the case 𝑚0 ≠ 𝑚1 to counterbalance favoring models with greater number of parameters, Cox (2013) recommends instead
the use of 𝐿(𝜃̂0)∕𝐿(𝜃̂1)(𝑒𝑚1∕𝑒𝑚0 )𝑛∕𝑛̃, which corresponds to the Bayesian information criterion; see Schwarz (1978). Here 𝑛̃

corresponds to the number of observations in a real or fictitious prior experiment. For the sake of simplicity however, we will
now restrict ourselves to the case of 𝑚 ∶= 𝑚0 = 𝑚1. Note that for the evaluational purposes we are taking a purely model
selection based standpoint. More sophisticated testing procedures for instance allowing both models to be rejected based on the
pioneering work of Cox (1961) are reviewed and outlined in Pesaran and Weeks (2007).

Let 𝑥1,… , 𝑥𝑛 ∈ 𝔛 and let  = (𝑥1,… , 𝑥𝑛) be the design used for the collection of data prior to the decision, and assume
that model 𝜂0 is true, with the corresponding parameter value 𝜃̄0. Note that this comes without loss of generality and symmetry
as we can equivalently assume model 𝜂1 to be true. Then, the probability of the correct decision based on the likelihood ratio is
equal to

𝑃

[
min
𝜃0∈Θ0

𝑛∑
𝑖=1

(𝜂0(𝜃0, 𝑥𝑖) − 𝑦𝑖)2 ≤ min
𝜃1∈Θ1

𝑛∑
𝑖=1

(𝜂1(𝜃1, 𝑥𝑖) − 𝑦𝑖)2
]
, (2)

where (𝑦𝑖)𝑛𝑖=1 follows the normal distribution with mean (𝜂0(𝜃̄0, 𝑥𝑖))𝑛𝑖=1 and covariance 𝜎2𝐼𝑛.
Clearly, probability (2) depends on the true model, the unknown true parameter, and also on the unknown variance of errors.

Even if these parameters were known, the probability of the correct classification would be very difficult to compute for a given
design because this requires a combination of high-dimensional integration and multivariate nonconvex optimization. Therefore,
it is practically impossible to directly optimize the design based on formula (2). However, we can simplify the problem by
constructing a lower bound on (2) which does not depend on unknown parameters and is relatively much simpler to maximize
with respect to the choice of the design. The bound based on the distance 𝑑(𝐸0, 𝐸1), where 𝐸𝑗 is the set of all possible mean
values of the observations under the model 𝑗, 𝑗 = 0, 1, and 𝑑(., .) denotes the infimum distance between all pairs of elements of
two sets, is developed as follows.

Consider a fixed experimental design (𝑥1,… , 𝑥𝑛), and denote 𝑦 ∶= (𝑦𝑖)𝑛𝑖=1, 𝜂𝑗(𝜃𝑗) ∶= (𝜂𝑗(𝜃𝑗, 𝑥𝑖))𝑛𝑖=1 for 𝑗 = 0, 1. Note that
we can express (2) as 𝑃 [𝑑(𝐸0, 𝑦) ≤ 𝑑(𝐸1, 𝑦)]. Now, let 𝑅 = ‖𝜖‖, where 𝜖 = 𝑦 − 𝜂0(𝜃̄0), be the norm of the vector of errors.
Assuming 𝑅 ≤ 𝑑(𝐸0, 𝐸1)∕2 we obtain

𝑑(𝐸0, 𝐸1) ≤ 𝑑(𝜂0(𝜃̂0), 𝜂1(𝜃̂1)) ≤ 𝑑(𝑦, 𝜂0(𝜃̂0)) + 𝑑(𝑦, 𝜂1(𝜃̂1))

≤ 𝑑(𝑦, 𝜂0(𝜃̄0)) + 𝑑(𝑦, 𝜂1(𝜃̂1)) = 𝑅 + 𝑑(𝑦, 𝜂1(𝜃̂1)) ≤ 𝑑(𝐸0, 𝐸1)∕2 + 𝑑(𝑦, 𝜂1(𝜃̂1)),

which implies 𝑑(𝐸0, 𝐸1)∕2 ≤ 𝑑(𝑦, 𝜂1(𝜃̂1)) and consequently

𝑑(𝐸0, 𝑦) = 𝑑(𝑦, 𝜂0(𝜃̂0)) ≤ 𝑑(𝑦, 𝜂0(𝜃̄0)) = 𝑅 ≤ 𝑑(𝐸0, 𝐸1)∕2 ≤ 𝑑(𝑦, 𝜂1(𝜃̂1)) = 𝑑(𝐸1, 𝑦).

Thus, the event [𝑅 ≤ 𝑑(𝐸0, 𝐸1)∕2] implies the event [𝑑(𝐸0, 𝑦) ≤ 𝑑(𝐸1, 𝑦)], that is, (2) can be bounded from below by

𝑃
[
𝑅 ≤ 𝑑(𝐸0, 𝐸1)∕2

]
. (3)

To make (2) as high as possible, it makes sense to maximize (3), that is, maximize 𝑑(𝐸0, 𝐸1), which depends on the underly-
ing experimental design. Although this maximization is much simpler than maximizing (2) directly, it still generally requires
nonconvex multidimensional optimization at each iteration of the maximization procedure, which is impractical for computing
exact optimal designs. A realistic approach must be numerically feasible and address the problem of the dependence of the
design on unknown true model parameters, which we will achieve by rapidly computable approximation of 𝑑(𝐸0, 𝐸1) through
linearization, as will be explained in the following section.

