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The APOBEC3 family of cytosine deaminases has been implicated in some of the most
prevalent mutational signatures in cancer'>. However, a causal link between
endogenous APOBEC3 enzymes and mutational signatures in human cancer genomes

has not been established, leaving the mechanisms of APOBEC3 mutagenesis poorly
understood. Here, to investigate the mechanisms of APOBEC3 mutagenesis, we
deleted implicated genes from human cancer cell lines that naturally generate
APOBEC3-associated mutational signatures over time*. Analysis of non-clustered and
clustered signatures across whole-genome sequences from 251 breast, bladder and
lymphoma cancer cell line clones revealed that APOBEC3A deletion diminished
APOBEC3-associated mutational signatures. Deletion of both APOBEC3A and
APOBEC3B further decreased APOBEC3 mutation burdens, without eliminating them.
Deletion of APOBEC3Bincreased APOBEC3A protein levels, activity and
APOBEC3A-mediated mutagenesis in some cell lines. The uracil glycosylase UNG was
required for APOBEC3-mediated transversions, whereas the loss of the translesion
polymerase REV1decreased overall mutation burdens. Together, these data represent
directevidence that endogenous APOBEC3 deaminases generate prevalent
mutational signatures in human cancer cells. Our results identify APOBEC3A as the
maindriver of these mutations, indicate that APOBEC3B can restrain
APOBEC3A-dependent mutagenesis while contributing its own smaller mutation
burdens and dissect mechanisms that translate APOBEC3 activities into distinct
mutational signatures.

Early investigationsinto the patterns of mutationsin cancer genomes
revealed that cytosine mutations are commonly presentin TCN (where
Nisany nucleotide) trinucleotide sequence contexts'**. The sequence
context preferences of the APOBEC cytosine deaminases, which target
DNA and RNA of viruses and retroelements as part of the innateimmune
defence, led to the proposal that such mutations derive from APOBEC
activity' >*’. Mathematical deconvolution of patterns of single-base
substitutions (SBSs) from cancer genomes uncovered different muta-
tional signatures of non-clustered (termed signatures SBS2 and SBS13)
and clustered (kataegis and omikli) APOBEC-associated cytosine muta-
tions at TCN trinucleotides*®’. APOBEC-associated mutational signa-
tures have been identified in more than 70% of cancer types and around
50% of all cancer genomes, with prominence in breast and bladder
cancer as well as other cancer types'®™. Indirect links implicate the
APOBEC3 family as a source of these mutations: (1) APOBEC3 overex-
pressionin model systems produces cytosine mutations with features
thatare similar to SBS2 and SBS13 and can contribute to carcinogenesis;
(2) polymorphisms at the APOBEC3 locus are, in some contexts, asso-
ciated with cancer mutations, and (3) APOBEC3 activity in cancer has

beeninferred using surrogate measures, including expression, in vitro
deamination and RNA editing of model substrates>%,

However, causal links between endogenous APOBEC3s and muta-
tional signatures in human cancer genomes have not been established,
leaving the impacts of individual enzymes poorly understood®.
Among candidate APOBEC3 enzymes, expression of APOBEC3B s the
highestin cancer and moderately correlates with APOBEC3-associated
mutational burdens™’, APOBEC3B expression is associated with worse
clinical outcomes in oestrogen-receptor-positive breast cancer'®”.
APOBEC3B was reported to be the only enzyme with detectable DNA
deaminase activity in cell extracts from >75% of breast cancer cell lines™.
Onthebasis of these and other observations drawn from expressionand
deamination-based assays, APOBEC3B s often considered to be amajor
mutator and therapeutic targetin breast and other cancer types'*'>82°,
However,an APOBEC3B germline deletion polymorphismis associated
withincreased cancer risk and higher APOBEC3-associated mutation
burdens in certain contexts, suggesting mutator roles for additional
APOBEC3s>*%2 Indeed, other links suggest amore prominent role for
APOBEC3A. APOBEC3-associated mutations in cancers more frequently
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presentin APOBEC3A-preferred YTCA sequence contexts, compared
with APOBEC3B-preferred RTCA sequence contexts (where Y indicates
apyrimidine base and Ris a purine base, and C is the mutated base)*.
Furthermore, APOBEC3A wasrecently reported to have stronger deami-
nation activity in breast cancer cell lines under certain conditions and
to be the better correlate with mutation load in breast tumours com-
pared with APOBEC3B*; to promote tumorigenesis in mouse models
predisposed to cancer after overexpression®; and to contribute to
recurrent mutations at DNA hairpinsin cancer®?.

It is critical to establish the relative contributions of individual,
endogenous APOBEC3 enzymes to mutation burdens in human can-
cer genomes to understand the aetiology of major mutation burdens
in cancer and to enable correctly focused investigations of widely
discussed APOBEC3-focused therapeutic strategies®". Progress in
testing the mutagenic capacity of individual APOBEC3 enzymesin the
endogenous setting has been hindered by differences between the
human and mouse APOBEC3loci and the lack of characterized human
cancer cellmodels withendogenous APOBEC3 mutagenesis. To resolve
these debates, we used a workflow to directly measure mutagenesis
by individual, endogenous APOBEC3 enzymes in human cancer cells.

APOBEC mutagenesis in cancer cells

To assess whether cell lines are suitable models of endogenous
APOBEC3 mutagenesis, we compared APOBEC3-associated mutational
signatures across DNA sequences of 780 human cancer cell lines* and
1,843 cancers*"° (Fig.1aand Supplementary Table1). The prevalence of
SBS2and SBS13in cell lines closely resembled their prevalence across
matching cancer types. For example, whereas cancers of breast, blad-
der, head and neck, and cervix are among the most affected, colorectal
and kidney cancersrarely present with the relevant signatures. These
similarities suggest that the presence of APOBEC3-associated signa-
turesin celllines reflect traces of processes with in vivo origins rather
than mutational processes associated with in vitro cultivation.

Toinvestigate mechanisms of endogenous APOBEC3 mutagenesis,
we deleted APOBEC3A and APOBEC3B from a panel of cancer cell lines
thatacquire APOBEC3-associated mutations over time* (Extended Data
Fig.1). The panelincluded breast cancer (BRCA; BT-474, MDA-MB-453),
B celllymphoma (BCL; BC-1,JSC-1) and bladder cancer (BLCA; HT-1376)
celllines (Fig. 1b). We next used surrogate assays of APOBEC3 mutagen-
esis across stock cell lines and APOBEC3A- and APOBEC3B-knockout
clones to assess the relative roles of candidate APOBEC3 mutators in
generating APOBEC3-associated mutations. Consistent with the widely
reported observations of upregulation of APOBEC3Binbreast and other
cancer types'?, all of the cell lines exhibited substantially elevated
mRNA and protein levels of APOBEC3B relative to APOBEC3A (Fig. 1c
and Extended DataFig. 2a). Analyses across individual clones revealed
that APOBEC3A and APOBEC3B expression varied, but APOBEC3B was
uniformly more abundant than the minimally expressed APOBEC3A
(Extended DataFig.2a). Consistent withits elevated expression levels,
APOBEC3B was the major source of cytosine deaminase activity against
both linear and hairpin probes in MDA-MB-453 and BT-474 extracts
(Fig.1d,e and Extended Data Fig. 2b-g).

