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Abstract—In an attempt to reduce the infection rate of theCOronaVIrusDisease-19 (Covid-19) countries around theworld have echoed the

exigency for an economical, accessible, point-of-need diagnostic test to identify Covid-19 carriers so that they (individualswho test positive) can

be advised to self isolate rather than the entire community. Availability of a quick turn-around time diagnostic test would essentiallymean that

life, in general, can return to normality-at-large. In this regards, studies concurrent in timewith ours have investigated different respiratory

sounds, including cough, to recognise potential Covid-19 carriers. However, these studies lack clinical control and rely on Internet users

confirming their test results in aweb questionnaire (crowdsourcing) thus rendering their analysis inadequate.We seek to evaluate the detection

performance of a primary screening tool of Covid-19 solely based on the cough sound from8,380 clinically validated sampleswith laboratory

molecular-test (2,339Covid-19 positive and 6,041Covid-19 negative) under quantitativeRT-PCR (qRT-PCR) fromcertified laboratories. All

collected sampleswere clinically labelled, i.e., Covid-19 positive or negative, according to the results in addition to the disease severity based on

the qRT-PCR threshold cycle (Ct) and lymphocytes count from the patients. Our proposed genericmethod is an algorithmbased onEmpirical

ModeDecomposition (EMD) for cough sound detectionwith subsequent classification based on a tensor of audio sonographs and deep

artificial neural network classifier with convolutional layers called ‘DeepCough’ . Two different versions of DeepCough based on the number of

tensor dimensions, i.e., DeepCough2DandDeepCough3D, have been investigated. Thesemethods have been deployed in amulti-platform

prototypeweb-app ‘CoughDetect’ . Covid-19 recognition results rates achieved a promisingAUC (AreaUnderCurve) of 98:80%� 0:83%,

sensitivity of 96:43%� 1:85%, and specificity of 96:20%� 1:74% and average AUCof 81:08%� 5:05% for the recognition of three severity

levels. Our proposedweb tool as a point-of-need primary diagnostic test for Covid-19 facilitates the rapid detection of the infection.Webelieve it

has the potential to significantly hamper theCovid-19 pandemic across theworld.

Index Terms—Deep Learning, audio systems, smart healthcare

Ç

1 INTRODUCTION

THE COrona VIrus Disease-19 (Covid-19) is an infectious dis-
ease caused by the newly discovered severe acute

respiratory syndrome coronavirus 2 (SARS-CoV-2). Covid-19
bears stark similarities with the Severe Acute Respiratory Syn-
drome (SARS) as well as the common cold. According to the
World Health Organization (WHO), the mild symptoms of
Covid-19 can include fever, cough and shortness of breath akin
to the common cold [1]. Like SARS inmore severe cases, Covid-
19 also causes pneumonia and/or significant breathing difficul-
ties, and in some rare instances, the disease can be fatal with the
overall mortality rate estimated to be 0.28 percent worldwide.
The initial cases ofCovid-19were initially diagnosed as pneumo-
nia on 31December 2019, and later re-diagnosed asCovid-19.

Covid-19 has proven to be a very infectious diseasewith the
virus (SARS-CoV-2) spreading quickly on coming in close con-
tact with an infected person (mean infection rate of 2.5). More
specifically, according to the WHO, the (Covid-19) virus is
transmitted through direct contact with respiratory droplets of
an infected person (generated through coughing and sneezing)
[2]. TheWHOdeclared it a global pandemic on 11March 2020,
within threemonths of first reported cases in China.

Covid-19 has put considerable strain on the health systems
worldwide, with even developed countries struggling to test
enough people to stop its spread effectively. Hence, taking the
Covid-19 pandemic context in consideration, it is important to
re-think the classical approaches for timely case finding [3], as
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well as to utilise the limited resources available most effec-
tively [4].

In past pandemics, such as Malaria, a two pronged
approach for a screening test was successfully employed to
combat the spread of a prevalent virus [5]. In these two-
stage strategies, the primary stage focuses on greater acces-
sibility and ease of screening that is cost-effective. The pri-
mary stage is to ‘alert’ a potential carrier if they test positive
on a primary screening test. In most cases, only those who
test positive on the primary test go on to the secondary test,
hence reducing the burden on the health system, and mak-
ing the most of the resources available to conduct the sec-
ondary test. The secondary screening is where the null
hypothesis that the participant is not carrying an infection is
accepted or rejected. The current techniques employed for
screening of Covid-19 use serology, and diagnosis is based
on the presence of genetic material of the virus. Clinical
molecular tests have robust diagnostic accuracy but require
specialised equipment, as well as trained personnel to con-
duct the test. The turn-around time of these tests can vary
from hours to several days.

Given the established success of two-pronged screening
mechanisms to hamper the spread of infectious diseases, in
this work, we aim to develop a web-based tool for the primary
screening of Covid-19. The motivation is to identify Covid-19
carriers using a model trained with clinically validated
cough signals since Covid-19 affects the respiratory system
[6], [7], [8]. Established works have evidenced the possibil-
ity of using the latent sound characteristics of coughs to
identify respiratory diseases [9], [10]. In addition, prior
works have also reported that voluntary coughs (asymp-
tomatic) contain sound characteristics that allow detecting
abnormal pulmonary functioning and respiratory diseases
[11], [12].

