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a b s t r a c t

Alongside the currently used nasal swab testing, the COVID-19 pandemic situation would gain notice-
able advantages from low-cost tests that are available at any-time, anywhere, at a large-scale, and with
real time answers. A novel approach for COVID-19 assessment is adopted here, discriminating negative
subjects versus positive or recovered subjects. The scope is to identify potential discriminating features,
highlight mid and short-term effects of COVID on the voice and compare two custom algorithms. A
pool of 310 subjects took part in the study; recordings were collected in a low-noise, controlled setting
employing three different vocal tasks. Binary classifications followed, using two different custom
algorithms. The first was based on the coupling of boosting and bagging, with an AdaBoost classifier
using Random Forest learners. A feature selection process was employed for the training, identifying
a subset of features acting as clinically relevant biomarkers. The other approach was centered on
two custom CNN architectures applied to mel-Spectrograms, with a custom knowledge-based data
augmentation. Performances, evaluated on an independent test set, were comparable: Adaboost and
CNN differentiated COVID-19 positive from negative with accuracies of 100% and 95% respectively,
and recovered from negative individuals with accuracies of 86.1% and 75% respectively. This study
highlights the possibility to identify COVID-19 positive subjects, foreseeing a tool for on-site screening,
while also considering recovered subjects and the effects of COVID-19 on the voice. The two proposed
novel architectures allow for the identification of biomarkers and demonstrate the ongoing relevance
of traditional ML versus deep learning in speech analysis.

© 2022 Elsevier B.V. All rights reserved.
Abbreviations: ML, Machine Learning; CNN, Convolutional Neural Network;
DL, Deep Learning; MFCC, Mel-frequency Cepstral Coefficients; P, Positive
subjects; R, Recovered subjects; H, Healthy control subjects; NS, Nasal Swab;
PCR, Polymerase Chain Reaction-based molecular swabs; 1E, Vowel /e/ vocal
task; 2S, Sentence vocal task; 3C, Cough vocal task; PvsH, Positive versus
Healthy subjects comparison; RvsH, Recovered versus Healthy subjects
comparison; SVM, Support Vector Machine; CFS, Correlation-based Feature
Selection; RF, Random Forest; ReLu, Rectified Linear Unit; ROC,
Receiver-Operating Curve

∗ Correspondence to: Department of Electronic Engineering, Roma Tor
ergata University, Via del Politecnico 1, 00133 Rome, Italy.
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1. Introduction

Voice production is a human skill relying on complex interac-
tions between multiple systems, including air sources (lungs), a
vibration mechanism (vocal folds), and resonant cavities (nasal,
oral, pharyngeal and cranial). Such a skill is controlled by the
brain and influenced by multiple surrounding factors, such as
global health conditions, hydration and body temperature. Conse-
quently, vocal samples may hold high informative content, since
voice modifications may reflect the status of all the mentioned
components. With these regard, distinctive vocal alterations have
been identified and studied in various pathologies, mainly using

https://doi.org/10.1016/j.knosys.2022.109539
http://www.elsevier.com/locate/knosys
http://www.elsevier.com/locate/knosys
http://crossmark.crossref.org/dialog/?doi=10.1016/j.knosys.2022.109539&domain=pdf
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achine learning (ML)-based methods, yielding encouraging out-
omes. Understandably, research focused extensively on primary
ffections of the phonatory apparatus: specifically, Suppa et al. [1]
nvestigated essential tremor, Teixeira et al. [2] assessed chronic
aryngitis, Costa et al. [3] investigated vocal fold edema, Petrovic-
azic et al. [4] revealed vocal polyps, and Alves et al. [5] reviewed
he changes in voice quality related to hydration conditions and
acharia et al. [6] explored head and neck cancer. Interestingly,
romising results were also highlighted for pathologies leading
o vocal alterations only secondarily, such as neurodegenera-
ive pathologies (Parkinson’s, SLA) [7,8], Down syndrome [9],
nd even cardiovascular disorders [10–12] as well as movement
isorders [13].
That being said, the COVID-19 pandemic represents an ideal

nd urgent field of application for this line of research. As a
atter of fact, since SARS-CoV-2 can affect both the respiratory
pparatus and the nervous system [14], it is possible to surmise
hat the disease may likely alter the sound of both voice and
ough. Therefore, technologies able to detect vocal biomarkers
f this infection could provide national health authorities with
dditional and non-invasive surveillance strategies.
Deep learning (DL), especially based on Convolutional Neural

etworks (CNN) applied to spectral images, is commonly consid-
red as the major alternative to traditional ML pipeline methods
or speech assessment. Indeed, it does offer advantages which in-
lude the extraction of very complex features – through repeated
on-linear data transformation – and its completely data-driven
ature, which allows to forgo data pre-processing. However, DL
s also considered to perform unsatisfactorily on small datasets,
equiring larger ones by its very nature [15], preferably in associ-
tion with data augmentation procedures that inherently bring
degree of knowledge-based processing. Furthermore, DL are

omputational heavy and based on a large number of high-level
arameters. Examples are studies by Sztahó et al. [16] and Nissar
t al. [17], which highlighted the possibilities of DL for patho-
ogical speech assessment, although datasets and accuracies are
omparable to those obtained using ML methods for the same
athologies, namely Parkinson’s disease [18] and dysphonia [19].
As for COVID-19, Laguarta [20] applied a CNNmodel on crowd-

ourced cough sounds, recognizing patients with a 97% accuracy.
imilarly, Imran et al. [21] obtained an accuracy higher than 90%
hrough principal component analysis (PCA) and data processing
sing mel-frequency cepstral coefficients (MFCC). The algorithms
resented by Pinkas [22] and Shimon [23] yielded average accura-
ies around 83%, while Despotovic [24] achieved 88% in accuracy
onsidering vocal, speech, cough and breathing crowdsourced
ounds. To the best of our knowledge, the only study involving re-
overed subjects is the one by Suppakitjanusant et al. [25], using
NN with a mean accuracy of 74%. More recently, the Interspeech
021 conference proposed the DiCOVA challenge, with teams
esting algorithms for COVID-19 detection on crowdsourced voice
amples [26], with a baseline mean accuracy of 73% and the
ighest one being 87%.
All in all, we consider DL and traditional ML to be equally