1.1 Example 1: A motivating example
Let 𝜂0(𝜃0, 𝑥) = 𝜃0𝑥 and 𝜂1(𝜃1, 𝑥) = 𝑒𝜃1𝑥. Furthermore, for the moment we assume just two observations 𝑦1, 𝑦2 at fixed design
points 𝑥1 = −1 and 𝑥2 = 1, respectively. In this case evidently 𝜃̂0 =

𝑦2−𝑦1
2 and 𝜃̂1 is the solution of 2𝑒−𝜃(𝑦1 − 𝑒−𝜃) − 2𝑒𝜃(𝑦2 −

𝑒𝜃) = 0, which for −2 ≤ 𝑦1 ≤ 2 is the log root of the polynomial 𝛾4 − 𝛾3𝑦2 + 𝛾𝑦1 − 1. Figure 1 displays the log-likelihood-ratio
contours for the original and linearized models and it is obvious that the former are nonconvex and complex while the latter
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F I G U R E 1 Left panel: contour plot of log𝐿(𝜃̂0) − log𝐿(𝜃̂1) for Example 1, solid line corresponds to 0, horizontal 𝑦1, vertical 𝑦2; right panel:

corresponding contour plot for the model 𝜂1 linearized at 𝜃1 = 1

are much simpler, convex, and do approximate fairly well for a wide range of responses. Note that while this example is for a
fixed design it motivates why the linearizations can serve as the cornerstones of our design method as will become clearer in
the following sections.

2 THE LINEARIZED DISTANCE CRITERION

We suggest an extension of the idea of local optimality used for nonlinear experimental design. Let 𝜃0 ∈ int(Θ0) and 𝜃1 ∈ int(Θ1)
be nominal parameter values, which satisfy the basic discriminability condition 𝜂0(𝜃0, 𝑥) ≠ 𝜂1(𝜃1, 𝑥) for some 𝑥 ∈ 𝔛. Let us
introduce regions Θ̃0 ⊆ int(Θ0) ⊆ ℝ𝑚 and Θ̃1 ⊆ int(Θ1) ⊆ ℝ𝑚 containing 𝜃0 and 𝜃1; we will consequently call Θ̃0 and Θ̃1 flexible
nominal sets. It is evident that optimal designs depend on the parameter spaces in the same way as on our flexible nominal sets
(cf. Dette, Melas, & Shpilev, 2013), but the latter will not be considered fixed like the parameter spaces Θ0 and Θ1. A novelty
of our procedure is that we use these sets as a tuning device.

Let  = (𝑥1,… , 𝑥𝑛) be a design. Let us perform the following particular linearization of Model 𝜂𝑘=0,1 in 𝜃𝑘:

(𝑦𝑖)𝑛𝑖=1 ≈ 𝐅𝑘()𝜃𝑘 + 𝐚𝑘() + 𝜖,

where 𝐅𝑘() is the 𝑛 × 𝑚 matrix given by

𝐅𝑘() =
(
∇𝜂𝑘(𝜃𝑘, 𝑥1),… ,∇𝜂𝑘(𝜃𝑘, 𝑥𝑛)

)𝑇
,

𝐚𝑘() is the 𝑛-dimensional vector

𝐚𝑘() = (𝜂𝑘(𝜃𝑘, 𝑥𝑖))𝑛𝑖=1 − 𝐅𝑘()𝜃𝑘,

and 𝜖 = (𝜖1,… , 𝜖𝑛)𝑇 is a vector of independent 𝑁(0, 𝜎2) errors.
Note that for the proposed method the vector 𝐚𝑘() plays an important role and, although it is known, we cannot subtract it

from the vector of observations, as is usual when we linearize a single nonlinear regression model. However, if 𝜂𝑘 corresponds
to the standard linear model then 𝐚𝑘() = 𝟎𝑛 for any .
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F I G U R E 2 Illustrative graph for the definition of 𝛿() for two

one-parameter models (Θ0,Θ1 ⊆ ℝ) and a design of size two ( = (𝑥1, 𝑥2)).
The line segments correspond to the sets {𝐚0() + 𝐅0()𝜃0 ∶ 𝜃0 ∈ Θ̃0} and

{𝐚1() + 𝐅1()𝜃1 ∶ 𝜃1 ∈ Θ̃1} for some flexible nominal sets Θ̃0 and Θ̃1

2.1 Definition of the 𝜹 criterion
Consider the design criterion

𝛿() = inf
𝜃0∈Θ̃0,𝜃1∈Θ̃1

𝛿(|𝜃0, 𝜃1), where (4)

𝛿(|𝜃0, 𝜃1) = ‖‖𝐚0() + 𝐅0()𝜃0 − {𝐚1() + 𝐅1()𝜃1}‖‖, (5)

for 𝜃0 ∈ Θ̃0, 𝜃1 ∈ Θ̃1. The criterion 𝛿 can be viewed as an approximation of the nearest distance 𝑑 of the mean-value surfaces
of the models, in the neighborhoods of the vectors (𝜂0(𝜃0, 𝑥𝑖))𝑛𝑖=1 and (𝜂1(𝜃1, 𝑥𝑖))𝑛𝑖=1; see the illustrative Figure 2.

We will now express the 𝛿-criterion as a function of the design  = (𝑥1,… , 𝑥𝑛) represented by the counting measure 𝜉 on 𝔛
defined as

𝜉({𝑥}) ∶= #
{
𝑖 ∈ {1,… , 𝑛} ∶ 𝑥𝑖 = 𝑥

}
, 𝑥 ∈ 𝔛,

where # means the size of a set. Let 𝜃 = (𝜃𝑇0 , 𝜃
𝑇
1 )

𝑇 . For all 𝑥 ∈ 𝔛 let

Δ𝜂(𝜃, 𝑥) ∶= 𝜂0(𝜃0, 𝑥) − 𝜂1(𝜃1, 𝑥),

∇𝜂(𝜃, 𝑥) ∶=
(
∇𝜂𝑇0 (𝜃0, 𝑥), −∇𝜂

𝑇
1 (𝜃1, 𝑥)

)𝑇
.