The remainder of this paper is structured as follows: Sec-
tion 2 outlines a summary of contributions, Section 3 gives
an overview of related work; Section 4 describes the proce-
dural and methodological stages of the development of this
technology; Section 5 evaluates the recognition and assess-
ment results; Section 6 discusses the results and achieve-
ments; with conclusion in Section 7.

2 SUMMARY OF CONTRIBUTIONS

The main contributions of this work are manifold and listed
as follows:

1) The proposed method ‘DeepCough’ achieves high
accuracy, without the necessity of using specific pre-
trained models or transfer learning of data from
other studies. Hence, differently from related work,
the proposed methodology is generic, paving the way for
derivative works.

2) In contrast to related work, we are able to evalu-
ate the real capacities of detecting Covid-19 in a
large clinically validated dataset (8,000+) where
all data samples are matched with molecular-test of
Covid-19 viral infection dispensed in certified labo-
ratories to participants.

3) Also unique to thiswork, the accompanyingmolecular-
tests (qRT-PCR) along with the cough samples, allow

us to predict as well the extent of the infection. This is stud-
ied in this work using either the cycle threshold (Ct)
from the qRT-PCR test or lymphocyte counts.

4) Furthermore, a full-stack automatic processing framework,
from a raw sound stream to the test results, is also
presented.

5) Development of a tangible test service prototype, as a
platform-independent web-app service, CoughDetect.
com1

3 RELATED WORK

In an attempt to better understand the Covid-19 infection,
and its associated symptoms, scientists have been collecting
a wide spectrum of information in the latest months. This
includes, but is not limited to, the respiratory sounds related
to Covid-19 [6], [8], [13], thermal imaging [14], digestive
symptoms [15], as well as self reported surveys. The motiva-
tion of collating Covid-19 related information is to develop
robust mechanisms for early detection of Covid-19. The
most common symptoms of Covid-19 have been linked to
pneumonia (cough, fever, shortness of breath, among
others). Therefore, the analysis of cough audio signals is
considered a viable course of action for a primary Covid-19
diagnosis [8].

In general, three different respiratory sounds have been
investigated to detect Covid-19 in patients: voice, breath and
cough. The voice is a bio-signal that has been studied for many
years to decode emotional, mental and physical aspects of a
speaker. Usman et al. [16] conclude that there is a strong corre-
lation between speech and Covid-19 symptoms, and therefore
endorse the usage of speech signals for detecting Covid-19.

Faezipour et al. [17] recommended the use of signal proc-
essing techniques in tandem with state-of-the-art machine
learning and pattern recognition techniques for preliminary
diagnosis of Covid-19 from breathing audio signals. How-
ever, neither of the studies [16] and [17] encompass the
Covid-19 recognition at this stage, with the additional
caveat of quality of breath sounds hinged on the sensitivity
of the microphone.

Another notable work on breathing patterns is done by
Wang et al. [18] who developed a respiratory simulation
model (RSM) for detecting the abnormal respiratory pat-
terns of people remotely, and unobtrusively using a depth
camera. However, their proposed RSM did not incorporate
data from Covid-19 carriers. Nevertheless, the use of video
cameras may raise privacy concerns. Imran et al. [19] pre-
sented AI4COVID - an approach to classify coughs using
deep learning, and achieved an accuracy of 92.85 percent.
However, their dataset contains only 70 Covid-19 cough
samples, which renders their analysis to be inconclusive.

Sharma et al. [20] presented Coswara,2 a database embody-
ing respiratory sounds (cough, breath, and voice). This dataset
is crowdsourced (volunteers from the web), i.e., not clinically
controlled samples,with only eight positiveCovid-19 samples
at the time ofwriting of this study. Here, it is also important to
note that sound modalities, especially voice, embodies pri-
vacy concerns since an individual can be identified from their

1. https://coughdetect.com
2. https://coswara.iisc.ac.in/
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voice [21]. Other notable database creation projects collecting
data from the web include: Opensigma3 by MIT collects col-
lecting cough samples, Corona Voice Detect4 by Voca.ai and
Carnegie Mellon University (CMU) is collecting voice data,
Covid Voice Detector5 also by CMU is collecting further voice
samples, and finally, the Covid-19 Sounds App6 by the Uni-
versity of Cambridge is collecting crowdsourced samples of
voice, cough, and breath.

A consensus derived from the related work referenced
above is the challenge associated in the collection of clinically
validated Covid-19 data which can be subsequently used for
the training of Covid-19 recognition mechanisms. Towards
this end, the data used in this study is collected following a
strict protocol designed at laboratories and hospitals dedi-
cated to Covid-19 diagnosis by expert immunologists.
Another major strength of our proposed web-based app
CoughDetect lies in the anonymity of the users. Coughs sounds
are inherently anonymous. Collecting just cough sounds,
along with the usage of in-house code only and strict privacy-
preserving practices, we have ensured that participants share
their cough sampleswithout exposing their personal informa-
tion. This robust quality control of our collected samples is an
advantage of our work with respect to other studies, e.g., col-
lecting clinical data viaweb questionnaires (crowdsourcing).

4 METHODS FOR DEVELOPING A POINT-OF-NEED

COVID-19 WEB-APP SERVICE FROM ONLY

COUGH SOUND SAMPLES

The cough samples are collected by means of an in-house
developed web app named CoughDetect. The CoughDetect
app (https://coughdetect.com) can be easily used with a
laptop, mobile phone, or tablet, as shown in Fig. 1. The
development of the whole stack for Covid-19 primary
screening required the use of several technologies to cap-
ture, process, analyse and make the test available. An illus-
tration of the proposed technology stack diagram for the
CoughDetect operational architecture is shown in Fig. 2.
The app records (.wav) sound files at 44,100Hz sample
rate and transfers them to a secure data server using HTTP

over SSL connection.
The three stages of the development stack include:

1) Sound stream processing and Detection;

2) A recognition method based on the generation of
an Acoustic Cough tensor and Deep Learning
(DeepCough);

3) Development and Deployment of the framework in a
Web Tool App (CoughDetect).