owerful and their usage to be significantly problem-dependent,
o that here we employ fine-tuned versions of both to compare
he results they can furnish. The chosen vocal tasks consisted
n a sentence, a sustained vowel, and solicited coughing, so to
ather somehow different informative content. The study popula-
ion was comprised of three matched groups: COVID-19 positive
atients, COVID-19 recovered individuals, and healthy subjects as
ontrols.
We adopted a multifaceted approach based on state-of-the-

rt ML algorithms, training an AdaBoost-based algorithm and a
NN-based one independently, albeit SVM classifiers [27] were
onsidered as well. With these regards, we consider our inno-
ation to be in the construction of a relatively homogeneous,
2

polished dataset, with suitable domain-specific pre-processing
and the usage of custom ML algorithm, which in turn detail and
expand the existing state-of-the-art of voice analysis. In addition
to the high accuracy and sensitivity results, we found acoustic
vocal biomarkers for the identification and study of COVID-19,
also taking into account the staging of the disease and its re-
covery, and began foreseeing a potential automatic tool for the
real-time remote pre-screening. More on this will be detailed in
the Discussion section.

2. Materials

2.1. Study population

Three groups of subjects were enrolled in the present study,
namely #70 COVID-19 positive patients (group P, or P for short),
#120 recovered COVID-19 individuals (R) who were initially
proven positive and then negative, and #120 healthy control
subjects (H) who never got infected. All of them were of Cau-
casian ethnicity. Average age and gender were: 57 yo (range
39–67), 57% male, for P subjects; 53 yo (range 39–69), 52% male,
for R subjects; 50 yo (range 29–57), 54% male, for H subjects.
Informed consent was obtained from all participants and all
data was pseudonymized. Patient enrollment was carried out
at three different Italian institutions: ‘‘San Matteo’’ University
Hospital in Pavia (Otolaryngology Unit, ethical approval num-
ber 20200053388), ‘‘Tor Vergata’’ University Hospital in Rome
(Otolaryngology Unit, ethical approval number 0012909/2020),
and the ‘‘Dei Castelli’’ Hospital in Rome (General Medicine Unit,
ethical approval number 0064181/2020).

Patients of group P were recruited within ten days from nasal
swab (NS) positivity (RT-PCR), and COVID-19 pneumonia was
diagnosed clinically and radiologically through a chest computed
tomography (CT) scan. Subjects of group R were initially tested
positive via RT-PCR NS and subsequently proved negative with
two consecutive swabs. Finally, subjects of group H, recruited
among hospital staff members and their acquaintances, had no
COVID-19 symptoms, nor reported unprotected exposure to con-
firmed or suspected COVID-19 cases, with their serum samples,
collected at least 20 days after the vocal tests, yielding negative
results for both IgG and IgM antibodies.

To guarantee as homogeneous as possible a dataset for voice
analysis, in addition to the average age and gender distribution
being approximately matching among the three groups, data
regarding clinical and demographic characteristics of the study
population was also collected. Non-smokers represented almost
half of participants in each study group (51% for group P, 54%
for group R, 52% for group H). As far as clinical features are con-
cerned, one or more COVID-19 symptoms (muscle pain, dyspnea,
asthenia) were present in 78% and 75% of P and R subjects, respec-
tively. Conversely, at the time of recording, cough was reported
by 49% and 8% of P and R subjects, respectively. Finally, in order
to minimize the heterogeneity of the dataset, more polarizing
characteristics which could greatly affect breathing, articulation
or voice emissions (like C-PAP therapy) were deemed as exclusion
criteria. Table 1 depicts the main inclusion and exclusion criteria
for all groups.

2.2. Vocal tasks and recordings

We considered different vocal tasks to gather heterogeneous
informative content, namely: the sustained vowel/e/ (1E); the
popular Italian proverb ‘‘A caval donato non si guarda in bocca’’
(2S) and solicited cough (3C).

The vowel sound involves a quasi-periodic vibration of the
vocal folds. Furthermore,/e/ is produced keeping the larynx in an
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Table 1
Inclusion and exclusion criteria.
Inclusion criteria P R H Exclusion criteria P R H

18–80 yo age range ✔ ✔ ✔ Drugs acting on CNS ✔ ✔ ✔

European ethnicity ✔ ✔ ✔ Head/neck cancer ✔ ✔ ✔

Italian native speaker ✔ ✔ ✔ Lung cancer ✔ ✔ ✔

Positive NS (< 10 days) NA ✔ NA Chemoradiation therapy ✔ ✔ ✔

Two consecutive negative NS NA ✔ NA C-PAP Therapy ✔ ✔ ✔

LUS ≤ 3 NA ✔ NA Tracheal intubation ✔ ✔ ✔

Negative SS test (< 20 days) NA NA ✔ Tracheostomy ✔ ✔ ✔

Abbreviations: NS: SARS-CoV-2 nasal swab for RNA detection; LUS: lung ultrasound score; SS:
SARS-CoV-2 serum sample for IgM and IgG quantification; CNS: Central Nervous System; C-PAP:
Continuous Positive Airway Pressure; LUS: Lung Ultrasound score; NA: not applicable.
s

lmost neutral position, therefore avoiding artifacts due to exces-
ive muscular contraction [28], while still being able to reflect
ossible pathological alterations of the lower respiratory tract.
he sentence was necessary to study the vocal characteristics
f speech (including prosody) and their deviations. Furthermore,
he selected saying holds a prevalence of plosive consonants, the
honation of which is associated to the production and explosive
mission of a relevant amount of air. Finally, cough sounds were
elected since they can be reflective of possible alterations of the
ungs and of the lower respiratory tract as a whole [20].

One participant, at turn, was comfortably seated, with arms
esting on the armrests at the center of the room, and was asked
o perform each vocal task twice, to select the best ones (one for
ach task) in terms of noise and intelligibility. Each participant
as asked to sustain the vowel steadily for 2 to 5 s without strain-

ng, then to pronounce the sentence without pausing between
ords and at a natural speaking tone, and finally to cough for
hree consecutive times.