Although we could not detect statistically significant decreases
in cytosine deaminase activity in APOBEC3A-knockout cell extracts
under any of the conditions tested, we could detect weak APOBEC3A-
derived activity that seemed to be stronger than APOBEC3B under
some conditions (hairpin substrates; cellular RNA present), in agree-
ment with a previous report* (Extended Data Fig. 2b-e). We could
also measure low, APOBEC3A-associated RNA editing activity against
amodel hotspot located within DDOST transcripts in MDA-MB-453
cellsusing adroplet digital PCR assay® (Fig. 1f). Analysis of cytosine
mutationsin APOBEC3A-preferred YTCA and APOBEC3B-preferred
RTCA sequence contexts® revealed enrichment of cytosine muta-
tionsin APOBEC3A-preferred contexts in MDA-MB-453, BT-474,BC-1
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andJSC-1cells*. Thus, high expression levels and deaminase activity
seemingly implicate APOBEC3B as the major mutator in all of the
cancer cell lines analysed here, whereas analyses of extended
sequence contexts and RNA-editing assays suggest a potential role
for APOBEC3A. These data recapitulate widely reported findings
aboutthe activities of APOBEC3A and APOBEC3B that produced the
ongoing debate regarding the relevance of each enzyme in causing
mutations in cancer>%,

Toresolve these discrepancies, we directly monitored acquisition of
APOBEC3-associated mutations in cancer cell lines over time* (Fig. 2a
and Extended Data Figs. 1 and 3). Single-cell derived wild-type or
knockout parent clones were subjected to long-term cultivation over
60-143 days, corresponding to atimeframe over which mutation acqui-
sition wasinvestigated. After this period, afurther round of subcloning
was carried out on the cell population from each of these parent clones.
Multiple single-cell derived daughter clones were expanded into a
population of cells for DNA isolation. In total, 251 individual parent
and daughter clones were obtained and analysed using whole-genome
sequencing (Supplementary Table 1). The workflow enabled the detec-
tion of mutations that were absentin parent clones, but presentin the
corresponding daughter progeny, therefore identifying mutations
that were acquired over defined periods of in vitro propagation across
different genetic backgrounds (Methods).

To deconvolute APOBEC3-associated mutations from mutations
induced by other processes, mutational signatures were extracted from
mutational catalogues generated from whole-genome sequences of 251
clonesand 5bulk celllines (Methods and Supplementary Tables2and 3).
Tendenovosignatures were identified, three of whichwere character-
ized by APOBEC3-associated mutations in TCN contexts (SBS288A;
similar to SBS2' characterized by C>T mutations; SBS288B, similar to
SBS13' characterized by C>G and C>A mutations; and SBS288E, similar
toSBS13albeitwithahigherrelative proportion of C>Amutations;Fig.2b,
Extended DataFig.4aand Supplementary Table 4). Discovered signa-
tures were decomposed into COSMIC reference signatures, yielding
afinal set of signatures that were subsequently quantified across indi-
vidualsamples (Methods and Supplementary Table 4). These included
APOBEC3-associated SBS2; SBS13a (corresponding to COSMIC SBS13);
SBS13b (corresponding to SBS288E); SBS1 and SBSS, signatures of
processes that operate continuously across most normal and cancer
cells®>*°; SBS18, characterized by C>A mutations, in part attributed to
reactive oxygen species'®; new signatures of probable in vitro processes,
whichwere notidentified in cancer before and which presented across
multiple lineages of mostly individual cell lines (SBS288D in HT-1376,
SBS288lin BT-474 and SBS288) in MDA-MB-453); and other known
signatures (SBS10b, SBS30, SBS38) that contributed small mutation
burdens and probably represent false-positive attributions (Methods).
For simplicity, mutation burdens of all but APOBEC3-associated sig-
natures were grouped into the class ‘SBS other’.

APOBEC3A in SBS2 and SBS13 generation

Ongoing generation of APOBEC3-associated SBS2 and SBS13a/b,
SBS other, indels and chromosomal rearrangements were detected
inwild-type clones from all of the cell lines (Fig. 3a-g and Extended
DataFigs.5and 6a,b,f,j). The numbers of acquired SBS2 and SBS13a/b
signatures, in contrast to other SBS mutations, varied acrossindividual
wild-type daughter clones derived from the same parent, consistent
with previously reported episodic acquisition of these signatures in
cancer celllines*. For example, BC-1daughter A.9 acquired 12,504 SBS2
mutationsin108 days, whereas daughter A.10, which was propagated
inparallel and derived from the same parent clone, exhibited only 954
SBS2 mutations (Fig. 3f). The variations in SBS2 and SBS13a/b burdens
could not be explained by multiclonality, perturbed cell growth or
expression level of candidate mutators (Extended Data Fig. 4b—-d and
Extended Data Fig. 7a-f).
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Fig.1|Human cancer cell line models of APOBEC3-associated mutagenesis.
a, Theprevalence of the SBS2 and SBS13 signatures in1,843 whole-genome-
sequenced human cancers and 780 whole-exome-sequenced COSMIC cancer
celllines. Eachbar represents the percentage of mutations attributed to the
indicated SBS signaturesinanindividual sample fromtheindicated cancer
types. Abbreviations are defined in Supplementary Table 1. Subsets of the
BLCA, BRCA and BCL datasets are magnified to highlight the cell lines chosen
for further study (red). b, The mutational profiles of theindicated cell lines
plotted as the numbers of genome-wide substitutions (y axis) at cytosine bases
classified into 48 possible trinucleotide sequence contexts (xaxis; Extended
DataFig. 4a). c,Immunoblotting with anti-APOBEC3 (04A04) and anti-actin
antibodies. Extracts (40 pg, 20 pg, 10 pgand 5 pg) were prepared from the
indicated cell lines. The anti-APOBEC3 antibody detects APOBEC3A and

Ananalysis of extended sequence contexts revealed an enrichment of
cytosine mutationsin APOBEC3A-preferred YTCA contexts inwild-type
daughter clones from BRCA and BCL cell lines (Fig. 3i,j and Extended
DataFig. 6e,h). Most wild-type clones from the BLCA HT-1376 cell line
acquired substantially lower SBS2 and SBS13a/b burdens compared
withwild-type clones from other cell lines and exhibited aminor pref-
erence for APOBEC3B-preferred RTCA contexts (Fig. 3g and Extended
DataFig. 6l). This pattern resembled the RTCA mutation sequence
contexts observed in asmaller proportion of cancers, which generally
exhibit lower burdens of APOBEC3-associated mutations®.