A flow chart delineating the steps in the inference mecha-
nism of DeepCough is shown in Fig. 3. The pre-processing of
the raw sound signals is done to increase the signal-to-noise
ratio and reduce the signal size. Cough bursts are detected in
the recording and the rest of the signal is discarded. A set of
low-level acoustic descriptors (a.k.a. sonographs) are extracted
from a pre-processed cough sound. Two- and three-dimen-
sional (2D and 3D) tensors are generated from these descrip-
tors. These tensors are fed to a convolutional deep neural
network that allows classification of positive and negative
Covid-19 cough samples. Additionally, positive patients are
sub-classified according to severity: borderline positive, stan-
dard positive, high positive based on qRT-PCR values and
lymphopenia, or normal lymphocytes based on their blood
lymphocyte count, as shown in Fig. 3. Further details of
research ethics and the different stages for building the
CoughTensor and classification are presented next.

4.1 Research Ethics and Protocol

The collection of clinically validated cough data was carried
out in collaboration with Hospital Costa del Sol Health Agency
in M�alaga, Spain and the National Laboratory for Research in
Food Safety (LANIIA) laboratory in Nayarit, Mexico. The col-
lection of the data started at the peak of the pandemic in
Spain and Mexico on the 4th of April 2020 and lasted until
the 21st of September 2020. The clinical protocols and
research ethics are approved by the respective local institu-
tional ethics committees (Code: BIOETIC_HUM_2020_02,
Mexico; Code: APP_Covid19_03042020, Spain). The Nayarit
Unit and M�alaga hospital are both accredited centres for the
molecular diagnosis of Covid-19 and are also ISO 9001
certified.

The cough samples are collected from patients coming to
the named institutions for a qRT-PCR test for detection of
SARS-Cov-2 (Covid-19) by registered nurses trained to use
the CoughDetect app. At all stages of the cough sample col-
lection, the guidelines to interact with potential Covid-19
patients recommended by the WHO are strictly followed.
For instance, the nurse wears personal protective equip-
ment at all times, and a protocol for the smartphone disin-
fection, each time a cough is recorded, is observed.

The user interface and control functions of the Web App
have been developed with in-house code to uphold the ano-
nymity of the users and minimise the possibility of informa-
tion leakages to external entities. This is in conformity with
both the EU General Data Protection Regulation (GDPR) and
the UK Data Protection Act 2018. In addition, our research
and application alsomeet the ethical standards of the Declara-
tion of Helsinki. A written informed consent was collected
from each participant prior to acquiring their data sample.
Clinical data was collected for this study by healthcare profes-
sionals. Table 1, Fig. 4 summarises the demographic ratios
and factors such as the number of days after first symptoms
reported. In total, we collected n ¼ 8; 380 coughs, of which
2,339 coughs are from patients with a positive qRT-PCR test

Fig. 1. The CoughDetect app can be easily used with a) mobile phone, b)
laptop or c) tablet connected with Internet.

3. https://opensigma.mit.edu/
4. https://voca.ai/corona-virus/
5. https://cvd.lti.cmu.edu/
6. https://www.covid-19-sounds.org/

1222 IEEE TRANSACTIONS ON SERVICES COMPUTING, VOL. 15, NO. 3, MAY/JUNE 2022

https://coughdetect.com
https://opensigma.mit.edu/
https://cvd.lti.cmu.edu/
https://www.covid-19-sounds.org/


and 6,041 coughs are from patients with a negative qRT-PCR
test. Of those patients who resulted negative in the qRT-PCR
test, 47.46 percent had no symptoms, and 52.54 percent had
symptoms, at the time of taking the samples. Of those patients
who resulted positive in the qRT-PCR test, 20.00 percent had
no symptoms, and 80.00 percent had symptoms, at the time of
taking the samples.

4.2 Cough Sound Pre-Processing and Detection

Cough samples (.wav) are were acquired at 44.10 kHz,
Pulse-code modulation (PCM) format, monochannel. The
raw sound data is low pass filtered with a cutoff frequency
of 1 kHz. A Chebyshev type-2 second order filter with a
transition frequency of 10Hz is applied to retain the high
pitch sound of cough while attenuating background sounds
simultaneously. Before cough detection, the filtered sound

signal is decimated. For an initial bout of sounds in the
recording, such as initial involuntary voice before coughing,
envelope analysis detects the first peak amplitude and the
following signal is subsequently trimmed.

The cough detection algorithm with the filtered audio
signals is based on empirical mode decomposition (EMD)
[22], [23]. EMD is a fully data-driven signal processing tech-
nique that does not employ base functions. EMD splits a
sequence into a set of smaller sequences, referred to as
intrinsic mode functions (IMFs), or simply modes, whereby
each mode contains the energy associated at a certain scale.
EMD has become popular in many applications, e.g., wear-
able sensors [24], perhaps because the decomposition occurs
in the same space as the original sequence.

EMD is applied to find the modes that better reflect the
coughing periods. These periods are empirically selected to
essentially detect cough burst in the filtered sound recordings.