The recordings were captured through a smartphone (Y6s, by
uawei Technologies Co., Ltd., Shenzhen, China), kept at about
0 cm from the mouth, with the aid of a web-app (https://
ovid19.voicewise.it). Audio was recorded in .wav format, sam-
led at 44.1 kHz, with a resolution of 16-bit. We opted for a
martphone so that it could become an easily adoptable so-
ution for a worldwide and low-cost adoption, as detailed in
he Discussion. Recording sessions were held in rooms which
ere comparable in terms of acoustics and dimensions and had
n appropriately quite environment (low-reverberation and low-
oise levels). Recordings were only accepted when no hiss nor
um noises were detectable; additionally, no machines nor back-
round voices were captured. The overall audio quality (back-
round noise, reverberation, intelligibility) was subsequently as-
essed by ear by independent audio engineers.
The vowel and sentence audio files were trimmed so to re-

ove noises and silence at the beginning or the end. The cough
iles, originally comprehending three coughs in one recording,
ere split into three different files to isolate each single cough
ound.
Trimming was performed automatically with custom-made

outines in MATLAB (by Mathworks Inc., Natick, Massachusetts,
SA [29]) based on compression and expansion followed by a
‘lowess’’ (locally weighted scatterplot) smoothing [30], band-pass
iltering, and thresholds based on RMS Energy and MFCC. All
ecordings were also examined by sound experts to check the
orrect trimming; manual corrections were eventually applied
hen necessary using audio editing solutions available within
he digital audio workstation REAPER (Cockos Inc., San Francisco,
alifornia, USA).

.3. Datasets for classification

Since three different vocal tasks were considered, three binary
lassifications were necessary for each comparison. For the com-
arison between groups P and H (PvsH), in order to have the
3

same number of instances in each class, we down-sampled 70
out of the 120 subjects of group H with age-range and gender
distributions similar to those of group P. Consequently, the PvsH
comparison was based on datasets of 70 subjects per task. There-
fore, 70 instances for both the tasks 1E and 2S, as well as 210
instances for the task 3C, were analyzed for each group.

For the comparison between groups R and H (RvsH), the final
datasets consisted of 120 subjects in total. That translated to 120
instances for tasks 1E and 2S, and 360 instances for the task 3C.

Finally, the total dataset was split randomly as follows: 85%
as the training set, 15% as the validation set, which was never
fed to any algorithm. Since the task 3C originally involved three
instances per subject, only one of those was retained in the
validation set. The other two were left out of the validation set
as they would have been redundant, being representative of the
same subject. For each binary classification (PvsH and RvsH) two
different approaches were explored (Adaboost and CNN), each
one encompassing three sub-classifiers, one for each speech task
(1E, 2S, 3C).

3. Methods

The following paragraphs describe the two different approache
used for both classifications: a Random Forest-based Adaboost
approach applied on selected acoustic features, and two CNN
architectures applied to augmented mel-spectrograms.

3.1. Adaboost approach

The Adaboost classifier-based approach is divided into four
steps for each sub-classifier, as follows:

(1) Audio feature extraction, with features reported into a
single data matrix with two classes;

(2) Feature selection, using a Correlation-based Feature Se-
lection algorithm (CFS) with a Forward Greedy Stepwise
search method;

(3) Additional feature selection, with a wrapper-based ranker
embedding a linear SVM classifier;

(4) Training of an AdaBoost classifier with Random Forest
weak learners.

All the Machine-Learning processes (steps 2 to 4) were im-
plemented within the Weka platform (University of Waikato,
New Zealand, GNU General Public License [31]), while the feature
extraction was performed using OpenSMILE (Audeering GmbH,
Gilching, Germany [32]).

3.1.1. Feature extraction
The feature set we chose had a total of 6373 acoustic features

defined within the INTERSPEECH2016 Computational Paralinguis-
tics Challenge (ComParE) [33], carrying several computational
functionals (e.g. mean, position of peak, quartiles, delta coeffi-
cients) in the time, spectrum and cepstrum domains [34]. Some

https://covid19.voicewise.it
https://covid19.voicewise.it
https://covid19.voicewise.it
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f the relevant features include the relative spectral (RASTA) PLP
oefficients [35], the voicing probability [36], and the spectral
oudness summation [37].

.1.2. Feature selection
To address the discrepancy between the number of features

nd the number of training instances, we performed a feature
eduction, according to [38,39], using a correlation-based feature
election (CFS) algorithm. Specifically, this algorithm takes into
ccount the redundancy of the features in a subset, and their
ventual correlation with the class itself [40]. The basic principle
s the computation of a merit factor for subsets of features,
ccording to the equation:

S =
k ∗ rfc√

k + k (k − 1) ∗ rff

where k is the number of features in the subset S, rfc is the average
correlation between each feature in the subset and the class, and
rff is the average cross-correlation between all the features one
with each other.

A forward greedy stepwise search method, chosen as a good
trade-off between computational time and exhaustiveness [41],
allowed for the selection of the subset, resulting in a number
of features which spans from 1% to 3% of the full 6373-features
set. A further reduction was applied to the feature subsets, which
was also useful to work with a homogeneous number of features
throughout all sub-classifications. A wrapper-based feature selec-
tor employing a soft-margins linear SVM [42], trained with Platt’s
SMO Optimizer [43] on a single feature at a time, was used to
perform ranking. We empirically considered the first 50 ranked
features, and retained them as the final set to train the Adaboost
classifier.

3.1.3. Classification
According to literature, SVM and tree-based classifiers – Ran-

dom Forests (RF) in particular – are the most common solu-
tions for audio-related classification, especially when it comes to
speech analysis [44–47]. For the present study, we adopted RF
as a boosted learner in reason of its strength when it comes to
non-linear classification problems [48]. The AdaBoost M1 method
was applied employing RF internal classifiers (‘‘weak learners’’).
This approach was chosen for its proven effectiveness in voice
classification [49]. In addition, basing on literature [50,51] and on
our experience, boosting proved beneficial to voice analysis when
using more complex weak learners.