For any 𝜃0 ∈ Θ̃0, 𝜃1 ∈ Θ̃1 and 𝜃 = (𝜃𝑇0 , 𝜃
𝑇
1 )

𝑇 we have

𝛿2(|𝜃0, 𝜃1) = ‖‖𝐚0() + 𝐅0()𝜃0 − {𝐚1() + 𝐅1()𝜃1}‖‖2
=

𝑛∑
𝑖=1

(
∇𝜂𝑇 (𝜃, 𝑥𝑖)(𝜃 − 𝜃) + Δ𝜂(𝜃, 𝑥𝑖)

)2
= ∫𝔛

(
∇𝜂𝑇 (𝜃, 𝑥)(𝜃 − 𝜃) + Δ𝜂(𝜃, 𝑥)

)2d𝜉(𝑥). (6)

Therefore

𝛿2(|𝜃0, 𝜃1) = (𝜃 − 𝜃)𝑇𝐌(𝜉, 𝜃)(𝜃 − 𝜃) + 2𝐛𝑇 (𝜉, 𝜃)(𝜃 − 𝜃) + 𝑐(𝜉, 𝜃), (7)

where

𝐌(𝜉, 𝜃) = ∫𝔛∇𝜂(𝜃, 𝑥)∇𝜂𝑇 (𝜃, 𝑥)d𝜉(𝑥), (8)
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𝐛(𝜉, 𝜃) = ∫𝔛 Δ𝜂(𝜃, 𝑥)∇𝜂(𝜃, 𝑥)d𝜉(𝑥), (9)

𝑐(𝜉, 𝜃) = ∫𝔛[Δ𝜂(𝜃, 𝑥)]
2d𝜉(𝑥). (10)

The matrix 𝐌(𝜉, 𝜃) in Equations (7) and (8) can be recognized as the information matrix for the parameter 𝜃 in the linear
regression model

𝑧𝑖 = ∇𝜂𝑇 (𝜃, 𝑥𝑖)𝜃 + 𝜖𝑖

= [𝐅0(),−𝐅1()]𝑖⋅𝜃 + 𝜖𝑖; 𝑖 = 1,… , 𝑛, (11)

where [𝐅0(),−𝐅1()]𝑖⋅ is the 𝑖th row of the matrix [𝐅0(),−𝐅1()], with parameter 𝜃 and independent, homoskedastic errors
𝜖1,… , 𝜖𝑛 with mean 0; we will call (11) a response difference model.

2.2 Computation of the 𝜹 criterion value for a fixed design
For a fixed design , expression (5) shows that 𝛿2(|𝜃) is a quadratic function of 𝜃 = (𝜃𝑇0 , 𝜃

𝑇
1 )

𝑇 . Moreover, both 𝛿(|𝜃) and

𝛿2(|𝜃) are convex because they are compositions of an affine function of 𝜃 and convex functions ‖.‖ and ‖.‖2, respectively.
Clearly, if the flexible nominal sets are compact, convex, and polyhedral, optimization (4) can be efficiently performed by
specialized solvers for linearly constrained quadratic programming.

Alternatively, we can view the computation of 𝛿(|𝜃) as follows. As

𝛿2(|𝜃0, 𝜃1) = ‖‖{𝐚0() − 𝐚1()} − [−𝐅0(),𝐅1()]𝜃‖‖2,
the minimization in (4) is equivalent to computing the minimum sum of squares for a least squares estimate of 𝜃 restricted to
Θ̃ ∶= Θ̃0 × Θ̃1 in the response difference model with artificial observations

𝑧̃𝑖 = {𝐚1() − 𝐚0()}𝑖, 𝑖 = 1,… , 𝑛.

Thus, if Θ̃0 = Θ̃1 = ℝ𝑚, the infimum in (4) is attained, and it can be computed using the standard formulas of linear regression
in the response difference model. If the flexible nominal sets are compact cuboids, (4) can be evaluated by the very rapid and
stable method for bounded variable least squares implemented in the R package bvls; see Stark and Parker (1995) and Mullen
(2013).

The following simple proposition collects the analytic properties of a natural analogue of 𝛿 defined on the linear vector space
Ξ of all finite signed measures on 𝔛.

Proposition 2.1. For 𝜃0 ∈ Θ̃0, 𝜃1 ∈ Θ̃1 and a finite signed measure 𝜉 on 𝔛 let 𝛿2
𝑎𝑝𝑝

(𝜉|𝜃0, 𝜃1) be defined via formula (6). Then,
𝛿2
𝑎𝑝𝑝

(⋅|𝜃0, 𝜃1) is linear on Ξ. Moreover, let

𝛿2
𝑎𝑝𝑝

(𝜉) ∶= inf
𝜃0∈Θ̃0,𝜃1∈Θ̃1

𝛿2
𝑎𝑝𝑝

(𝜉|𝜃0, 𝜃1).
Then, 𝛿2

𝑎𝑝𝑝
is positive homogeneous and concave on Ξ.

Positive homogeneity of 𝛿2
𝑎𝑝𝑝

implies that an 𝑠-fold replication of an exact design leads to an 𝑠-fold increase of its 𝛿2 value.
Consequently, a natural and statistically interpretable definition of relative 𝛿-efficiency of two designs 1 and 2 is given by
𝛿2(1)∕𝛿2(2), provided that 𝛿2(2) > 0.

Let 𝔇 be the set of all 𝑛-point designs. A design ∗ ∈ 𝔇 will be called 𝛿-optimal, if

∗ ∈ argmax∈𝔇𝛿().

Note that the basic discriminability condition implies that if Θ̃0 = {𝜃0} and Θ̃1 = {𝜃1}, then 𝛿(∗) is strictly positive. However,
for larger flexible nominal sets it can happen that 𝛿(∗) = 0.