Fig. 2. A user can record his cough sample using the CoughDetect web or mobile app with complete anonymity. The user’s cough sample is then
analysed by DeepCough (the inference mechanism of CoughDetect) for primary screening of Covid-19. A user can receive one of the following two
messages on successful analysis of his cough sample: �Your cough sound shares similarities to those of Covid-19 patients, if

you are a high-risk individual, please contact health services immediately, otherwise quarantine yourself. yOur sys-

tem does not recognise your pattern as similar to those with Covid-19 in our database, still if you feel the most likely

symptoms, please contact health services.

Fig. 3. The overall flow diagram delineating the steps involved in the DeepCough, 2D and 3D, inference mechanism.
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Individual or a set of IMFs can be objectively used for signal
filtering, peak detection and signal reconstruction. For cough
detection, depending on the noise level of the signal, certain
IMFs contain rich information related to the peaks associated
with coughs. Based on testing a number of signals with vari-
ous noise levels, the 5th and the 9th modes are found as the
prime IMFs essential for detection.

The instantaneous amplitudes (IAs) of the selected
modes (5th and 9th) are calculated by the Hilbert Transform
[22]. The IAs of the selected modes are averaged, low pass
filtered using a median filter with a window size of 500 sig-
nal samples, and normalised. Thresholding is performed
using local signal peak detection: A signal sample is a local
mode or peak if it has the local maximal value being pre-
ceded (to the left) by a value difference of D � 0:006. Thresh-
olding the processed IAs partitions the original signal into
cough and non-cough burst event. A summary of the EMD
based algorithm for cough detection is depicted in Fig. 5.

The detection algorithm produces a sequence of binary
values: ones for cough and zeros for non-cough segments.
A post-processing step joins consecutive cough bursts (seg-
ments) which are part of a single or main cough. To do this,
an additional threshold is specified to decide whether to
join neighbouring cough bursts with a distance shorter than
1,500 decimated signal samples (0.34 seconds). Once an
entire cough sound is detected, the rest of the signal is

discarded. In addition, segments of short duration (length
less than 400 signal samples) were discarded as they were
often found to be more representative of short spikes in the
signals due to ambient noise rather than part of a cough
sound. The final output is a vector of indices that indicates
where a cough in a raw sound stream is found.

4.3 A CoughTensor of Sonographs

Following detection, the information contained in the audio
signals is transformed into a tensor form. We focused on rep-
resentations that capture the main acoustic properties of the
coughs. We used three types of sonographs: 1) Mel-frequency
Cepstral Coefficients (MFCCs), 2) Mel-scaled spectrogram
(MelSpec), and 3) Linear Predictive Coding Spectrum (LPCS)
coefficients. These sound representations have specific prop-
erties for classification in intelligent audio analysis. We
describe themhere anddiscusswhat they can informus about
coughs sounds.

4.3.1 Mel-Frequency Cepstral Coefficients

MFCCs take into account human auditory perception, where
low frequencies are better understood than high frequencies.
The frequency bands are logarithmically located according to
the Mel scale, which simulates the human auditory response
more appropriately than the linearly spaced bands while at
the same time disregards all other information. This descrip-
tor is robust to variations in speech across subjects as well as
the variations in recording conditions. MFCCs have been
widely used in frequency domain speech recognition [25],
[26], [27]. The computation of MFCCs involves the following
main steps: (i) blocking of pre-processed cough sounds into
overlapping windows to avoid loss of information at the ends
of windows, (ii) applying hamming window on each frame to
taper ends of a frame to zero so that spectral leakage can be
avoided during the implementation of Fourier Transforma-
tion (FT), and (iii) computation of the power spectrum by
applying FT. Next, (iv) the computed spectrum is passed
through Mel-spaced band pass filters, where each filter pro-
vides the sum of energy for each frame. Finally, (v) the appli-
cation of discrete cosine transformation yieldsMFCCs.

Fig. 4. a) Density distributions of cycle threshold (Ct), lymphocyte count, age, and days from first symptoms from the samples of Covid-19 positive
patients. b) Percentage ratios of sex (Male, Female, and Not Specified) and level of positivity (Borderline Positive, Standard Positive, and High Posi-
tive) of samples from positive Covid-19 patients displayed in pie charts. c) Percentage ratios of sex (Male, Female, and Not Specified) of samples
from negative Covid-19 displayed in a pie chart along with density distribution of age for Covid-19 negative patients.

TABLE 1
Demographic Statistics of the Data

(Covid-19 Positive and Negative Patients)

Positive Negative

Measure Age Days� PCR CT Age Days� PCR CT

Mean 39.44 7.74 29.21 38.74 7.90 40.23

Median 38 7 31 38 6 41

Std. Dev. 14.24 6.39 7.13 13.59 6.67 6.16

Max 79 60 37 79 50 43

Min 7 1 18 7 0 38

�number of days since the onset of symptoms.
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4.3.2 Mel-Scaled Spectrogram

The MelSpec is a sonograph where frequencies are converted
to theMel scale in order to visually assess the energy distribu-
tion in the signal. The distribution of the energy in the Mel-
based spectrum is relevant for the detection of Covid-19 posi-
tive samples. Fig. 6 provide examples of the energy spectrum
for positive and negative samples. It can be observed that
when a Covid-19 patient starts coughing, the energy is in the
low-frequency region. However, over time the energy shifts
to the high-frequency region. The lower frequencies at the
start may be due to pain, and later perhaps the extra efforts
required for coughing make the signal more irregular and
complex over time. A similar trend is also observed in the
voice of peoplewho are suffering frompain due to vocal folds
disorders. Extra efforts in speaking render the signal complex
which result in an irregular spectrum (continuous voice
breaks and disperses energy) compared to a healthy person
[28], [29]. In contrast, for a Covid-19 negative person, the
energy is uniformly distributed among all frequencies. There-
fore, the stark differences inMelSpecs from Covid-19 positive
and negative individuals can be leveraged for successful iden-
tification of Covid-19 infection.