Adaboost M1 is a ‘‘boosting’’ technique aimed at generalizing
ensembles of weak learners by running on various weight dis-
tributions over the training data, finally combining the obtained
classifiers into one [52]. Weights are updated so that training ex-
amples which are difficult to classify get assigned a higher weight.
Ultimately, among all the possible alternatives, the final predicted
label is the one which maximizes the sum of the (logarithmic)
reciprocals of the prediction error. In particular, the predicted
label of the RF classifier is decided by majority voting over simple
decision trees trained on different subsets of the training set
(‘‘bags’’ sampled with repetition) and features [53,54].

AdaBoost with RF has proven effective especially for problems
where RF itself represents a suitable solution, providing further
improvement in error rates, mostly in case of non-linear depen-
dencies and dataset-related complexities [51,55]. Although both
bagging and boosting aim at producing a low variance hypothesis
combining higher variance ones, they actually succeed in the task
in different ways: the former creates subsets of the training data
and works in parallel on them, while the latter manages the
training space as a whole, repeatedly weighing it with different
distributions.
4

Fig. 1. Flowchart describing the complete pipeline of the Machine Learn-
ing approach based on the Adaboost classifier (exemplified for the PvsH
comparison).

For the present study, in order to emphasize the different dy-
namics of boosting and bagging, each bag for the RF bootstrapping
was built using 80% of the whole training set on each bag. A
number of 1000 iterations was selected for both AdaBoost and
the internal RF.

The main steps for the whole process, exemplified for the PvsH
comparison, are displayed in Fig. 1. The same process was also
carried out for the RvsH comparison.

3.2. Convolutional Neural Networks (CNN) approach

Convolutional Neural Networks (CNN) and DL have gradually
become gold standards for voice analysis [56]. Most problems
regarding voice analysis for health-related issues involve CNN at
some point, and COVID-19 studies are no exception [20,57]. As
a matter of fact, most of the studies described in the Introduc-
tion achieved the best results either with CNN or RF classifiers.
However, as suggested by Cummins et al. [58], DL is still unable
to outclass the efficacy of traditional ML in voice analysis for
multiple limitations, such as the complexity of acoustic features
and the scarcity of datasets.

3.2.1. Mel-spectrograms as image inputs
CNN are mostly employed on images in reason of their filtering

nature. Indeed, they effectively identify local graphical features,
to the point that the logical process behind CNN may somehow
recall human sight [59]. Therefore, even for audio applications,
graphic plots are preferred as inputs. Mel-spectrograms of all au-
dio recording were therefore produced and exported as grayscale
.png images. Subsequently, 4096 points FFT mel-spectrograms
were generated with a 50% overlapped Hamming window. Since
invaluable information for vocal tasks is found in frequency bands
extending up to a few kHz [60], the frequency range for the
spectrograms was limited to 20–12000 Hz, also limiting the com-
plexity of the problem. These steps, as well as the whole CNN
procedure, was implemented in MATLAB.
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Fig. 2. Visualization of the data augmentation techniques applied to mel-frequency spectrograms.
Top left: original sample spectrogram, top right: pink noise addition, bottom left: time masking, bottom right: frequency masking. .
3.2.2. Data augmentation
Since one of the main drawbacks of DL is the requirement for

large pool of data [61], augmentation procedures have become
ommon practice to improve the generalization and the accuracy
f models [62]. Successful results in augmenting biometric data
or the detection of COVID-19 were obtained by Barshooi and
mirkani [63] with a novel approach based on synthetic GAN-
enerated data, pre-processed by a Gabor filter. However, the
mages fed to our CNN are in fact time plots, and most graphical
rtifacts and/or synthesis methods would result in unrealistic
ugmented data which would bring in the risk of biasing the net.
All the employed augmentations were either a modeling of

real-world audio effect, or appropriate mathematical/graphical
rtifacts on the spectrograms. Specifically, the selected data aug-
entation methods were:

(1) Pink noise addition;
(2) Frequency masking on the spectrogram;
(3) Time masking on the spectrogram;
(4) Frequency and time masking used together.

Pink noise was preferred over white noise for multiple rea-
ons, such as the invariance of its energy content with respect
o pitch and its resemblance to real-world noise able to affect
he data [64]. Frequency and time masking are artifacts proven
ffective by Park in the SpecAugment study [65]: they involve
he ‘‘masking’’ of a random range of frequency or time on the
pectrogram, which are represented by a dark horizontal and ver-
ical band, respectively. All data augmentation methods, whose
esults on the spectrogram images can be seen in Fig. 2, were
mplemented using random values for both the starting point
nd the width of the masked bands, for which the values of
5

the spectrogram were brought very close to zero (10−15). A SNR
of 35 dB was chosen for pink noise addition, whose signal was
randomly generated and then added on MATLAB. Audio files were
normalized again after the addition of noise to avoid clipping.

Data augmentation was carried out only on the training set,
and it resulted in new training sets five times larger than the
original ones. Specifically, for the PvsH comparison, data augmen-
tation produced 300 instances for 1E and 2S, and 900 instances
for 3C. For the RvsH comparison, the process led to 510 instances
for 1E and 2S, and 1530 instances for 3C.

3.2.3. Proposed architectures
Although transfer learning proved effective in voice analy-

sis [66], custom-built and simpler architectures were preferred
for the present research project. This choice was mainly dic-
tated by our knowledge of the complexity of audio classification
tasks, as well as by the chance of a faster and more controllable
framework for future implementations of the tool. However, we
did also experiment on transfer-training several popular CNNs
(namely AlexNet and ResNet50), finding no improvements over
our custom architectures.

Two different CNN architectures were built: one (CNN1) was
employed for the two ‘‘vocalized’’ tasks (1E and 2S), the other
(CNN2) for the cough task (3C). These architectures were used
in both comparisons (PvsH and RvsH). Square, grayscale images
(257 × 257 pixels) were used as inputs. As depicted in Fig. 3,
CNN1 encompasses a total of 6 convolutional layers with a grow-
ing number of 3 × 3 filters, from 16 to 128. Each convolutional
layer is followed by a batch normalization layer and a ReLu acti-
vation function. This ensemble is represented as ‘‘Conv Block’’ in
the figure. Max Pooling layers are 2 × 2 in size with a Stride of 2.