Despite low expression and activity, APOBEC3A deletion significantly
diminished acquisition of SBS2 and SBS13a/b mutations in BRCA and
BCL cell lines (g values < 0.05 across all cell lines; Mann-Whitney
U-tests; Fig.3a-fand Extended DataFig. 6a,b,f). Thereductionin SBS2
and SBS13a/b was accompanied by a loss of the enrichment of muta-
tions at YTCA sequences, demonstrating that previous observations of
APOBEC3A sequence preferencesinyeast® can be extended to endog-
enous APOBEC3A activity in human cancer cells (Fig. 3i,j and Extended
Data Fig. 6e,h). BLCA APOBEC3A-knockout clones from the HT-1376
cellline did not exhibit a significant decrease in SBS2 and SBS13a/b
(Fig. 3g). Notably, a single wild-type daughter clone, HT-1376 B.2,

APOBEC3B (Extended Data Fig. 1g). Multiple exposures are shown to better
depict APOBEC3A (A3A) and APOBEC3B (A3B) signals. n =3 experiments.

d, Cytosine deaminase activity inthe indicated cell lines was measured against
alinear probe with (top) or without (bottom) RNase treatment to degrade RNA
intheextracts. cl., clone; nt, nucleotides. e, Quantification of APOBEC3
deaminase activity as the percentage of processed DNA asind. Data are mean.
Statistical analysis was performed using one-way analysis of variance (ANOVA)
with Tukey multiple-comparisons test; ****P < 0.0001; NS, not significant.n=3
experiments. f, Quantification of DDOST558C>U levels in the indicated
MDA-MB-453 cells. Data are mean + s.d. Statistical analysis was performed
using one-way ANOVA with Tukey multiple-comparisons test; *P < 0.05; NS, not
significant.n=2experiments.

exhibited a ninefold increase in SBS2 and SBS13a/b mutations and an
enrichment of mutations in YTCA contexts, whereas other wild-type
daughters possessed much smaller amounts of SBS2 and SBS13a/b
mutations and enrichment of mutations in the RTCA sequence context
(Fig.3gand Extended Data Fig. 6k,m). Theincrease in mutations accom-
panied by a shift towards APOBEC3A-preferred motifs in this clone is
consistent with APOBEC3A-associated episodic bursts of mutagenesis®.
Overall, the inability to detect differences after APOBEC3 deletion in
BLCA celllines may derive from alack of power to capture or quantify
rare APOBEC3 mutagenesis in wild-type clones (Methods). Anincrease
in APOBEC3A-associated RNA-editing activity was not detected in
HT-1376 B.2 cells relative to other wild-type daughters (Extended
DataFig. 6n). Thus, RNA-editing assays may not capture intermittent
APOBEC3 activities, while shifting sequence context preferences across
lineages complicate simple classification on the basis of enrichment
of cytosine mutations at these motifs.

Surprisingly, despite higher expression and deaminase activity of
APOBEC3B compared with APOBEC3A in all of the cell lines, deletion
of APOBEC3B did not significantly reduce SBS2 and SBS13a/b burdens
incell lines with strong APOBEC3 mutagenesis (Fig. 3a-fand Extended
Data Fig. 6a,b,f,j). Taken together, these results demonstrate that
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Fig.2|Using human cancer cell lines to investigate the origins of
APOBEC3-associated mutagenesis. a, The experimental design used to track
mutationacquisitionin vitro over specific timeframes. The schematic was
generated using BioRender. b, Profiles of APOBEC-associated signatures (sig.)
extracted from SBSsidentified across mutational catalogues of 5stock cell
linesand 251 parent and daughter clones. Mutational profiles are plotted as the
percentage of genome-wide substitutions (y-axis) at cytosine or thymine bases
classified into 96 possible trinucleotide sequence contexts (x-axis; Extended
DataFig. 4a). Subsequent deconvolutioninto COSMIC signatures revealed that
SBS288A corresponds to COSMIC reference signature SBS2, SBS288B to SBS13
(termed SBS13a), whereas SBS288E represents anew version of COSMIC SBS13,
which was termed SBS13b and quantified across samplesinitsextracted
(rather than COSMIC) form.PCAWG, pan-cancer analysis of whole genomes;
WGS, whole-genome sequencing.

APOBEC3A is a main driver of SBS2 and SBS13 in BRCA and BCL cell
lines, challenginginferences derived from high APOBEC3B expression
and catalytic activity in extracts™".

APOBEC3Bin SBS2 and SBS13 generation

Although deletion of APOBEC3B did not significantly reduce acquisi-
tion of SBS2 and SBS13a/b, strong underlying activity of APOBEC3A
in BRCA and BCL cell lines may obscure small differences in mutation
burdens between wild-type and APOBEC3B-knockout daughters.
Indeed, although strongly diminished, ongoing acquisition of SBS2 and
SBS13a/bwas detected inAPOBEC3A-knockout daughter clones, indicat-
ing thatadditional APOBEC3 member(s) may be operative (Fig. 3a-f,h
and Extended Data Fig. 6a-d,f-i). Furthermore, such mutations were
accompanied by a shift in the enrichment from APOBEC3A-preferred
YTCA observed in wild-type clones to APOBEC3B-associated RTCA
sequence contextsin APOBEC3A-knockout clones from BRCA and BCL
celllines (Fig. 3i,j and Extended Data Fig. 6e,h). To investigate whether
APOBEC3B generates smaller burdens of SBS2 and SBS13a/b, we gener-
ated APOBEC3A/APOBEC3B double-knockout clones from BRCA cell
lines (Extended Data Fig. 1). The knockout daughters from both cell
lines acquired significantly fewer SBS2 and SBS13a/b burdens com-
pared with the APOBEC3A-knockout counterparts (g values < 0.05;
Fig.3a,c,d,h and Extended Data Fig. 6a,d) confirming that APOBEC3B
contributes small amounts of SBS2 and SBS13a/b mutations. Although
further diminished, SBS2 and SBS13a/b burdens were not eliminated
in all APOBEC3A/APOBEC3B-knockout daughters (Fig. 3a,c,d,h and
Extended DataFig. 6a,d). Given the small number of mutations detected
in APOBEC3A/APOBEC3B knockouts, we cannot dismiss the possibility
that SBS2 and SBS13a/b burdens are overestimated during mutational
signature quantification (Methods). However, other featuresindicative
of APOBEC3 mutagenesis were apparent in some clones (Methods),
including APOBEC3-associated mutations in TCN contexts (Fig. 3a,
for example, MDA-MB-453 clone L.10), further suggesting persistent
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APOBEC3 mutagenesis after APOBEC3A/APOBEC3B loss. Both BRCA
cell lines carry APOBEC3H haplotype I (Methods), previously associ-
ated with increased mutational burdens in a small number of cancers
with the APOBEC3B deletion polymorphism?'. Thus, APOBEC3H or
another APOBEC enzyme may contribute small amounts of APOBEC3
signaturesin these cell lines.

Surprisingly, APOBEC3B-knockout daughters from the BRCA
MDA-MB-453 cell line exhibited significantly more SBS2 and SBS13a/b
mutations compared with their wild-type counterparts (g < 0.01;
Fig. 3a,c). SBS2 and SBS13a/b reduction in MDA-MB-453 APOBEC3A/
APOBEC3B double knockouts confirmed that this increase was caused
by APOBEC3A-mediated mutagenesis (Fig. 3c). The increase in SBS2
and SBS13a/b burdens was not observed in BT-474 and HT-1376
APOBEC3B-knockout daughters, while the apparent increase in JSC-1
cells was driven by one out of two available APOBEC3B-knockout line-
ages (Fig. 3d,e,g). Increased SBS2 and SBS13a/b mutation burdens
were associated with stabilized APOBEC3A protein levels across
APOBEC3B-knockout daughters from MDA-MB-453 compared with
wild-type counterparts (Fig. 3k and Extended Data Fig. 7a,b). This
effectwasnotobservedin]SC-1, HT-1376 or BT-474 cells (Extended Data
Fig.7c,d,f).