As the evaluation of the 𝛿-criterion is generally very rapid, the calculation of a 𝛿-optimal, or nearly 𝛿-optimal design is similar
to that for standard design criteria. For instance, in small problems we can use complete-enumeration and in larger problems we
can employ an exchange heuristic, such as the KL exchange algorithm (see, e.g., Atkinson, Donev, & Tobias, 2007).
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Note that the 𝛿-optimal designs depend not only on 𝜂0, 𝜂1, 𝔛, 𝑛, 𝜃0, and 𝜃1, but also on Θ̃0 and Θ̃1.

2.3 Parametrization of flexible nominal sets
For simplicity, we will focus on cuboid flexible nominal sets centered at the nominal parameter values. This choice can be
justified by the results of Sidak (1967), in particular if we already have confidence intervals for individual parameters; see
further discussion in Section 4. Specifically, we will employ the homogeneous dilations

Θ̃(𝑟)
𝑘

∶= 𝑟

(
Θ̃(1)
𝑘

− 𝜃𝑘

)
+ 𝜃𝑘, 𝑟 ∈ [0,∞), 𝑘 = 0, 1, (12)

Θ̃(∞)
0 ∶= ℝ𝑚, Θ̃(∞)

1 ∶= ℝ𝑚, such that 𝑟 can be considered a tuning (set) parameter governing the size of the flexible nominal sets.

In (12), Θ̃(1)
0 and Θ̃(1)

1 are “unit” nondegenerate compact cuboids centered on respective nominal parameters. For any design 
and 𝑟 ∈ [0,∞], we define

𝛿𝑟() ∶= inf
𝜃0∈Θ̃

(𝑟)
0 ,𝜃1∈Θ̃

(𝑟)
1

𝛿(|𝜃0, 𝜃1). (13)

Note that for our choice of flexible nominal sets the infimum in (13) is attained. The 𝛿𝑟-optimal values of the problem will be
denoted by

𝑜(𝑟) ∶= max∈𝔇
𝛿𝑟().

Proposition 2.2. (a) Let  be a design. Functions 𝛿2
𝑟
(), 𝛿𝑟(), 𝑜2(𝑟), 𝑜(𝑟) are nonincreasing and convex in 𝑟 on the entire

interval [0,∞]. (b) There exists 𝑟∗ < ∞, such that for all 𝑟 ≥ 𝑟∗: (i) 𝑜(𝑟) = 𝑜(∞); (ii) Any 𝛿∞-optimal design is also a 𝛿𝑟-
optimal design.

Proof. (a) Let  be an 𝑛-point design and let 0 ≤ 𝑟1 ≤ 𝑟2 ∈ [0,∞].
Inequality 𝛿2

𝑟1
() ≥ 𝛿2

𝑟2
() follows from definitions (12) and (13), and inequality 𝑜2(𝑟1) ≥ 𝑜2(𝑟2) follows from the fact that a

maximum of nonincreasing functions is a nonincreasing function. Monotonicity of 𝛿𝑟() and 𝑜(𝑟) in 𝑟 can be shown analogously.
To prove the convexity of 𝛿2

𝑟
() in 𝑟, let 𝛼 ∈ (0, 1) and let 𝑟𝛼 = 𝛼𝑟1 + (1 − 𝛼)𝑟2. For all 𝑟 ∈ [0,∞], let 𝜃̂𝑟 denote a minimizer

of 𝛿2
𝑟
(|⋅) on Θ̃(𝑟) ∶= Θ̃(𝑟)

0 × Θ̃(𝑟)
1 . Convexity of 𝛿2(|𝜃) in 𝜃 and a simple fact 𝛼𝜃̂𝑟1 + (1 − 𝛼)𝜃̂𝑟2 ∈ Θ̃(𝑟𝛼) yield

𝛼𝛿2
𝑟1
() + (1 − 𝛼)𝛿2

𝑟2
() = 𝛼𝛿2(|𝜃̂𝑟1 ) + (1 − 𝛼)𝛿2(|𝜃̂𝑟2 )

≥ 𝛿2(|𝛼𝜃̂𝑟1 + (1 − 𝛼)𝜃̂𝑟2 ) ≥ 𝛿2(|𝜃̂𝑟𝛼 ) = 𝛿2
𝑟𝛼
(),

which proves that 𝛿2
𝑟
() is convex in 𝑟. The convexity of 𝛿𝑟() in 𝑟 can be shown analogously. The functions 𝑜2 and 𝑜, as

pointwise maxima of a system of convex functions, are also convex.
(b) For any design  of size 𝑛, the function 𝛿2∞(|⋅) is nonnegative and quadratic on ℝ2𝑚, therefore its minimum is attained in

some 𝜃 ∈ ℝ2𝑚. There is only a finite number of exact designs of size 𝑛, and Θ̃(𝑟) ↑𝑟 ℝ2𝑚, which means that there exists 𝑟∗ < ∞
such that 𝜃 ∈ Θ̃(𝑟∗) for all designs  of size 𝑛. Let 𝑟 ≥ 𝑟∗. We have

𝑜(∞) = max
𝐷∈𝔇

min
𝜃∈ℝ2𝑚

𝛿∞(|𝜃) = max
𝐷∈𝔇

min
𝜃∈Θ̃(𝑟)

𝛿(|𝜃) = max
𝐷∈𝔇

𝛿𝑟() = 𝑜(𝑟),

proving (i). Let (∞) be any 𝛿∞-optimal 𝑛-trial design. The equality (i) and the fact that 𝛿𝑟((∞)) and 𝑜(𝑟) are nonincreasing
with respect to 𝑟 gives

𝛿𝑟((∞)) ≥ 𝛿∞((∞)) = 𝑜(∞) = 𝑜(𝑟∗) ≥ 𝑜(𝑟),

which proves (ii). □

The second part of Proposition 2.2 implies the existence of a finite interval [0, 𝑟∗] of relevant set parameters; increasing the
set parameter beyond 𝑟∗ leaves the optimal designs as well as the optimal value of the 𝛿-criterion unchanged. We will call any
such 𝑟∗ a set upper bound.