An additional fully connected (FC) layer containing 128 neurons,
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Fig. 3. CNN1 architecture.
A ‘‘Conv Block’’ is described in the higher box and is comprised of a convolutional layer followed by a batch normalization layer and a ReLu (Rectified Linear Unit)
activation function. The number after ‘‘Conv Block’’ indicates the number of parallel convolutional filters/neurons in the layer. Max Pool: max pooling layer; FC: Fully
connected layer: the number in the round brackets indicates the number of neurons.
followed by batch Normalization and ReLu, precedes the last FC
layer before the classification output.

CNN2, displayed in Fig. 4, is a simplification of CNN1 used for
he task 3C, containing three convolutional layers with 16, 64 and
28 filters respectively, before the two fully connected layers.
For the training of both nets the ADAM Optimizer was used

67], with a gradient decay factor of 0.8, employing L2-Regulariz-
tion [68] and a piecewise learning rate decaying with a factor of
.8 every 10 epochs.

. Results

.1. Accuracies

For both classification approaches, a total of three sub-classi-
iers per comparison (PvsH and RvsH) was built, that is, one for
ach different vocal task. The final predictions on the validation
et were unified by means of a majority voting method, consid-
ring each of the three sub-classifiers having the same weight.
hus, two or three errors on an instance lead to misclassification
n the final result (each instance in the validation set corresponds
o a different person).

For the PvsH comparison, instances 1 to 10 are of healthy sub-
ects, while instances 11 to 20 correspond to COVID-19 positive
nes. For the RvsH comparison, healthy subjects go from 1 to 18,
hile the remaining two are recovered ones.
6

Table 2 and Table 3 show the results of Adaboost and CNN
respectively, with confusion matrices highlighting the errors in
the single sub-classifiers and presenting the final output obtained
by majority voting.

In order to better interpret the results, the concepts of sensi-
tivity and specificity must be introduced, as they represent useful
measures for binary classifications, especially in the biomedical
field. Sensitivity – or true positive rate – is the ratio of positive
subjects correctly identified as such (TP) versus all the positives
(Ptot ), following the formula Sensitivity = TP/Ptot . The specificity
– or true negative rate – refers to the correctly identified neg-
ative subjects (TN) versus all the negatives (Ntot ), according to
Specificity = TN/Ntot . In the PvsH comparison, positive subjects
are indeed the individuals with an ongoing COVID-19 infection;
whereas in the RvsH comparison, the R class is considered as
‘‘positive’’ for the scope of calculating sensitivity and specificity.
For the purposes of the present study, a high sensitivity was
considered to be a priority objective, especially for the PvsH
comparison.

As far as the PvsH comparison is concerned, an accuracy of
100% was obtained with the Adaboost approach; the CNN ap-
proach reached a 95% accuracy, which translates to one misclassi-
fication. It is also worth noting that the only misclassified subject
is a healthy one, which means that the CNN-based approach also
has a sensitivity of 100%. The RvsH comparison yielded less ac-
curate results, with the AdaBoost-based approach reaching 86.1%
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Fig. 4. CNN2 architecture (for the sole 3C — Cough vocal task).
A ‘‘Conv Block’’ is described in the higher box and is comprised of a convolutional layer followed by a batch normalization layer and a ReLu (Rectified Linear Unit)
activation function. The number after ‘‘Conv Block’’ indicates the number of parallel convolutional filters/neurons in the layer. Max Pool: max pooling layer; FC: Fully
connected layer: the number in the round brackets indicates the number of neurons. .
Table 2
Confusion matrices for the PvsH comparison over the two classification
approaches (Adaboost and CNN).
#Inst Real class Adaboost CNN

1E 2S 3C Final 1E 2S 3C Final

1 H – – X ok – – – ok
2 H – – X ok – – – ok
3 H – – – ok – – – ok
4 H – – – ok – – – ok
5 H X – – ok X X – X
6 H – – – ok – – – ok
7 H – – – ok – – X ok
8 H – – – ok – X – ok
9 H – – – ok – – – ok
10 H – X – ok – – – ok
11 P – – – ok – – X ok
12 P – X – ok – X – ok
13 P – – X ok – – – ok
14 P – – – ok – – – ok
15 P – – X ok X – – ok
16 P – X – ok – – – ok
17 P – – X ok – – – ok
18 P – X – ok – – – ok
19 P – – – ok – – – ok
20 P – – – ok – – X ok

Accuracy (%) 95 80 75 100 90 85 85 95

Abbreviations: #Inst: Number of test instance; H: Healthy group; P: Positive
group; 1E: Sustained vowel /e/ vocal task sub-classifier; 2S: Sentence vocal task
sub-classifier; 3C: Cough vocal task sub-classifier; CNN: Convolutional Neural
Network approach; -: No error in sub-classifier; X: Classification error; Final:
Final classification output obtained by means of majority voting of the three
(1E, 2S, 3C) sub-classifiers; ok: No final classification error.

and the CNN reaching 75%. However, both classifiers interest-
ingly yielded 100% sensitivity in identifying COVID-19 recovered
patients.
7

4.2. Acoustic features for the adaboost approach

The top ranked features employed for the AdaBoost-based
approach can be considered as clinical ‘‘biomarkers’’ for COVID-19
identification through voice analysis.

Most works based on similar vocal tasks are based on differ-
ent acoustic features, including MFCC, HNR, jitter, shimmer and
fundamental frequency (F0) [69,70]. The most frequent feature
domains as assessed by the feature selection are reported in Ta-
ble 4. According to our results, relevant features for determining
the positivity to COVID-19 include the RASTA-PLP Coefficients,
which ranked higher than MFCC. The RASTA-PLP processing can
be considered somehow similar to MFCC [71], and it is especially
aimed for speech signals due to its insensitiveness to slowly vary-
ing background noises [72]. In fact, this processing is especially
sensitive to background voices, which we carefully and intention-
ally avoided. RASTA is widely used in speech recognition and, to
the best of our knowledge, it has yet to be solidly introduced in
studies regarding voice analysis for healthcare. This is also in line
with other studies carried out by our study group on different dis-
eases, especially regarding the implications of higher-numbered
RASTA windows and ‘‘rough’’ voices [73].