4.3.3 Linear Predictive Coding Spectrum (LPCS)

Coefficients

LPCS models the emission source of an acoustic signal.
LPCS is based on the source-filter model of phonatory sig-
nals. It is frequently used for the processing of speech and
infant cry. Linear predictive coding analysis estimates the

values of a signal as a linear function of previous samples.
LPCS is a simplified vocal tract model that reflects the
speech production system using a source-filter model. LPCS
derives a compact representation of the spectral magnitude
of brief duration signals (e.g., coughs). Its parametric analy-

Fig. 5. A pictorial illustration of the steps involved in the detection algorithm.

Fig. 6. Energy contours of the Auditory Processed Spectrum (APS)
representation which is related to MFCCs [29] (a-c) Covid-19 positive
patients (d-f) Covid-19 negative persons. Darker colors represent lower
energy in the spectrum, while lighter color means higher energy.
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sis allows more accurate spectral resolution than the non-
parametric FT when the signal is stationary for only a short
time [30]. This sound representation has been used for
assessing the vocality of cough sounds [31] and detecting
coughs from other human sounds [32].

To generate the acoustic sonographs, we used two open-
source tools Librosa [33] and OpenSmile [34].

For each audio frame, we extracted MFCCs with 33 coef-
ficients, MelSpec with 33 bands, and LPCS with 33 line spec-
tral pair frequencies from 33 coefficients. We obtained three
matrices of 33 columns by the number of frames of the
audio sample. The three sonographs are stacked to form a
three-dimensional tensor. Since cough samples have differ-
ent durations, they have different number of frames. For all
samples, the tensor is padded with zeros to complete 100 �
33 � 3 matrices (see Fig. 3) to obtain matrices of the same
shape before passing them to the training stage. We set
Librosa and OpenSmile to use a sampling rate of 22050 and
a hop length of 512. The 100 frames are equivalent to around
2.3 seconds. We chose this tensor length as the minimum
duration of a cough event after pre-processing and detec-
tion (Section 4.2) falls in this range. Additionally, using this
length we ensure that no spurious noise is included in the
audio input.

4.4 Classification of the CoughTensor via
Convolutional Neural Networks ‘DeepCough’

The CoughTensor generated in Section 4.3 are input to a
stack of convolution blocks. Fig. 7 illustrates the architecture
of DeepCough along with the dimensions of each layer. The
sonograph tensor is fed to the convolution blocks in a man-
ner analogous to how RGB images are processed. The first
dimension corresponds to the horizontal axis of the sono-
graph (time frames), the second dimension is the vertical
axis (frequencies, bands, coefficients), and the third dimen-
sion is the type of sonograph. For comparison purposes we
defined two types of DeepCough:

1) DeepCough2D: The CoughTensor where 2D MelSpec
is included in the tensor only, making a tensor span-
ning two dimensions (frequency and time) i.e.,
100� 33� 1.

2) DeepCough3D: The CoughTensor stacks all sono-
graphs described in Section 4.3, with additional third
dimension added for each sonograph hence render-
ing a tensor size of 100� 33� 3.

Each convolutional block is composed of the following
layers:

� Convolutional layers with rectifier linear units (ReLU):
Convolution window is set to 2� 2 (height/width)
and initial padding is set to the length of the input
tensor. The input dimensions are row, column and
channels.

� Max pooling layer: The pooling window is also set to
2� 2 for height and width.

� Dropout layer: A drop out level of 20 percent probabil-
ity in each block to deter themodel fromover-fitting.

This basic block is stacked four times, permitting a bal-
ance between architectural depth and complexity. The stack
is followed by subsequent layers to transform the interme-
diate layer outputs for the final layer:

� A global average pooling layer (GA): It averages all
spatial dimensions of the input tensor until the spa-
tial dimension is one.

� Dense layer (D): A dense layer yielding an output
equivalent to the number of classes (one per class).

� Softmax layer: A softmax type action function that
performs classification over the inputs.

Adaptive Moment Activation (ADAM) is the optimiser
used to train the network with a categorical cross-entropy
loss function. The evaluation metric during training for
ADAM is the sum between resultant area under the curve
(AUC) and balanced accuracy. The entire model is imple-
mented in Keras [35] with Tensorflow backend.

The remarkable classification prowess of DeepCough
arises from representation learning via convolutional neural
networks of the sonograph representations. It is not only an
intuitive approach for the analysis of pattern singularities in
cough sounds but also has the capacity to integrate informa-
tion from different sonographs, therefore jointly performing
pattern analysis in the information that comes to represent
emission (MFCCs, MelSpec) and perception characteristics
(LPCS) of sounds (Section 4.3).

4.5 Development and Deployment of DeepCough as
an Anonymous Web-Based Primary Screening
for COVID-19

The methods described in this paper are deployed in a Web
App proof of concept (POC) available at https://coughdetect.
com. Themain objectives of the interface are as follows:

Fig. 7. (a) An illustration of the architecture of the Convolutional Neural Network (CNN) with (b) dimensions of convolutional blocks (B1-B4), max-
pooling layers, a global averaging (GA), and a dense (D) layer.