Algorithm 1 provides a simple iterative method of computing 𝑟∗. Our experience shows that it usually requires only a small
number of recomputations of the 𝛿𝑟-optimal design, even if 𝑟𝑖𝑛𝑖 is small and 𝑞 is close to 1, resulting in a good set upper bound
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𝑟∗ (see the metacode of Algorithm 1 for details). Due to the high speed and stability of the computation of the values of 𝛿𝑟 for
candidate designs, it is possible to use an adaptation of the standard KL exchange heuristic to compute the input value 𝑜(∞), as
well as to obtain 𝛿𝑟-optimal designs in steps 2 and 9 of the algorithm itself.

Algorithm 1: A simple algorithm for computing a set upper bound.

2.4 Example 1 continued
Consider the models from the motivating example. Let 𝔛 = {1.00, 1.01,… , 2.00}, 𝜃0 = 𝑒, and 𝜃1 = 1. Note that these nominal
values satisfy 𝜂0(𝜃0, 1) = 𝜂1(𝜃1, 1). Moreover, let us set Θ̃(1)

0 = [𝑒 − 1, 𝑒 + 1] and Θ̃(1)
1 = [0, 2], and let the required size of the

experiment be 𝑛 = 6. First, we computed the value 𝑜2(∞) ≈ 0.02614. Next, we used Algorithm 1 with 𝑟𝑖𝑛𝑖 = 0.3 and 𝑞 = 1 +
10−6, which returned a set upper bound 𝑟∗ ≈ 0.6787 after as few as seven computations of 𝛿𝑟-optimal designs. Informed by 𝑟∗, we
computed 𝛿𝑟-optimal designs for 𝑟 = 0.01, 0.1, 0.2,… , 0.7. The resulting 𝛿𝑟-optimal designs are displayed in Figure 3. Note that
if Θ̃(𝑟)s are very narrow, the 𝛿𝑟-optimal design is concentrated in the design point 𝑥 = 2, effectively maximizing the difference
between 𝜂0(𝜃0, 𝑥) and 𝜂1(𝜃1, 𝑥). For larger values of 𝑟, the 𝛿𝑟-optimal design has a 2-point and ultimately a 3-point support.

F I G U R E 3 𝛿𝑟-Optimal designs of size 𝑛 = 6 for different 𝑟s; see the

second part of the motivating example. The horizontal axis corresponds to the

design space, and the vertical axis corresponds to different spans 𝑟 of the flexible

nominal sets. For each 𝑟, the figure displays the number of repeated observations

at different design points, corresponding to the 𝛿𝑟-optimal design
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For some pairs of competing models there exists a set upper bound 𝑟∗, beyond which the values of 𝛿𝑟 are constantly 0 for all
designs. These cases can be identified by solving a linear programming (LP) problem, as we show next.

Proposition 2.3. Let ̄ be the design that performs exactly one trial in each point of 𝔛. Consider the following LP problem
with variables 𝑟 ∈ ℝ, 𝜃0 ∈ ℝ𝑚, 𝜃1 ∈ ℝ𝑚:

min 𝑟 (14)

s.t. 𝐅0(̄)𝜃0 + 𝐚0(̄) = 𝐅1(̄)𝜃1 + 𝐚1(̄),

𝜃0 ∈ Θ̃(𝑟)
0 , 𝜃1 ∈ Θ̃(𝑟)

1 , 𝑟 ≥ 0.

Assume that (14) has some solution, and denote one solution of (14) by (𝑟∗, 𝜃𝑇
𝑎
, 𝜃𝑇

𝑏
)𝑇 . Then, 𝑟∗ is a finite set upper bound.

Moreover, 𝑜(𝑟) = 0 for all 𝑟 ∈ [𝑟∗,∞].

Proof. From the expression (7) we see that for any design  and its nonreplication version 𝑛𝑟 we have 𝛿𝑟(𝑛𝑟) = 0 implies
𝛿𝑟() = 0. Moreover, if 2 ⪰ 1 in the sense that 2 is an augmentation of 1 then 𝛿𝑟(2) = 0 implies 𝛿𝑟(1) = 0. Now let
(𝑟∗, 𝜃𝑇

𝑎
, 𝜃𝑇

𝑏
)𝑇 be a solution of (14), let 𝑟 ≥ 𝑟∗ and let  be any design. Definition of 𝛿𝑟 and the form of (14) imply 𝛿𝑟(̄) = 0.

From ̄ ⪰ 𝑛𝑟 we see that then 𝛿𝑟(𝑛𝑟) = 0, hence 𝛿𝑟() = 0. The proposition follows. □

Note that 𝑟∗ obtained using Proposition 2.3 does not depend on 𝑛, that is, it is a set upper bound simultaneously valid for all
design sizes. The basic discriminability condition implies that 𝑟∗ ≠ 0.

If the competing models are linear, vectors 𝐚0(̄) and 𝐚1(̄) are zero. Therefore, (2.3) has a feasible solution (𝑟, 𝟎𝑇
𝑚
, 𝟎𝑇

𝑚
)𝑇

for any 𝑟 ≥ 0 such that both Θ̃(𝑟)
0 and Θ̃(𝑟)

1 cover 𝟎𝑚. That is, for the case of linear models, there is a finite set upper bound 𝑟∗

beyond which the 𝛿𝑟-values of all designs vanish. However, the same holds for specific nonlinear models, including the ones
from Section 3.