Voicing Probability-related features appear to be the most
relevant for the vowel task, while different frequency domain
features are present in all the sets.

Receiver-operating curves (ROC) related to PvsH and RvsH for
the AdaBoost classifiers are presented in Fig. 5. The area under the
curve (AUC) values for the PvsH are 0.94 for task 1E (red), 0.90
for task 2S (blue) and 0.88 for task 3C (green), respectively. For
the RvsH comparison they are 0.74 for 1E, 0.98 for 2S and 0.85
for 3C, respectively.

Fig. 6 shows a radar plot for an interesting, exemplified view
of the differences among the acoustic features. The plot shows the
average, over all the subjects, of the top 20 features. The features
are normalized by the average of the H-group class, which is
consequently represented by a unit circle.
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Table 3
Confusion matrices for the RvsH comparison over the two classification
approaches (Adaboost and CNN).
#Inst Real class Adaboost CNN

1E 2S 3C Final 1E 2S 3C Final

1 H X – X X X – X X
2 H X – – ok X – – ok
3 H X – – ok – – X ok
4 H X – X X X – X X
5 H X – – ok X – X X
6 H X – – ok X – – ok
7 H – – – ok – X X X
8 H – – X ok X – X X
9 H – – – ok X – X X
10 H – – – ok – – – ok
11 H – – – ok X – – ok
12 H – – – ok – – – ok
13 H – X X X X – X X
14 H – – X ok – – X ok
15 H X X – X X X X X
16 H X X – X X – – ok
17 H X – – ok – – – ok
18 H X – – ok X X – X
19 R – – X ok – – – ok
20 R – – – ok – – – ok
21 R – – – ok – – X ok
22 R X – – ok – – – ok
23 R – – – ok – – – ok
24 R X – – ok – – – ok
25 R – – – ok – – – ok
26 R – X – ok – – – ok
27 R – – – ok – – – ok
28 R – – X ok – – – ok
29 R – – – ok – – – ok
30 R – – X ok – – – ok
31 R – – – ok – – – ok
32 R – – – ok – – – ok
33 R – – – ok X – – ok
34 R – – X ok – – – ok
35 R – – X ok – – – ok
36 R – – – ok – – – ok

Accuracy (%) 66.7 88.9 72.2 86.1 63.9 91.7 69.4 75.0

Abbreviations: #Inst: Number of test instance; H: Healthy group; R: Recovered
group; 1E: Sustained vowel /e/ vocal task sub-classifier; 2S: Sentence vocal task
sub-classifier; 3C: Cough vocal task sub-classifier; CNN: Convolutional Neural
Network approach; -: No error in sub-classifier; X: Classification error; Final:
Final classification output obtained by means of majority voting of the three
(1E, 2S, 3C) sub-classifiers; ok: No final classification error.

5. Discussion

The human ear does not possess sufficient sensitivity to dis-
inguish different pathological conditions just by listening to pa-
ients’ voices, even though well-trained and experienced clini-
ians may sometimes obtain precious hints for diagnosis from
erceptual (by-ear) voice analysis, in particular for pathologies
ith very peculiar features of voice and speech [74,75]. On the
ther hand, several studies demonstrate the possibility to iden-
ify vocal, respiratory and even neurological diseases from the
utomatic analysis of the speech signal.
At the present time, a fair amount of studies have tried to iden-

ify COVID-19 from the human voice. However, common issues in
oice analysis are exacerbated by the difficult pandemic situation,
hich makes it very hard to gather a reasonable amount of high-
uality data, as well as the short timespans, and the limited
nowledge on the disease.
Our aim was to build a reliable framework based on a wide

mount of information contained in high-quality data, with the
est and most reproducible recording conditions that, working
ith subjects with proven clinical status. Since state-of-the-art
ethodologies contemplate both ML and CNN-based solutions,
e chose to employ and to compare both with custom fine-tuned
8

Fig. 5. ROC curves.
Above: ROC curve for the PvsH (Positive versus Healthy) comparison. Below:
ROC curve for the RvsH (Recovered versus Healthy) comparison. Red line refers
to the 1E — vowel/e/ vocal task sub-classifier; blue line refers to the 2S —
sentence vocal task sub-classifier; green line refers to the 3C — cough vocal
task sub-classifier. Axes span from 0 to 1. AUC (Area Under the Curve) values
are reported in the manuscript.

architectures and knowledge-based pre-processing on the input
data. As of today, no reliable datasets exist for COVID-19 speech,
which made the construction of an independent validation set
one of the only possible choices.

Table 5 reports the main characteristics of our study compared
to most of the other published works. Although we assert the
experimental and preliminary nature of these studies, we be-
lieve that ours is the first one to achieve such promising results
with the use of non-crowdsourced, verified audio data, while
also considering recovered subjects, bringing novel architectures
and comparing the most technologically advanced methods for
speech analysis.

The chosen approaches exemplify the division between tra-
ditional ML pipelines allowing for a better control of every step
of the inference, and CNNs, which act almost like a ‘‘black box’’
despite producing very deep features. All the architectures we
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Fig. 6. Radar plot for the PvsH-3C sub-classifier.
PvsH: Positive versus Healthy; 3C: Cough vocal task. Radar plot was built on the
top 20 features (as ranked by the linear wrapped SVM ranker), averaged over
all the subjects, and normalized by the H class. Blue unit circle (colored area)
represents the H class, red curve represents the P class. .

Table 4
Most relevant feature domains as retained after the wrapper-based ranking step
in the Adaboost-based ML pipeline.