1226 IEEE TRANSACTIONS ON SERVICES COMPUTING, VOL. 15, NO. 3, MAY/JUNE 2022

https://coughdetect.com
https://coughdetect.com


� Enable a sleek and multi-platform Web App that can
be accessed from any device with connectivity to the
Internet without installation i.e., like accessing any
other Web page.

� Capable of running without the use of session cook-
ies (page reload) or third party services to ensure
patient’s anonymity is upheld.

� Interaction with user-server should be one-off and
response. Multiple interactions with the server are
prevented by reducing the number of requests to the
server.

The use of MERN (MongoDB, ExpressJS, ReactJS, NodeJS)
stack enables a true separation of layers allowing flexible con-
trol over each front-end and back-end component as depicted
in Fig. 2. React fundamentally uses SPA (Single Page Appli-
cation) approach to quickly load a single resource (index.
js) that contains the entire application rather than sending
HTTP requests to the server every time a user wants to navi-
gate elsewhere within the app. Not having to reload the page
disables the need for storing cookies in the user machine that
can be used to re-identify the user. The front-end logic is
mainly javascript code that will be run in the client
machine.

Functional interaction, such as recording the cough, pass-
ing it over to the server for evaluation and receiving feed-
back, is done using a custom-built self-hosted API instance
solution on a different port. Connections to the server are
always encrypted using Hypertext Transfer Protocol Secure
(HTTPS). Locally, in the server machine, the node.js end-
point interacts with a python-based API that implements
the algorithms and methods from Sections 4.2, 4.3, and 4.4.
Once the server receives an audio stream, the processing
pipeline is activated, a prediction of the test is issued, and
an asynchronous message is returned to the user (client),
through the same established secured connection, to update
the Web App with the result of the test as illustrated in
Fig. 2.

5 RESULTS AND EVALUATION

In this section we present A) the recognition results of Deep-
Cough for the detection of Covid-19 versus non-Covid-19,
and B) further categorisation of the Covid-19 positive sam-
ples into groups indicating the grade of Covid-19 disease,
with respect to qRT-PCT and lymphocyte counts separately.
A comparison of our proposed method DeepCough3D with

approaches in related work (AI4COVID [19], Coswara [20])
and Cough against Covid [36]), as well as Auto-ML [37] is
also presented.

5.1 Evaluation of COVID-19 Detection With
DeepCough

The classification results are reported for a stratified k ¼ 10
cross-folding replication strategy for internal validity. A
sample can only be exclusive member of one fold. In each
iteration a disjoint fold is left out for testing, a different one
for validation and the remaining are used for training. The
confusion matrix for DeepCough3D, shown in Table 3, dem-
onstrates the classification prowess of DeepCough3D with
true positives at 97.18 percent and true negatives at 96.64
percent.

We also compare our proposed method with approaches
in related work as well as AutoML [37]. AutoML is a full
model meta-learning algorithm that combines Bayesian
optimisation in a set of shallow machine learning algo-
rithms, such as k-nearest neighbours, naı̈ve Bayes, support
vector machines, decision trees, random forest, and boosted
classifiers. Auto-ML uses Bayesian optimisation of the AUC
score to find for a method or their combinations (viz. pipe-
lines), as well as the model hyper-parameters that yield the
highest classification performance as delineated in Fig. 8. It
further considers feature selection through information
gain, relief, x2 statistics. The Auto-ML method is trained
with flattened vectors of audio signal descriptors (Mel-Fre-
quency Cepstral Coefficients, Zero-Crossing Rate, Roll-Off
Frequency, and Spectral Centroid).

Models were implemented in Python and trained on
an Ubuntu Linux machine with AMD(R) Threadripper
(R), 3.40 GHz processor and 32 GB of RAM. Training time
in this machine for 10-folds of the DeepCough approach
was �35 minutes. We further deployed the trained

TABLE 2
A Comparison of Statistical Performance Measures of DeepCough3D With DeepCough2D, AutoML [37], AI4COVID[19],

Coswara [20], and Cough Against (Versus) Covid [36] for Recognition of COVID-19 Coughs

DeepCough3D DeepCough2D

AUC (M1) Precision (M2) Sensitivity (M3) Specificity (M4) M1 M2 M3 M4 M1 M2 M3 M4

DeepCough3D 98.80 � 0.83 96.54 � 1.75 96.43 � 1.85 96.20 � 1.74 - - - - ** ** ** **
DeepCough2D 96.20 � 1.18 89.87 � 1.46 89.63 � 1.57 86.55 � 4.64 ** ** ** ** - - - -
AutoML 69.04 � 17.50 78.28 � 7.78 48.70 � 23.71 63.26 � 11.74 ** ** ** ** ** * ** 0.22
AI4COVID 92.36 � 1.96 85.93 � 2.87 85.87 � 2.87 81.36 � 4.31 ** ** ** ** ** ** ** **
Coswara 87.69 � 3.86 84.08 � 3.57 81.99 � 5.47 83.45 � 3.48 ** ** ** ** 0.33 0.14 0.16 0.32
Cough-vs-Covid 66.41 � 4.23 76.04 � 2.53 76.64 � 2.28 67.00 � 4.29 ** ** ** ** ** ** ** **

The p-values for t-test are statistically significant (*: p < 0:05, **: p < 0:01 ) for the average of all statistical metrics (M1-M4) for DeepCough3D in comparison
to other methods. Likewise, the p-values for t-test for DeepCough2D are also reported.