Proposition 2.4. Assume that both competing regression models are linear provided that we consider a proper subset of their
parameters as known constants. Then (2.3) has a finite feasible solution, that is, there exists a finite set upper bound 𝑟∗ such that
𝑜(𝑟) = 0 for all 𝑟 ∈ [𝑟∗,∞].

Proof. Without loss of generality, assume that fixing the first 𝑘0 < 𝑚 components of 𝜃0 converts Model 0 to a linear model.
More precisely, let 𝜃01,… , 𝜃0𝑚 denote the components of 𝜃0 and assume that

𝜂0(𝜃0, 𝑥) =
𝑚∑

𝑗=𝑘0+1
𝛾
(0)
𝑗

(𝜃01,… , 𝜃0𝑘0 , 𝑥)𝜃0𝑗

for some functions 𝛾 (0)
𝑗

, 𝑗 = 𝑘0 + 1,… , 𝑚. Choose 𝜃̂0 such that 𝜃̂0𝑗 = 𝜃0𝑗 for 𝑗 = 1,… , 𝑘0, and 𝜃̂0𝑗 = 0 for 𝑗 = 𝑘0 + 1,… , 𝑚.

Make an analogous assumption for Model 1 and also define 𝜃̂1 analogously. It is then straightforward to verify that for the design
̄ from Proposition 2.3 we have 𝐅𝑘(̄)𝜃̂𝑘 + 𝐚𝑘(̄) = 𝟎𝑑 , where 𝑑 = #𝔛, for both 𝑘 = 0, 1. Therefore, any (𝑟, 𝜃̂𝑇0 , 𝜃̂

𝑇
1 )

𝑇 such that

𝜃̂0 ∈ Θ̃(𝑟)
0 and 𝜃̂1 ∈ Θ̃(𝑟)

1 is a solution of (14) in Proposition 2.3. □

In the following, we numerically demonstrate that the 𝛿 design criterion leads to designs which yield a high probability of
correct discrimination.

3 AN APPLICATION IN ENZYME KINETICS

This real applied example is taken from Bogacka, Patan, Johnson, Youdim, and Atkinson (2011) and was already used in Atkin-
son (2012) to illustrate model-discrimination designs. There two types of enzyme kinetic reactions are considered, where the
reactions velocity 𝑦 is alternatively modeled as

𝑦 =
𝜃01𝑥1

𝜃02

(
1 + 𝑥2

𝜃03

)
+ 𝑥1

+ 𝜖 (15)
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T A B L E 1 Parameter estimates and corresponding standard errors for models (15) and (16), respectively

Estimate 𝜽̂ SE 𝝈̂𝜽 Estimate 𝜽̂ SE 𝝈̂𝜽

𝜃01 7.298 0.114 𝜃11 8.696 0.222

𝜃02 4.386 0.233 𝜃12 8.066 0.488

𝜃03 2.582 0.145 𝜃13 12.057 0.671

T A B L E 2 Parameter estimates and corresponding standard errors for the encompassing model (17)

Estimate 𝜽̂ SE 𝝈̂𝜽

𝜃21 7.425 0.130

𝜃22 4.681 0.272

𝜃23 3.058 0.281

𝜆 0.964 0.019

and

𝑦 =
𝜃11𝑥1

(𝜃12 + 𝑥1)
(
1 + 𝑥2

𝜃13

) + 𝜖, (16)

which represent competitive and noncompetitive inhibition, respectively. Here 𝑥1 denotes the concentration of the substrate and
𝑥2 the concentration of an inhibitor. The data used in Bogacka et al. (2011) from an initial experiment of 120 observations are
on Dextrometorphan–Sertraline and yields the estimates displayed in Table 1, where Gaussian errors were assumed. Assumed
parameter spaces were not explicitly given there, but can be inferred from their figures as 𝜃0,1, 𝜃1,1 ∈ (0,∞), 𝜃0,2, 𝜃1,2 ∈ (0, 60],
and 𝜃0,3, 𝜃1,3 ∈ (0, 30], respectively. Designs for parameter estimation in these models were recently given in Schorning, Dette,
Kettelhake, and Möller (2017).

In Atkinson (2012), the two models are combined into an encompassing model:

𝑦 =
𝜃21𝑥1

𝜃22

(
1 + 𝑥2

𝜃23

)
+ 𝑥1

(
1 + (1−𝜆)𝑥2

𝜃23

) + 𝜖, (17)

where 𝜆 = 1 corresponds to (15) and 𝜆 = 0 to (16), respectively. Following the ideas of Atkinson (1972) as used, for example,
in Atkinson (2008) or Perrone, Rappold, and Müller (2017) one can then proceed to find so-called 𝐷𝑠-optimal (i.e., D-optimal
for only a subset of parameters) designs for 𝜆 and employ them for model discrimination. Note that also this method is not fully
symmetric as it requires a nominal value for 𝜆 for linearization of (17), which induces some kind of weighting.

The nominal values used in Atkinson (2012) obviously motivated by the estimates of (15) were 𝜃01 = 𝜃11 = 𝜃21 = 10,
𝜃02 = 𝜃12 = 𝜃22 = 4.36, 𝜃03 = 2.58, 𝜃13 = 5.16, and 𝜃23 = 3.096. However, note that particularly for model (16) the estimates in
Table 1 give considerably different values and also nonlinear least squares directly on (17) yields the deviating estimates given
in Table 2. The design region used was rectangular  = 1 × 2 = [0, 30] × [0, 40].