To further assess whether heightened APOBEC3A mutagenesis
in the absence of APOBEC3B may result from increased APOBEC3A
protein levels, we used short hairpin RNA (shRNA) treatments to
deplete APOBEC3B from stock cultures while avoiding clonal bot-
tlenecking effects. The results confirmed that APOBEC3A protein
levels were increased after APOBEC3B depletion in MDA-MB-453 and
BC-1, but not BT-474 or JSC-1 cells (Fig. 31 and Extended Data Fig. 7g).
APOBEC3A protein levels exhibited similarincreases across daughter
clones isolated from shAPOBEC3B-depleted parents (Extended Data
Fig. 7h). APOBEC3B depletion also increased APOBEC3A-associated
RNA-editing activity at DDOST transcripts in MDA-MB-453 stock cul-
tures and in daughter clones isolated from shAPOBEC3B-depleted
parents (P < 0.05; Student’s ¢-test; Fig. 3m and Extended Data Fig. 7i),
further confirming that APOBEC3B depletion canincrease APOBEC3A
activity. APOBEC3A depletion did not affect APOBEC3B protein levels
(Fig.3land Extended DataFig. 7). Taken together, these results indicate
that APOBEC3Bloss canincrease APOBEC3A protein levels, activity and
mutagenesis in some cancer cells.

APOBEC3sin kataegis and omikli

The endogenous origins of APOBEC3-associated kataegis, that is, focal
strand-coordinated hypermutation',and omikli, thatis, diffuse hyper-
mutation®, have not been established in human cancer cells. Recent
analyses showed that APOBEC3-associated signatures account for
>80% of kataegis and >15% of omikli mutations in human cancers™?,
Kataegis burdens positively correlate with APOBEC3B expression
levels* and APOBEC3B can induce kataegis in an in vitro model of
telomere crisis®™. BRCA cell lines and, to alesser degree, BCL and BLCA
celllines acquired de novo kataegis and omikli duringin vitro propaga-
tion (Fig. 4, Extended Data Fig. 8a-cand Supplementary Table 6). The
majority of these clusters primarily consisted of APOBEC3-associated
cytosine mutations in TCN contexts, whereas others consisted of a
more varied spectrum of mutations (Fig. 4b-e and Extended Data
Fig. 8a,c). Mutation enrichment in YTCA/RTCA motifs was similar
across clustered and genome-wide mutations in individual cell lines
(Extended DataFig. 8d).

APOBEC3A deletion significantly reduced burdens of clustered
APOBEC3-associated mutations (g < 0.01; Mann-Whitney U-tests),
including kataegis (g < 0.05) and omikli (g < 0.01) in MDA-MB-453 cells
(Fig.4b,c). Enrichment of mutations in YTCA contexts was diminished
after APOBEC3A deletion (Extended Data Fig. 8d). Similar trends were
observed in the BT-474 cell line (Extended Data Fig. 8a,d). Consist-
ent with the increased burdens of SBS2 and SBS13a/b observed in
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Fig.3|APOBEC3 deaminases drive the acquisition of SBS2 and SBS13in
human cancer cells. a,b, Mutational profiles of the indicated MDA-MB-453
(a) and BC-1(b) clones plotted as the numbers of genome-wide substitutions
(yaxis) atcytosine bases classified into 48 possible trinucleotide sequence
contexts (xaxis; Extended DataFig. 4a). cl., clone. Thearrowsindicate the
number of days spanning the cloning events of parents (left of arrow) and
daughters (right) during which mutation acquisition was tracked. c-g, The
numbers of SBSs attributed to colour-coded mutational signatures discovered
intheindicated daughter clones from the MDA-MB-453 (c), BT-474 (d),JSC-1
(e), BC-1(f) and HT-1376 (g) cell lines with the indicated genotypes. g values
comparing cumulative counts of SBS2, SBS13a, and SBS13b were calculated
using one-tailed Mann-Whitney U-tests and false-discovery rate

APOBEC3B-deleted clones (Fig.3a,c), there was anincreased number of
clustered APOBEC3-associated mutations (g < 0.01), including kataegis
(g <0.05) and omikli (g < 0.01), in MDA-MB-453 APOBEC3B-knockout
clones (Fig. 4b,c). Small numbers of APOBEC3-like omikli mutations
were detected in some APOBEC3A/APOBEC3B double-knockout clones
from both MDA-MB-453 and BT-474 cells further suggesting that an
additional APOBEC enzyme or mutagenic process may be operative
(Fig.4a-cand Extended Data Fig. 8a). Taken together, these datamirror
observations of genome-wide mutations indicating that APOBEC3A
accounts for the vast majority of kataegis and omikli mutation clusters
in BRCA cells.
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(FDR)-corrected using the Benjamini-Hochberg procedure. hypo,
hypomorph. h, Focused plots showing SBS2 and SBS13a/bburdensin the
indicated daughter clones. i,j, Enrichment of cytosine mutationsin
APOBEC3B-preferred RTCA and APOBEC3A-preferred YTCA sequence
contextsin theindicated MDA-MB-453 (i) and BC-1 (j) daughter clones.

R, purinebase; Y, pyrimidinebase; N, any base. k,I, Immunoblotting using
anti-APOBEC3A (01D05), anti-APOBEC3B and anti-actin antibodiesin the
indicated cell lines.m, Quantification of DDOST558C>U levelsin theindicated
MDA-MB-453 cells. Data are mean + s.d. Statistical analysis was performed
using two-tailed Student’s t-tests; *P < 0.05.n = 9 experiments. Clones
markedinred font were excluded fromstatistical tests (Methods). Data from
additional cell lines are shown in Extended DataFigs. 6and 7.

Unexpectedly, the loss of APOBEC3A caused a reduction in omikli
mutations (g < 0.01) that occurred outside of APOBEC3-associated
sequence contexts in MDA-MB-453 cells, whereas loss of APOBEC3B
caused anincrease in omikli (g < 0.01) and kataegis (g < 0.01) muta-
tions falling outside these contexts (Fig. 4d,e). BT-474 cells exhibited
similar trends that fell short of significance (Extended Data Fig. 8c).
These mutations were broadly distributed across cytosine and thymine
bases and did not display any detectable bias towards specific sequence
contexts (Fig.4d and Extended DataFig. 8e). The precise origins of these
mutations remain unknown, but they may derive from mutagenic TLS
activity occurring at single-stranded DNA gaps®.
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Fig.4|APOBEC3 deaminases drive the acquisition of clustered mutations
inhuman cancer cells. a, Rainfall plots of the mutations acquired during in
vitro propagation with each dot representing the distance between two SBSs.
Dotsare colour-coded on the basis of cluster type.log,,-transformed
intermutation distances are plotted onthe yaxes. Thered lines represent
sample-dependentintermutation distance cut-offs for detecting clustered
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DNA glycosylases in APOBEC3 mutagenesis