TABLE 3
Normalized Confusion Matrix for DeepCough3D
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models in an Oracle cloud virtual machine with eight
cores (CPU only) as the back-end of the Web app (Sec-
tion 4.5. In this setting, the detection of a cough in a
sound stream lasts in the range of 6-12 seconds and the
results of the test are issued in 1-2 seconds.

Performance comparison of DeepCough 2D and 3D versus
other related approaches and Auto-ML in terms of statistical
measures of AUC, precision, sensitivity, and specificity are
listed in Table 2. A bar graph of the same results is shown in
Fig. 9a for a visual comparison. In Fig. 9b the recognition per-
formance of DeepCough3D is primarily assessed in terms of
the AUC since AUC allows considering both sensitivity and
specificity for different cut-points and gives a better view of
the benefit of the binary classifier with skewed samples, e.g.,
more negatives than positives, than standard accuracy. All of
the above results conclude that DeepCough 3D approach
afforded the highest significant performance rates inmost sta-
tistics for the classification of Covid-19 positive versus nega-
tive cough samples.

5.2 Assessing the Grade of Infection From COVID-
19 Positives Samples

In this study, alongside the cough samples, we also collected
the outcomes from quantitative real time polymerase chain test
(qRT-PCR) and lymphocyte count (blood ratio) tests. qRT-PCR
test is currently considered the gold standard for detecting a

positive Covid-19 infection. qRT-PCR test detects the (Covid-
19) virus’ RNA within a patient’s genetic material. In qRT-
PCR test, the RNA is reverse transcribed to DNA using spe-
cific enzymes. Additional short fragments of DNA, that are
complementary to transcribed viral DNA, are then added.
Some DNA strands are programmed to release a fluorescent
dye. The amount of fluorescence is monitored in each cycle,
until a threshold is surpassed. The fewer the cycles (Ct) it
takes to surpass this threshold, the higher the severity of the
infection. During the Covid-19 pandemic, a challenge is to
identify patients with low and mild levels of infection or
asymptomatic, so called ‘carriers’ [38]. Regardless of their
asymptomatic conditions, positive qRT-PCR detection can be
done with an adequate sample pooling to deal with potential
borderline Ct values from these patients [39]. For this experi-
ment, we labelled a cough sample in terms of whether it came
from a patient whose Ct valueswere borderline positive (30�
Ct < 35), standard positive (20 � Ct < 30) or strong positive
(Ct� 20).

The performance results for the recognition of the
cough sample using DeepCough2D and DeepCough3D
are displayed in Fig. 10a and enlisted in Table 4. Overall,
performance results show a recognition rate well above
chance level and average AUC of 81:08%� 5:05% for
DeepCough3D. This can potentially be helpful to support
two-stage screening protocols previously discussed in the

Fig. 8. Flowchart outlining the model selection process with Auto-ML [37].

Fig. 9. a) Statistical metrics comparison of DeepCough with the other best and worst methods tested. b) Receiver Operating Characteristic (ROC) for
DeepCough and other methods to detect pulmonary infection (Covid-19) coughs versus other type of coughs using this study database.
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introduction. The recognition of the disease severity was
better at discriminating samples coming from the highly
discerning groups, i.e., borderline and high positive, but
struggled with the intermediate group. This is, however
expected as intermediate samples can have a mixed pat-
tern of cough acoustics to those loosely or highly
affected. Nevertheless, its specificity was highly better
than for the two other groups.

Another marker of disease severity that we have
explored is lymphocyte count (viz. lymphopenia versus
normal levels of lymphocyte counts). Lymphopenia is a
condition defined as when patients have a blood lympho-
cyte percentage (LYM%) lower than 20 percent. Lymphope-
nia is the frequency associated with a severe infection or
illness. The performance results from the recognition of
lymphopenia versus normal levels of lymphocytes are
graphically displayed in Fig. 10b. Although some works
have suggested lymphocyte count as a way to grade Covid-
19 severity [40], our results to predict an infection grade
using this marker are not as good as when labelled by the
qRT-PCR test. However, the performance of DeepCough3D
could also be hampered, at this occasion, by subset levels of

lymphocyte counts that can be affected by biological and
inter-subject variabilities [41], [42].

6 DISCUSSION

The Covid-19 pandemic has proven difficult to contain not
only because of its high infection rate, but also because the
symptoms of Covid-19 borne stark similarities with other
viruses such as the common-flu and pneumonia. Hence, it
has been particularly challenging for carriers of Covid-19 to
know that they have been infected by Covid-19, therefore
furthering the spread of Covid-19. To facilitate the early
detection of Covid-19, we have developed a test from clini-
cally validated Covid-19 positive and negative individuals
that provided a cough sample and performed a molecular-
based test in certified laboratories.

This is a multi-center study, with populations from Spain
and Mexico, to ensure the trained inference mechanism of
DeepCough3D is unbiased towards particular demographic
characteristics. In addition, the proposed DeepCough3D
model, subsequently embedded in CoughDetect for recogni-
tion of Covid-19 coughs, was compared against related work

Fig. 10. Statistical performance results for the recognition of possible markers of disease severity.