1E 2S 3C

PvsH
comparison

Voicing Probability RASTA-PLP RASTA-PLP
RASTA-PLP Spectral Loudness Spectral Variation
MFCC MFCC Spectral Loudness

RvsH
comparison

Spectral Variation MFCC RASTA-PLP
Energy RASTA-PLP MFCC
RASTA-PLP Energy Spectral Variation

Abbreviations: PvsH: Positive versus Healthy; RvsH: Recovered versus Healthy;
1E: Sustained vowel /e/ vocal task sub-classifier; 2S: Sentence vocal task sub-
classifier; 3C: Cough vocal task sub-classifier; RASTA-PLP: Features related to
RASTA (Relative Spectral) Coefficients applied to the PLP domain (Perceptual
Linear Predictive); Spectral Variation: Umbrella term for features related to
variations in the spectrum, such as: slope, kurtosis, skewness, flux; MFCC:
Mel-frequency Cepstral Coefficients.

adopted, despite being roughly based on state-of-the-art studies,
are custom-made in reason of the difficult task of identifying
a specific pathology from multiple sources of human voice sig-
nals. For the first approach (ML), bagged decision trees (Random
Forests) are embedded within a boosting architecture. While
bagging aims to cover many permutations of the training set
to produce a generalized ‘‘tree of trees’’, boosting the resulting
models allows to build the best performing and least biased one.
Customized feature sets, resulted from a preliminary correlation-
based large-scale skimming followed by a more problem-specific
wrapped SVM-based ranker, were used for the training of each
Adaboost. The features were only selected on the basis of the
training set, meaning that the final validation set was never
analyzed by the Adaboost models. On the other hand, the pro-
posed CNN architectures were custom-built, without being based
on any specific previous study, and with the added aim to be
reasonably ‘‘light’’ for ease of use and to avoid future imple-
mentation issues, also considering the absence of improvements
when using transfer learning. The substantial acoustic differences
9

between vocalized signals and cough led to the construction of
a specific, shallower, CNN for the latter, considering the more
straightforward and homogeneous characteristics of those spe-
cific recordings, which present less variation within the duration
of the audio file and cough section. All of the proposed ar-
chitectures were then re-applied on the independent validation
set.

The results of the Adaboost and CNN-based approaches appear
similar for the PvsH comparison, with respective accuracies of
100% and 95%. The RvsH comparison showed Adaboost being
significantly more accurate, with 86.1% versus the 75% obtained
by the CNN. Interestingly, both approaches for PvsH and RvsH
yielded 100% of sensitivity.

The accuracy of the PvsH comparison might prove the feasibil-
ity of voice-based COVID-detection, which has solid clinical bases
already since most pulmonary diseases have been demonstrated
to have distinct and detectable effects on the speech. Moreover,
the possibility to also discriminate recovered subjects is in line
with the fact that COVID-19 may induce long-lasting damages to
the phonatory system, as shown by Helding et al. [76] in a recent
study.

By considering the confusion matrices for the single sub-
classifiers are concerned, it appeared that even sub-optimal re-
sults – like the 66.7% accuracy for the 1E task in the Adaboost-
based RvsH comparison – can lead to satisfactory final accuracies
when unified with other tasks. This confirms the potential of
using more than one vocal indicator. It is also interesting to note
how the vowel sound/e/ is the most effective at discriminating
positive subjects from healthy ones, whereas it becomes the least
promising for the RvsH comparison. This may suggest that the
effects of COVID-19 on the voice are subject to change through
the course of the disease and recovery. RASTA-PLP processing is
assessed as the most recurring domain in the top-ranked features,
corroborating and refining the existing approaches mainly based
on MFCC, both in the definition of the features to extract for
building classifiers and as an alternative to spectrograms for
CNN’s. Thus, RASTA-PLP processing could be a very viable solution
for voice analysis in healthcare and speech recognition, also due
to its noise-robust nature [35]. Thus, a more in-depth study of
its potential is one of the aims of our future research, especially
towards a solid employment of RASTA-temporal diagrams as
inputs of a CNN.

Other features like Jitter or HNR, widely used in voice anal-
ysis, leave space to more specific features in the frequency do-
main, here encompassed under the name of ‘‘spectral variation’’,
and generally referring to considerations on the slope, kurtosis,
prominence of the spectral curves.

In order to consider the features as reliable biomarkers, bias in
selection and/or classification should be minimized. We tackled
this with the gathering of a polished, well-organized dataset,
and with a posterior confrontation of the features with those
related to non-pathological effects [77] like age and gender [46]
which, if present, could have represented a risk of bias. Despite
the hierarchy of accuracies for each sub-classifier being the same
between Adaboost and CNN, different subjects get mis-classified
in the two approaches. This confirms that, although they probably
rely on similar information for the inference, in the end the
dynamics of the algorithms are different.

With all these premises, the construction of a tool for re-
mote screening can be reasonably foreseen. In fact, a project is
currently ongoing, involving ML-based real-time voice analysis
on-site [78]. In these regards, a first concern could be represented
by the choice of a suitable environment for voice recordings. The
use of adequately quiet rooms for the present research project
can easily be replicated in on-site screening facilities, by keeping

the room devoid of noisy machinery, and choosing environments
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Table 5
Literature review.
Study Input signals Recording

specifications
COVID-19 screening
and validation
characteristics

No. of positive
(P) subjects

Classes
considered

Algorithm(s) Validation
method

Accuracy

Ours Vowel, speech,
cough

Unique device
(lossless)

PCR, serology 70 (310 total) P, H, R Adaboost, CNN
(custom)

Independent
test set

100% 86% (R
vs H)

Laguarta et al.
[20]

Cough Crowdsourced None (self-reported) 2660 (5320
total)

P, H CNN
(ResNet50)

Independent
test set

97%

Imran et al.
[21]

Cough Unspecified Unspecified 70 (543 total) P, H, pertussis,
bronchitis

SVM Cross-validation 92%

Pinkas et al.
[22]

Vowel, speech,
cough

Multiple
devices (lossy)

PCR 29 (88 total) P, H RNN + SVM Independent
test set

79% (F1
score)

Shimon et al.
[23]

Vowel, cough Multiple
devices (lossy)

PCR 69 (199 total) P, H SVM, RF Independent
test set

80% (mean)

Suppakitjanu-
sant et al.
[25]

Vowel, speech,
cough

Unique device Unspecified None (76
recovered,
116 total)