SBS2 is characterized by C>T mutations, whereas SBS13 consists of
C>G and C>A mutations™. Processing of APOBEC3-generated uracil
may dictate the resulting mutation type. On the basis of models of the
processing of AID-mediated uracil during somatic hypermutation at
immunoglobulin loci, replication across uracil is assumed to give rise
to C>T mutations and, therefore, possibly SBS2***%, Uracil excision
by aglycosylase, such as UNG or SMUGI, followed by TLS may give
rise to C>T, C>G and C>A mutations and therefore a combination of
SBS2 and SBS13%***%, Indeed, genome-wide transversion mutations
in yeast AID-overexpression models largely depend on UNG*. While
BT-474, MDA-MB-453, JSC-1and HT-1376 cells carry patterns of both
SBS2and SBS13a/b, BC-1cells display only the SBS2 signature (Figs.1b
and 3c-g). This phenomenon was attributed to attenuated expression
oftheuracil glycosylase UNG due to UNG promoter methylationin BC-1*.
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sequence contexts (xaxis; Extended Data Fig. 4a). c,e, Clustered tumour
mutational burdens (TMB), defined as numbers of total, kataegis and omikli
APOBEC3-associated (c) (purple; cytosine mutations at TCN contexts) and
non-APOBEC3-associated (e) (black; all other mutations) clustered SBSs per
megabaseintheindicated daughter clones. Thered barsindicate the median
tumour mutational burden. g values were calculated using two-tailed Mann-
Whitney U-tests and were FDR-corrected using the Benjamini-Hochberg
procedure; **q < 0.01, *q < 0.05; ns, not significant. Daughter clones with high
proportions of shared mutations (Methods) were excluded from
representation and statistical testsin cand e. Only mutations unique to
individual daughter clones were considered in the representationsinbandd.

Thus, uracil excisionis predicted to be a critical mediator of APOBEC3
mutagenesis in human cancer cells.

To directly assess the effect of UNG and SMUGI on the generation
of SBS2 and SBS13a/b in cancer cells, we expressed UNG-GFP in BC-1
cells, and CRISPR-Cas9 deleted SMUGI from BT-474 cells and UNG from
BT-474 and MDA-MB-453 cells (Extended Data Figs. 1k and 3a-c,g—j).
Deletion of UNG reduced the relative proportions of C>A and C>G
mutations in TCN contexts in daughter clones from BRCA cell lines
(g values < 0.01), while GFP-UNG expression in BC-1 cells increased the
proportion of those mutation types in BC-1daughter clones (g < 0.001)
(Fig.5a-c,g,i,j). Consistent with these data, SBS13a/b mutations decreased,
but were not eliminated, in UNG-knockout clones from both cell lines
(gvalues <0.05) and appearedin BC-1cells reconstituted with UNG-GFP
(g<0.01) (Fig. 5d-f). Thus, consistent with observations that UNG can
excise AID-mediated uracil® ¥, these results indicate that UNG connects
genome-wide APOBEC3 deaminase activity to transversion mutations.
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Fig.5|UNG and REV1have critical rolesinthe generation of APOBEC3
mutationsin cancer. a-c, Mutational profiles of theindicated BT-474

(a), MDA-MB-453 (b) and BC-1(c) clones plotted as the numbers of genome-wide
substitutions (y axis) at cytosine bases classified into 48 possible trinucleotide
sequence contexts (xaxis; Extended Data Fig. 4a). The arrows represent the
number of days spanning the cloning events of parents (left from the arrow)
and daughters (right) during which mutation acquisition was tracked.

d-f, The numbers of SBSs attributed to colour-coded mutational signatures
discoveredindaughter clones from theindicated BT-474 (d), MDA-MB-453
(e)and BC-1(f) celllines and genotypes. SBSs from wild-type daughters were
duplicated from Fig.3c,d,fto facilitate the comparison. g-j, The proportions
oftheindicated mutationtypesin TCN contextsin theindicated BT-474

UNG deletion led to decreases in APOBEC3-associated mutations and
otheroverall clustered mutationsin MDA-MB-453 cells (g values < 0.05;
Fig. 4c,e). The precise mechanism linking UNG activity to clustered
mutations will require further investigation, but may involve APOBEC3
and TLS activities at single-stranded DNA exposed during homologous
recombination or mismatch-repair-associated DNA end resection at
UNG-initiated DNA breaks>®.

SMUGI deletion resulted in a higher proportion of C>A mutations
relative to C>G mutations in TCN contexts (g < 0.05) and an increase
in SBS13b (g < 0.01), which is characterized by a higher proportion of
C>Amutations relative to C>Gin SBS13a (Fig. 5d,hand Supplementary
Table 4). Considered with the persistent C>G/A mutations observed
in UNG-knockout daughter clones (Fig. 5d-f), these results suggest
that SMUG1 may excise APOBEC3-mediated uracil bases, consistent
with previous observations indicating that SMUGI1 can occasionally
substitute for UNG in the repair of U:G lesions™®
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(g,h), MDA-MB-453 (i) and BC-1 (j) clones. g values indicate the differences
between theindicated experimentsin the proportions of C>Aand C>G
mutations (g,i,j) or C>G mutations (h). Only clones that were otherwise
considered instatistical analyses are shown (Methods). g values (d-j) were
calculated using one-tailed Mann-Whitney U-tests and FDR-corrected using
the Benjamini-Hochberg procedure. k,n, Confluency measurements of the
indicated cell lines. Data are mean + s.d. of three technical replicates. Each
experimentis representative of n=3biological replicates. 1,0, Clonogenic
survival of theindicated BT-474 (I) and MDA-MB-453 (o) cell lines.

m,p, Quantification of clonogenicsurvival asinland o. Dataare mean £ s.d.
Statistical analysis was performed using one-way ANOVA with Tukey
multiple-comparison test; ****P<0.0001.n =3 experiments.

REVI1in cells with APOBEC3 mutagenesis

To assess the contribution of TLS to the generation of SBS2 and
SBS13a/b, we deleted REVI—a TLS polymerase with deoxycytidyl trans-
ferase activity opposite abasic sites®—from BRCA cell lines (Extended
DataFig.3d-f,j). REVIdeletion led to adecrease in SBS2 and SBS13a/b
mutations in REVI-knockout daughters of MDA-MB-453 cells (g < 0.01)
compared with wild-type clones, and in knockout daughters from
BT-474 cells compared with clones from one (A; g < 0.05), but not the
other, wild-type lineage (K; g = 1), which acquired substantially lower
numbers of mutations (Fig. 5a,b,d,e). The relative proportion of C>G
mutations in TCN contexts was reduced in REVI-knockout daughter
clones fromboth cell lines compared with their wild-type counterparts
(g values < 0.01; Fig. 5g,i). Deletion of REV1in MDA-MB-453 cells also
resulted in a significant decrease in clustered mutations occurring
within APOBEC3-associated sequence contexts (g < 0.05; Fig. 4b,c).
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Consistent with the proposed roles of REV1 during AID-mediated
mutagenesis®*3¢4°*? reductionsin C>G proportionsin REVI-knockout
daughters are likely to reflect a loss of REV1 deoxycytidyl transferase
activity, whereas diminished burdens of SBS2 and SBS13a/b presumably
derive fromthe loss of the non-catalytic role of REV1inacting as a scaf-
fold for the coordination of other Y-family polymerases. These results
directly link REV1to the generation of APOBEC3-mediated mutational
signatures in human cancer cell genomes.