TABLE 4
Statistical Metrics for the Classification Results of Positive Cough Samples Labelled as Borderline Positive,
Standard Positive and Strong Positives Based on qRT-PCR Results by DeepCough2D and DeepCough3D

DeepCough Statistical Borderline Standard High Average

Model Metric Positive Positive Positive of 3 classes

DeepCough2D AUC 77:05� 3:70% 77:95� 7:77% 80:2� 3:78% 78:4� 5:08%
F1-score 60:81� 7:48% 48:98� 11:29% 70:94� 4:41% 60:24� 7:73%
Precision 59:72� 6:90% 53:36� 11:05% 70:88� 4:51% 62:32� 7:49%
Sensitivity 62:51� 9:78% 46:81� 13:42% 71:17� 5:40% 60:83� 9:53%
Specificity 76:15� 5:17% 91:04� 3:74% 74:63� 4:87% 80:61� 4:59%

DeepCough3D AUC 80:59� 5:71% 80:75� 5:34% 81:09� 4:11% 81:08� 5:05%
F1-score 64:37� 10:89% 52:15� 8:52% 72:3� 5:76% 62:94� 8:39%
Precision 65:44� 10:17% 56:37� 8:31% 70:23� 6:35% 64:01� 8:28%
Sensitivity 64:12� 13:21% 50:18� 12:35% 74:93� 7:22% 63:08� 10:93%
Specificity 83:47� 4:04% 90:22� 3:13% 72:56� 5:28% 82:08� 4:15%
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and Auto-ML [37]. AutoML is a method for algorithm selec-
tion and hyper-parameter tuning, optimised through a full
model selection strategy. In all the performance metrics for
Covid-19 positives recognition, DeepCough3D performed
better, as noted in Table 2. The reported results reaffirm that
DeepCough3D learning method used is successful in distin-
guishing between Covid-19 positive and negative cough
samples.

The performance of DeepCough3D for establishing
whether a given cough sample is from a Covid-19 positive or
negative patient is clinically sound as a primary test or pre-
screeningwith anAUCof 98.80� 0.83, a sensitivity of 96:43%�
1:85%, and a specificity of 96:20%� 1:74%. The strength of
DeepCough3D lies in high recognition performance over a
large set of clinically validated cough samples earmarkedwith
molecular test. This resolutely corroborates the informational
potential of the latent audio sonographs of coughs to detect an
acute pulmonary disease such as Covid-19. The diagnostic
sensitivity of the gold-standard molecular test for Covid-19,
i.e., qRT-PCR, is 98 percent for nasopharyngeal swab tests,
whereas for saliva is 91 percent [43]. However, the reported
averaged sensitivity of commercial serological kits (e.g., based
on lateral flow immunoassays) for Covid-19 was only 65 per-
cent average (49.0 percentmin. to 78.2 percentmax.) [44].

7 CONCLUSION

In this work, a primary screening test for Covid-19 is proposed
and assessed using clinically validated cough samples of par-
ticipants, who jointly performed amolecular-test (qRT-PCR) in
our partner hospitals. The proposed test framework is pow-
ered by a generic cough identification algorithm based in EMD
and a recognition method named DeepCough3D. This latter
method generates a 3D audio tensor to leverage the strength of
a convolutional neural network approach to identify the latent
characteristics in Covid-19 cough signals. The performance of
DeepCough3D attains an AUC of 98.80 � 0.83, a sensitivity of
96:43%� 1:85%, that is comparable to the reported sensitivity
(91%� 10%) of accelerated serology tests based on saliva [45].
The proposed generic method does not require using specific
transfer learningmodels or data from other studies, paving the
way for derivative works. The proposed approach outper-
forms related works and other state-of-the-art methods. Fur-
ther, the quality of our clinically controlled and validated large
dataset increases our confidence in the validity of these results.

In addition to the development of a recognition test for
Covid-19 using coughs, this work further investigates the
possibility to recognise the extent of the Covid-19 infection
in Covid-19 positive participants. This is undertaken with
the qRT-PCR test and the lymphocyte count, and the results
greatly surpassed chance levels of performance, indicating
the feasibility of assessing severity to some extend. Classifi-
cation of the coughs in three severity levels, defined by the
resulting Ct of the molecular test for Covid-19, yields an
average AUC of 81:08%� 5:05%. This could potentially
serve as an additional functional feature to diagnose the
extent of the Covid-19 infection in a given Covid-19 carrier.
This can help facilitate effective management of healthcare
facilities during a pandemic, such as ventilators, which
were in short supply during the first wave of the Covid-19
pandemic around the world.

Furthermore, the entire framework has been embodied as a
web-app service available at CoughDetect.com. The motiva-
tion for developing this alternative test based on coughs is to
have a fast turn-around for Covid-19 point-of-need primary
test to a) reduce the burden on specialised personnel for clini-
cal or secondary diagnosis of Covid-19, b) to make the pri-
mary screening available to masses at large from the comfort
of their homes at negligible costs, and c) the anonymity of the
participants is kept at the core by using in-house custom code
to power the analysis and recording only their cough sounds.
It can also be used as an electronic health certificate at public
places such as airports, and schools.

In the midst of a global pandemic, the significance of our
proposed point-of-need primary test, developed and tested on
clinically validated data, is paramount. Our proposed primary
test can mitigate the logistics, long turn-around time, and cost
of clinical diagnostic test of Covid-19. For future works,
parameter tuning of the sonograph representations and
complementary analysis of coughing behaviours could be
explored to investigate further improvements in performance.
It would also be of interest to investigate whether tracking of
Covid-19 progression can be done usingDeepCough3D.
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