R, H CNN (transfer
learning)

Cross-validation 74% (mean,
R vs H)

Despotovic
et al. [24]

Vowel, speech,
breath, cough

Crowdsourced None (self-reported) 84 (1103 total) P, H Adaboost,
Multilayer
Perceptron,
CNN

Cross-validation 88%

Muguli et al.
[26] – DiCOVA
challenge

Vowel, speech,
breath, cough

Crowdsourced None (self-reported) 60 (990 total) P, H Various Various 73%
(baseline)
87% (best)

Abbreviations: PCR: Polymerase Chain Reaction-based molecular swab; P: COVID-19 Positive subjects; H: Healthy subjects; R: Recovered subjects; CNN: Convolutional
Neural Network; SVM: Support Vector Machine; RNN: Recurrent Neural Network.
‘‘Lossless’’ refers to raw, unprocessed and uncompressed sound data, while ‘‘lossy’’ implies that compression and/or artifacts are present. ‘‘Accuracy’’ refers to the
highest reported classification accuracy for the binary Positive VS Healthy classification, except when otherwise specified. Please note that the algorithms used in
each study are greatly summarized in the Table. For studies which did not have a single, final, accuracy result, the mean accuracy has been reported, and specified
as such.
relatively protected from traffic and crowd noises. Moreover, we
also consider quiet domestic rooms to be reasonably close to our
experimental settings. The heavy usage of noise-robust acoustic
features, like RASTA, also guarantee a certain insensitiveness of
the Adaboost-based approach to changes in background noises
and/or microphones.

To build a reliable tool, the three classes considered in this
tudy should also be unified in a single classifier. This could be
one with a multi-class model or, especially for the ML approach,
ith the ensemble of three one-vs-one classifiers. However, since
he identification of recovered subjects could arguably be less
rucial in on-site screening situations, the merging of the H and
classes is also possible, leading to a single binary classification
f positives versus non-positives. Both approaches are currently
eing tested, especially the latter, within the abovementioned
ational project.
It is worth noting that the choice of recording through smart-

hones is justified by the need for a widespread and easily ac-
essible strategy for remote screening. Moreover, smartphones
ave already been proved to be reliable tools for ML-based speech
nalyses [46,66,79].
The evolution of the disease could itself represent a limitation

or the present study, as COVID-19 clinical spectrum is evolv-
ng, and pauci-symptomatic positive subjects are becoming more
idespread. Besides, long-term effects of the disease on the voice
ould also be expected to evolve, and a further study of recovered
ubjects would also be helpful in this matter. Moreover, small
atasets constitute a very common problem in bio-engineering
L tasks, and the collection of high-quality data is undoubtedly
ade difficult by the critical conditions of healthcare institutions.
owever, we believe that a knowledge-based approach accompa-
ying the data-driven inference can compensate at least some of
he typical critical issues of such a task.

.1. Future developments

A more thorough a-priori and posterior analysis of the acoustic

eatures would be beneficial in the future, in order to identify

10
not only the most powerful features for this task, but also a
reasonably generalized, unbiased and more definitive set. Fur-
thermore, many refined solutions exist in the neural network
realm, especially with regards to pre-trained networks and node
splitting, which could lead to better performing architectures,
possibly addressing the problem with an even more knowledge-
based approach without intensifying too much the calculation
burden.

In these regards, the collection of a clean and relatively ho-
mogeneous dataset, suitable pre-processing techniques, posterior
analysis of features and the usage of two independent state-of-
the-art algorithms (specifically chosen and tuned for this task)
may hopefully dispel some skepticism towards this pioneering
screening technology.

Still, it is important to stress that a screening tool can only
offer a preliminary result, suggesting a more extensive validation
in case of a positive outcome through conventional diagnostics.
This explains our preference for a high sensitivity, despite a
certain prevalence for negatively tested subjects in the current
diagnostic situation.

All the above-mentioned steps, as already stressed, would be
greatly supported by the collection of larger datasets, which is
one of our main focuses for the immediate future.

6. Conclusions

Our work concerns a novel approach in discriminating three
groups of subjects with different COVID-19 status (positive, heal-
thy and recovered), analyzing their vocal performances (sustained
vowel, sentence, cough) employing ML algorithms. In order to
minimize external biases in the classifiers, we focused on the
acquisition of a professionally recorded voice dataset rather than
crowdsourced data, which could not only guarantee the max-
imum reliability of the samples, but also a rigorous annota-
tion and medically proven metadata. On the basis of current
state-of-the-art technologies, two algorithms were used follow-

ing specific fine-tuning and customization. Specifically, the first
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pproach involves an AdaBoost algorithm with Random Forest
eak learners applied to a selection of acoustic features reduced
y a CFS followed by an SVM-wrapper-based ranking. The second
pproach is based on CNN applied to spectrogram images with a
nowledge-based data augmentation.
Two binary comparisons, COVID-19 positive versus healthy

ubjects (PvsH) and recovered versus healthy (RvsH) were con-
idered, with three sub-classifiers per comparison, one for each
peech task. Majority voting was used to determine the final
esults of the comparisons over the three sub-classifiers. Two
ustom CNN architectures are proposed, one strictly focused on
he analysis of the cough sound.

The accuracies are interestingly high, especially for the PvsH
omparison, and the Adaboost approach scores higher in both
omparisons. Furthermore, a 100% sensitivity for the identifi-
ation of positive and recovered subjects is obtained by both
pproaches.
According to our results, traditional ML algorithms proved to

till be powerful tools in voice analysis, possibly leading the way
or small datasets, over more complex DL solutions. Moreover,
e stressed the importance of a knowledge-based approach in
uch tasks. Carefully built datasets in quiet environments, with
dequate pre-processing and fine-tuning of the algorithms, are
rucial for a more effective analysis. We observed that the voice
ound may hold a COVID-19 ‘‘signature’’, even when the infection
s not detectable anymore, which leads to believe that vocal tests
an represent a meaningful tool for multiple purposes, including
ass-screening, identification of COVID-19 positive subjects and

he study of mid and short-term effects of this dreadful disease
n the voice.
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