Beyond APOBEC3-associated mutations, burdens of other SBS and
clustered mutations occurring outside of APOBEC3-associated sequence
contexts were reduced, respectively,in REVI-knockout daughters from
both BRCA cell lines (g values < 0.05; Fig. 5d,e) and MDA-MB-453 cells
(g<0.01; Fig. 4d,e). These observations are consistent with previous
reportsindicating that REV1 mediates awide variety of SBS types®**24,
Most signatures grouped into the ‘SBS other’ class were characterized
by flat profiles and low mutational burdens, which challenge signature
attribution (Methods). However, SBS5 was the only signature discovered
consistently across wild-type clonesfromboth celllines (Supplementary
Table 4). Given the relatively uniform distribution of 96 SBS classes in
SBSS5, we cannot exclude the possibility that the activities of SBS5in
individual clones are overestimated (Methods). However, the discovery
of SBS5 across all wild-type clones is consistent with previous reports
on SBSS representing a signature of an unknown process operative
continuously throughout life across all tissues**. SBS5 burdens were
significantly depleted in REVI-knockout cells of the MDA-MB-453 and
BT-474 cell lines (g values < 0.05; Extended Data Fig. 9k).

REVI-knockout cells did not consistently exhibit decreased prolif-
eration, clonal survival, APOBEC3A protein levels or APOBEC3 cata-
lytic activities (Fig. 5k—-p, Extended Data Fig. 4c,d and Extended Data
Fig. 9a-f). Furthermore, REVI-knockout cells did not exhibit altered
cell cycle dynamics or increased DNA damage when compared to
MDA-MB-453 and BT-474 stock cultures or wild-type subclones (Extended
DataFig. 9g-i). Finally, an analysis of available genome-wide drop-out
CRISPR screens across cell lines with and without APOBEC3 signature
mutations failed toshowanincreased dependence on REV1in cancer cell
lines containing SBS2/13 mutations (Methods and Extended Data Fig. 9j).
Thus, diminished mutationburdensinthe REVI-knockout cells could not
beattributed to perturbed growthor clonal survival. Instead, these results
indicate that REV1 has a critical role in the generation of both SBS2 and
SBS13 and may contribute to the mutational process underlying SBS5.

Discussion

Research in model systems and multiple associations has implicated
APOBEC3 deaminases in cancer mutagenesis*>**, Here, by deleting
candidate APOBEC3 mutators from human cancer cell lines that gen-
erate the relevant mutations naturally over time*, we provide causal
evidence for the hypothesis put forward two decades ago that APOBEC3
enzymes can act as endogenous sources of mutation in cancer®. The
results demonstrate that APOBEC3A is the major driver of clustered
and non-clustered APOBEC3 mutational signaturesin cancer cell lines
inwhichresults fromsurrogate assays of APOBEC3 activities recapitu-
lated current debatesinthefield. Consistent with observationsinyeast,
endogenous APOBEC3A exhibits a preference for YTCA motifs, which
account for amajor proportion of APOBEC3 mutational signatures in
cancer®?, Future work will be necessary to dissect the mechanisms
of APOBEC3 mutagenesis in cancers exhibiting an enrichment of
genome-wide or clustered cytosine mutationsin APOBEC3B-favoured
RTCA motifs. Direct identification of APOBEC3A as a major generator
of prevalent mutational signatures in cancer is a critical step forward
for future studies seeking to define the underlying causes of APOBEC3
mutagenesis and to take advantage of APOBEC3 mutagenesis for thera-
peutic benefit. Our data demonstrate that APOBEC3B contributes a
small number of mutations, therefore challenging previous predictions
based on high APOBEC3B expression levels and deaminase activity,
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includingin celllines analysed here (thatis, BT-474, MDA-MB-453) that
APOBEC3Bis the dominant mutator**". Our results demonstrate that
APOBEC3A expression, activity and mutagenesis can be increased by
the loss of APOBEC3B in some cancer cell lines. This result is reminis-
centof the higher APOBEC3-associated mutation burdens observedin
breast cancers thatdevelopin carriers of acommon germline deletion
polymorphism that effectively deletes APOBEC3B and stabilizes the
expression of the resulting APOBEC3A-APOBEC3B hybrid transcript®.
However, the CRISPR edits used in our experiments do not resemble the
features of this deletion polymorphismand are not predicted to gener-
ate a fusion transcript. Similar increases in APOBEC3A mRNA expres-
sion have previously been observed in BRCA cells after APOBEC3B
depletion®. Thus, APOBEC3B may regulate APOBEC3A mutagenesis
across a broader range of cancers, possibly through regulating the
expression of APOBEC3A. Understanding the extent and mechanisms
of this observation requires further investigation. Furthermore, our
resultsimply thatanother APOBEC enzyme may contribute the relevant
signaturesin cancer.

Finally, our data directly link uracil excision by UNG and
REV1-dependent TLS to the acquisition of APOBEC3-induced signa-
turesin humancancer cells. Mutations associated with the activities of
other TLS polymerases have been discovered in human genomes®*¢*°,
Consistent with the roles of REV1in TLS*, endogenous REV1 activity
contributed to acquisition of a broader spectrum of mutation types.
Despite being one of the most prevalent signatures in cancer and nor-
mal tissues®*°, the mutational processes underlying the generation
of SBS5 are largely unknown. Increased burdens of SBS5 in urothelial
cancer have beenassociated withmutationsinthe ERCC2gene encoding
aDNA helicase that hasacentral role in the nucleotide-excision repair
pathway*. However, urothelial cancer is unique in that it is the only
known tumour type in which the core nucleotide excision repair (NER)
gene ERCC2 is significantly mutated, whereas SBS5 activity has been
identified in all tumour and normal tissues characterized to date®*.
Our resultsindicate that SBS5 may in part also represent afootprint of
lower-fidelity REV1-dependent translesion synthesis.
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Methods

Datareporting

No statistical methods were used to predetermine sample size. The
investigators were not blinded to allocation during experiments and
outcome assessment.

Cell culture

MDA-MB-453, BT-474,JSC-1and BC-1cell lines were acquired from the
cryopreserved aliquots of cell lines sourced previously from collabora-
torsor public repositories and extensively characterized as part of the
Genomics of Drug Sensitivity in Cancer (GDSC)>** and COSMIC Cell
Line projects**®. Bulk cell lines were genotyped by single-nucleotide
polymorphism (SNP) and short tandem repeat profiling, as part of the
COSMIC Cell Line Project (https://cancer.sanger.ac.uk/cell_lines) and
individual clones obtained here were genotyped (Fluidigm) to confirm
their accurateidentities. MCF10A cells were from M. Jasin’s laboratory
(MSKCC).HT-1376 cells were from B. Faltas’s laboratory (Weill Cornell).
HEK293FT cells were from T. de Lange’s laboratory (Rockefeller).