In Table 2 of Atkinson (2012) four approximate optimal designs (we will denote them as A1–A4) were presented: the
𝑇−optimal designs assuming 𝜆 = 0 (A1) and 𝜆 = 1 (A4), a compound 𝑇 -optimal design (A3), and a 𝐷𝑠-optimum (A2) for
the encompassing model (for the latter note that Atkinson assumed 𝜆 = 0.8, whereas the estimate suggest a much higher value).
We will compare our 𝛿-optimal designs against exact versions of these designs, properly rounded by the method of Pukelsheim
and Rieder (1992).

3.1 Confirmatory experiment 𝒏 = 𝟔, normal errors
Let us first assume we want to complement the knowledge from our initial experiment by another experiment for which, however,
we were given only limited resources, for example, for the sample sizes of only 𝑛 = 6 observations. Note that the aim is not to
augment the previous 120 observations but to make a confirmatory decision just using the new observations. That is we are
using the data from the initial experiment just to provide us with nominal values for parameter estimates and noise variances for
the simulation, respectively. This is a realistic scenario if for instance for legal reasons the original data had to be deleted and
only summary information was available.
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F I G U R E 4 Compared designs: first row A1–A4, second row 𝛿1–𝛿3

T A B L E 3 Total hit rates for 𝑁 = 10000 under each model, maximal values in boldface

c 0 1 5
True model 𝜼𝟎 𝜼𝟏 𝜼𝟎 𝜼𝟏 𝜼𝟎 𝜼𝟏

A1 91.11 94.45 91.35 93.95 90.44 93.24

A2 97.11 96.75 97.47 96.64 96.74 96.27

A3 96.60 96.51 96.47 96.40 95.69 96.06

A4 97.94 96.57 97.73 96.29 97.62 96.07

𝛿1 97.59 95.11 97.43 94.90 97.71 94.56

𝛿2 97.93 97.03 97.77 96.67 97.20 96.54
𝛿3 96.50 95.29 96.42 95.36 96.19 95.64

As we are assuming equal variances for the two models we are using the estimate for the error standard deviation 𝜎̂ = 0.1526
from the encompassing model as a base value for the simulation error standard deviation. However, using 𝜎̂ was not very
revealing for the discriminatory performance was consistently high for all designs. Thus, to accentuate the differences the actual
standard deviation used was 2 × 𝜎̂ instead (unfortunately an even higher inflation is not feasible as it would result in frequent
negative observations leading to faulty ML-estimates). We then simulated the data-generating process under each model for
𝑁 = 10000 times and calculated the total percentages of correct discrimination (hit rates) when using the likelihood ratio as
decision rule.

We are comparing the designs A1–A4 to three specific 𝛿 designs 𝛿1, 𝛿2, and 𝛿3, which represent a range of different nominal
intervals. Specifically we chose Θ̃𝑘 = [𝜃𝑘1 ± 𝑟𝜎̃𝑘1] × [𝜃𝑘2 ± 𝑟𝜎̃𝑘2] × [𝜃𝑘3 ± 𝑟𝜎̃𝑘3]𝑘=0,1, where we chose 𝜃𝑘𝑗 = 𝜃̂𝑘𝑗 and 𝜎̃𝑘𝑗 = 𝜎̂𝑘𝑗
for 𝑘 = 0, 1 and 𝑗 = 1, 2, 3. The tuning parameter 𝑟 was set to three levels: 𝑟 = 1 (which is close to the lower bound of still
providing a regular design), 𝑟 = 5 and 𝑟 = 15 (which is sufficiently close to the theoretical upper bound to yield a stable design),
respectively. To make the latter more precise: the models in considerations are such that if we fix the last two out of the three
parameters, then they become one-parameter linear models. Therefore, using Proposition 2.4 we know that there exists a finite
set upper bound 𝑟∗. Solving (14) provides the numerical value 𝑟∗ ≈ 64.02. Note that the same bound is valid for all design sizes
𝑛. Designs A1–A4 and 𝛿1 all contain four support points, while 𝛿2 has six and 𝛿3 has five, respectively. A graphical depiction
of the designs is given in Figure 4.

Robustness study: As we would like to avoid comparing designs only when the data are generated from the nominal values
(although this favors all designs equally), we perturbed the data-generating process by drawing parameters from uniform distri-
butions drawn at 𝜃 ± 𝑐 × 𝜎̃𝜃 , where 𝑐 then acts as a perturbation parameter. Under these settings all these designs fare pretty well
as can be seen from Table 3. However, A4 and 𝛿2 seem to outperform the other competing designs by usually narrow margins
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F I G U R E 5 Boxplot for the total correct classification rates for all designs

using nominal values and error standard deviations of 5 × 𝜎̂; white under 𝜂0, grey

under 𝜂1

except perhaps for A1, which is consistently doing worst. Note that in a real situation the true competitors of 𝛿-optimal designs
are just A2 and A3 as it is unknown beforehand which model is true.

3.2 A second large-scale experiment 𝒏 = 𝟔𝟎, log-normal errors
As the discriminatory power of all the designs for 𝑛 = 60 is nearly perfect, we are required to inflate the error variance. However,
using additive normal errors in the data-generating process and inflating the variance by a large enough factor, would generate a
large number of negative observations, which renders likelihood estimation invalid. So, the data-generating process was adapted
to use multiplicative log-normal errors. The observations were then rescaled to match the means from the original process. This
way we are at liberty to inflate the error variance by any factor without producing faulty observations. Note that now the data-
generating process does not fully match the assumptions under which the designs were generated, but this can just be considered
an extended robustness study as it holds for all compared designs equally. We could of course also have calculated the designs
under the same data-generating process, but as the fit of the model to the original data is not greatly improved and models (15)
and (16) seem firmly established in the pharmacological literature, we refrained from doing this.

Perturbation of the parameters here did not exhibit a discernible effect, while the error inflation still does. For brevity, we
here report only again the results for using 5 × 𝜎̂ (and 𝑐 = 0). The respective designs 𝛿1–3 were qualitatively similar to those
given in Figure 4 albeit with more diverse weights. In this simulation we generated 100 instances of 𝑛 = 60 observations from
these designs a thousand times.