All cell lines were mycoplasma negative (Mycoalert Detection Kit;
Lonza). MDA-MB-453 cells were grown in DMEM:F12 medium supple-
mented with 10% fetal bovine serum (FBS) and 1% penicillin-strep-
tomycin. BC-1, BT-474 and JSC-1 cells were grown in RPMI medium
supplemented with 10% FBS, 1% penicillin-streptomycin, 1% sodium
pyruvate and 1% glucose. HT-1376 cellsand HEK293FT cells were grown
in DMEM HG medium supplemented with 10% FBS and 1% penicillin-
streptomycin. MCF10A cells were cultured in1:1 mixture of F1I2:DMEM
medium supplemented with 5% horse serum (Thermo Fisher Scien-
tific), 20 ng mI™ human EGF (Sigma-Aldrich), 0.5 mg ml™ hydrocorti-
sone (Sigma-Aldrich), 100 ng ml™ cholera toxin (Sigma-Aldrich) and
10 pg ml™ recombinant humaninsulin (Sigma-Aldrich). Unless other-
wise noted, all media and supplements were supplied by the MSKCC
Media Preparation core facility.

Generation of knockout cell lines

Cells (10°) were electroporated using the Lonza 4D-Nucleofector X
Unit (MDA-MB-453) or Lonza Nucleofector 2b Device (BT-474, BC-1,
JSC-1, HT-1376) using programs DK-100 (MDA-MB-453), X-001 (BT-
474, HT-1376) or T-001 (BC-1, JSC-1) in buffer SF +18% supplement
(MDA-MB-453) or 80% solution 1 (125 mM Na,HPO,*7H,0, 12.5 mM
KCl, aceticacid to pH 7.75) and 20% solution 2 (55 mM MgCl,) (BT-474,
BC-1,JSC-1,HT-1376) and 9 pg (UNG, SMUG1, REV1) or 10 pg (APOBEC3A,
APOBEC3B) of pU6-sgRNA_CBh-Cas9-T2A-mCherry plasmid DNA (Sup-
plementary Table 5). mCherry-positive cells were single-cell sorted or
bulk sorted and subcloned by limited dilution into 96-well plates by
FACS using the FACSAria system (BD Biosciences).

Knockout screening and validation by PCR

CRISPR knockout clone screening. Genomic DNA was isolated using
the Genomic DNA Isolation Kit (Zymo Research; ZD3025). Purified
genomic DNA for CRISPR-Cas9 knockout screens was amplified using
Touchdown PCR.Each PCR reaction comprised 7.4 pl double-distilled
H,0,1.25 pl10x PCR buffer (166 mM NH,SO,, 670 mM Tris base pH 8.8,
67 mM MgCl,, 100 mM -mercaptoethanol), 1.5 p110 mM dNTPs, 0.75 pl
DMSO, 0.25 pl forward and reverse primers (10 pM each), 0.1 pl Plati-
num Taq DNA Polymerase (Invitrogen; 10966083) and 1 pl genomic
DNA. Alist of primer sequencesis provided in Supplementary Table 5.

PCR for Sanger sequencing. PCR reactions for Sanger Sequencing
were performed using the Invitrogen Platinum Taq DNA Polymerase
(Invitrogen, 10966083) protocol. Genomic DNA (25 ng) was used for
eachreaction. Alist of the primer sequences is provided in Supplemen-
tary Table 5. DNA from PCR reactions was purified from agarose gels
using the Invitrogen PureLink Quick Gel Extraction Kit (Invitrogen,
K210012). Gel-purified DNA was cloned using the TOPO TA Cloning

Kit for Sequencing (Invitrogen; 450030) and colonies were selected
for sequencing (Genewiz).

Lentiviral transduction

Lentiviral plasmids for APOBEC3A, APOBEC3B and control knock-
downwere provided by S. Roberts’ laboratory*. For UNG-GFP lentiviral
transduction, UNG2 openreading frames were amplified from a BT-474
cDNA library using the Phusion High-Fidelity polymerase (Thermo
Fisher Scientific) and Gibson (NEB) assembled into pLenti-CMV-GFP
BlastR (Addgene). The constructs were transfected into HEK293FT cells
together with psPAX2 and pMD2.G (Addgene) using calcium phosphate
precipitation. Supernatants containing lentivirus were filtered and
supplemented with 4 pg ml™ polybrene. Successfully transduced BC-1
cells were selected by FACS and clones isolated by limiting dilution.
For shRNA knockdown, after transduction, cells were selected with
hygromycin B.

RNA isolation and quantitative PCR

RNA was isolated using the Quick-RNA Miniprep Kit (Zymo Research;
R1054). RNA was quantified and converted to cDNA using the Super-
Script IV First-Strand Synthesis System (Invitrogen; 18091050). cDNA
synthesis reactions were performed using 2 pl of 50 ng pl random
hexamers, 2 plof 10 MM dNTPs, 4 pg RNA and DEPC-treated watertoa
volume of 26 pl. The mixture was heated at 65 °C for 5 min, then cooled
onice for 5 min. Primers, probes and cycling conditions were adopted
from published methods>. Alist of the primer sequences is provided
inSupplementary Table 5.

Immunoblotting

Cellswere lysed in RIPA buffer (150 mM NaCl, 50 mM Tris-HCI pH 8.0,1%
NP-40, 0.5% sodium deoxycholate, 0.1% SDS, Pierce Protease Inhibitor
Tablet, EDTA free) or sample buffer (62.5 mM Tris-HCI pH 6.8, 0.5 M
B-mercaptoethanol, 2% SDS, 10% glycerol, 0.01% bromophenol blue).
Quantification of RIPA extracts was performed using the Thermo Fisher
Scientific Pierce BCA Protein Assay kit. Protein transfer was performed
by wet transfer using 1x Towbin buffer (25 mM Tris, 192 mM glycine,
0.01% SDS, 20% methanol) and nitrocellulose membrane. Blocking
was performedin 5% milkin1x TBST (19 mM Tris, 137 mMNacCl, 2.7 mM
KCl and 0.1% Tween-20) for 1 h at room temperature. The following
antibodies were diluted in 1% milk in 1x TBST: anti-APOBEC3A/B/G
(04A04) and anti-APOBEC3A (01D05) (see below; westernblot, 1:1,000),
anti-APOBEC3B (Abcam; ab184990; western blot, 1:500), anti-REV1
(Santa Cruz; sc-393022, western blot, 1:1000), anti-SMUGI1 (Abcam;
ab192240; western blot, 1:1,000 and Santa Cruz; sc-514343; western
blot, 1:1,000), anti-UNG (abcam; ab109214; western blot, 1:1,000),
anti-GFP (Santa Cruz; sc-9996; western blot, 1:1,000), anti-B-actin
(Abcam; ab8224; westernblot, 1:3,000), anti-B-actin (Abcam, ab8227;
western blot, 1:3,000); anti-mouse IgG HRP (Thermo Fisher Scien-
tific; 31432;1:10,000), anti-rabbit IgG HRP (SouthernBiotech; 6441-05;
1:10,000).