The corresponding boxplots of the correct classification rates are given in Figure 5. In this setting A4 seems a bit superior
even under 𝜂1 (remember it being the 𝑇 -optimum design assuming 𝜂0 true), while 𝛿1 and 𝛿2 come close (and beat the true
competitors A2 and A3) with A1 again being clearly the worst.

4 CONCLUSIONS AND DIRECTIONS FOR FURTHER RESEARCH

We have presented a novel design criterion for symmetric model discrimination. Its main advantage is that design computations,
unlike for 𝑇 -optimality, can be undertaken with efficient routines of quadratic optimization that in general enhance the speed
of computations by an order of magnitude. An optimal exact design problem is a problem of discrete optimization, and the
efficiency of its solution critically depends on the speed of evaluation of the design criterion. By a series of approximations,
we substituted the theoretically ideal but numerically infeasible computation of the probability of correct discrimination with
a simple convex optimization, which can be solved rapidly and reliably. Combined with the proposed methodology of flexible
nominal sets, we can construct an entire sequence of exact experimental designs efficient for discrimination between models.
Also it was shown in an example that resulting designs are competitive in their actual discriminatory abilities.

The notion of flexible nominal sets may have independent merit. Note again the distinction between parametric spaces and
flexible nominal sets (and thus the principal distinction to “rigid” minimax approaches). Parametric spaces usually encompass
all theoretically possible values of the parameters, while flexible nominal sets can contain the unknown parameters with very
high likelihood, and still be significantly smaller than the original parameter spaces. In this paper, we do not completely specify
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the process of constructing the flexible nominal sets, but if we perform a two stage experiment, with a second, discriminatory
phase, the potential specification through confidence intervals is an important problem.

As the approach suggested offers a fundamentally new way of constructing discriminatory designs, many properties are yet
unexplored. A nonexhaustive list of questions follows.

Sequential procedure. The proposed method lends itself naturally to a two-stage procedure, where parameter estimates and
confidence intervals are employed as nominal values in the second stage. Even sequential generation of design points can be
straightforwardly implemented.

Approximate designs. Proposition 2.1 is a possible gateway for the development of the standard approximate design theory
for 𝛿-optimality because the criterion 𝛿2

𝑎𝑝𝑝
is concave on the set of all approximate designs. Therefore, it is possible to work out

a minimax-type equivalence theorem for 𝛿-optimal approximate designs, and use specific convex optimization methods to find
a 𝛿-optimal approximate designs numerically. For instance, it would be possible to employ methods analogous to Burclová and
Pázman (2016) or Yue, Vandenberghe, and Wong (2018).

Utilization of the 𝛿-optimal designs for related criteria. For a design  = (𝑥1,… , 𝑥𝑛), a natural criterion closely related to
𝛿𝑟-optimality can be defined as

𝛿𝑟() = inf
𝜃0∈Θ̃

(𝑟)
0 ,𝜃1∈Θ̃

(𝑟)
1

𝛿(|𝜃0, 𝜃1), where

𝛿(|𝜃0, 𝜃1) = ‖‖‖(𝜂0(𝜃0, 𝑥𝑖))𝑛𝑖=1 − (𝜂1(𝜃1, 𝑥𝑖))𝑛𝑖=1
‖‖‖.

The criterion 𝛿𝑟 requires a multivariate nonconvex optimization for the evaluation in each design , which entails possible
numerical difficulties and a long time to compute an optimal design. However, the 𝛿𝑟-optimal design, which can be computed
rapidly and reliably, can serve as efficient initial design for the optimization of 𝛿𝑟. Note that if Θ̃0 is a singleton containing
only the nominal parameter value for Model 0, the 𝛿𝑟-optimal designs could potentially be used as efficient initial designs for
computing the exact version of the criterion of 𝑇 -optimality.

Selection of the best design from a finite set of possible candidates. As most proposals for the construction of optimal experi-
mental designs, the method depends on the choice of some tuning parameters or even on entire prior distributions (in the Bayesian
approach), which always results in a set of possible designs. It would be interesting to develop a comprehensive Monte-Carlo
methodology for the choice of the best design out of this pre-selected small set of candidate designs. A useful generalization of
the rule would take into account possibly unequal losses for the wrong classification.

Noncuboid sets. The methodology could certainly be extended to other types of flexible nominal sets, particularly when we
are interested in functional relations among the parameters. However, then the particularly efficient box constrained quadratic
programming algorithm could not be utilized.

Higher order approximations. As a referee remarked it is possible to employ tighter approximations of the sets of mean values
of responses than the one that we suggest. For instance, it would be possible to use the local curvature of the mean-value function.
However, this may also lead to the loss of numerical efficiency of the method.

More than two rival models. Another referee remark leads us to point out the natural extension to investigate a weighted sum
or the minimum 𝛿 over all paired comparisons. The implications of these suggestions, however, requires deeper investigations.

Different error variances. Yet another referee requested a clarification for how to proceed in case of unequal error variances
for the two models. In case the functional form of these variances are known simple standardizations of the models will suffice.
All other cases, including dependencies of the errors, will require more elaborate strategies.

Combination with other criteria. The proposed method can produce poor or even singular designs for estimating model
parameters. Because of this problem, already mentioned in Atkinson and Fedorov (1975), Atkinson (2008) used a compound
criterion called 𝐷𝑇 -optimality. The same approach is possible for 𝛿-optimality. However, our numerical experience suggests
that for a large enough size of the flexible nominal set, the 𝛿-optimal designs tend to be supported on a set that is large enough for
estimability of the parameters, without any combination with an auxiliary criterion. A detailed analysis goes beyond the scope
of this paper.
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