APOBEC3 monoclonal antibody generation

Residues1-29 (N1-term) or13-43 (N2-term) from APOBEC3A and resi-
dues 354-382 (C-term) from APOBEC3B and were used to create three
peptide immunogens (EZBiolab). Five mice were given three injec-
tions using keyhole limpet haemocyanin (KLH)-conjugated peptides
over the course of 12 weeks (MSKCC Antibody and Bioresource Core).
Test bleeds from the mice were screened for anti-APOBEC3A titres
by enzyme-linked immunosorbent assay (ELISA) against APOBEC3A
peptides conjugated to BSA. Mice showing positive anti-APOBEC3A
immune responses were selected for afinalimmunization boost before
their spleens were collected for B cell isolation and hybridoma pro-
duction. Hybridoma fusions of myeloma (SP2/IL6) cells and viable
splenocytes from the selected mice were performed by the MSKCC
Antibody and Bioresource Core. Cell supernatants were screened
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by APOBEC3A ELISA. The strongest positive hybridoma pools were
subcloned by limiting dilution to generate monoclonal hybridoma
cell lines. The hybridomas 04A04 (anti-APOBEC3A/B/G) and 01D05
(anti-APOBEC3A) were expanded then grown in 1% FBS medium. This
medium was clarified by centrifugation and then passed over a protein
G column (04A04) or protein A column (01D0S5) to bind to monoclonal
antibodies. The resulting monoclonal antibodies were eluted in PBS
(04A04) orin100 mM sodium citrate pH 6.0,150 mM NaCl buffer and
subsequently dialysed into PBS (01D05).

Cell cycle and apoptosis assays

AnnexinV staining was performed using the annexin V Apoptosis detec-
tionkit (BD Biosciences) according to the manufacturer’sinstructions.
For propidiumiodide plus BrdU double staining, BrdU was added to
the culture medium to afinal concentration of 10 uM for1 h. Cellswere
fixed with 70% ethanol and treated with 2 M hydrochloric acid for
20 min. BrdU staining was performed with 20 pl of anti-BrdU antibod-
ies (25 pg ml™?, B44, Becton Dickinson) for 15 minat room temperature
followed by a 15 min incubation with 50 pl Alexa Fluor 488 goat anti
mouse at40 pg ml™ (Invitrogen). After a final wash, cells were taken up
in100 pg mlI™ PIwith 20 pg mI™ RNase A. Flow data were collected on
the Fortesa or LSR-1l analyzer and analysed using FlowJo v.10.

Automatic counting of yH2AX foci
EdU staining was performed by using Click-iT EdU Alexa Fluor 488 Imag-
ingKits (Invitrogen, C10337) according to the manufacturer’sinstruc-
tions. For EdU incubation, EQU was added to the culture medium to a
final concentration of 10 pM for 2 h. Cells were fixed with 2% paraform-
aldehyde for15 minatroom temperature followed by 0.5% Triton X-100
permeabilization for 5 min. Click-iT reaction was performed according
tothe manufacturer’sinstructions. yH2AX was stained with anti-yH2AX
antibodies (EMD Millipore, 05-636-1,1:1,000) for 2 h at room temper-
ature followed by anti-mouse secondary antibody Alexa Fluor 647
(Invitrogen, A21235). Cells were stained with Hoechst (1 pg pl™) and
mounted with Prolong Gold Antifade Reagent (Invitrogen, P36934).
Images were acquired onthe DeltaVision Elite system equipped with
aDVElite CMOS camera, microtitre stage, and ultimate focus module
(zstack through the cells at 0.2 mmincrements). All of theimages were
processed by maximal projection of the zstack image series using the
soft WoRx software and analysed by Fiji. After separating channels
using the Image) Macro Batch Split Channels tool, nuclear masks were
generated by Fiji Macro CLAIRE, whereby nuclei areidentified by radius
inthe Hoechst channel, binary processed (filling holes and watershed)
and applied with auto local threshold (Phansalkar). Nuclear EAU and
Hoechstintensity values were collected by measuring the meaninten-
sity within nuclear masks (ROl measurement). To identify yH2AX foci,
images were processed with background subtraction and Gaussian
blur. yH2AX foci were displayed in ‘find maximum’ with output ‘point
selection’ with manually adjusted parameters. The number of nuclear
YH2AX fociwas calculated by dividing the total yfH2AX intensity at the
displayed points (within the nuclear masks) with the intensity of asingle
yYH2AX focus. All Image) macro and R codes were shared by M. Ferrari
(M. Jasin Laboratory; MSKCC).

Proliferation assays, doubling times and confluence
experiments

Cells were seeded in triplicate in either 24-well or 48-well plates at a
low dilution (5,000 to 20,000 depending on plate size and stock cell
line basal growth). Growth over time was then measured by calculating
daily cell confluency using an IncuCyte Live-Cell Analysis Imager (Essen/
Sartorius). The IncuCyte takes images of each well and analyses them
by applying a predetermined mask to each image that distinguishes
between an empty surface and asurface covered by cells. Once the mask
hasbeen applied, the program calculates the surface area occupied by
cellsand the percentage confluency. Images were taken every 24 hand

technical replicates were averaged to generate the percentage conflu-
ence, which was then plotted across time to generate growth curves.
Alternatively, population doublings were measured by cell counting
(Beckman Coulter). Cells were seeded from 1 million to 2 million cells
per platein triplicate and then allowed to grow for 72 h before being
collected and counted (Beckman Coulter). The cells were then seeded
oncemore at the same seeding value as the first time point and allowed
to grow for another 72 h before being counted once more. This con-
tinued for three cycles. Cell counts were used to calculate population
doublings between each time point.

Invitro DNA deaminase activity assay

Deamination activity assays were performed as described previously®.
In brief, 1 million (or 2 million MDA-MB-453) cells were pelleted and
lysed in buffer (25 mM HEPES, 150 mM NaCl, 1 mM EDTA, 10% glyc-
erol, 0.5% Triton X-100, 1x protease inhibitor), sheared through a
28 1/2-gauge syringe, then cleared by centrifugation at 13,000g for
10 minat4 °C. Deaminase reactions (16.5 pl cell extracts with2 plUDG
buffer (NEB), +0.5 pl RNase A (20 mg ml™), 1 pl of 1 uM probe (linear,
5 IRDS8OO/ATTATTATTATTATTATTATTTCATTTATTTATTTATTTA; or
hairpin, 5IRD800/ATTATTATTATTGCAAGCTGTTCAGCTTGCTGAATTT
ATT), and 0.3 ul UDG (NEB)) were incubated at 37 °C for 2 h followed
by addition of 2 ul 1 M NaOH and 15 min at 95 °C to cleave abasic sites.
Reactions were then neutralized with 2 pl1 MHCI, terminated by add-
ing 20 pl urea sample buffer (90% formamide + EDTA) and separated
on a prewarmed 15% acrylamide/urea gel in 1x TBE buffer at 55 °C for
70 min at 100 V to monitor DNA cleavage. Gels were imaged by Odys-
sey Infrared Imaging System (Li-COR) and quantified using ImageJ.

RNA-editing assay

DDOST558C>U RNA-editing assays were performed as described pre-
viously with assistance from the MSKCC Integrated Genomics Opera-
tion?, Total RNA was extracted using the RNeasy Mini kit (Qiagen)
according to the manufacturer’s instructions. After extraction, the
RNA was reverse-transcribed using the High Capacity cDNA Reverse
Transcription Kit (Thermo Fisher Scientific). cDNA (20 ng) along
with primers purchased from Bio-Rad (10031279 and 10031276) for
the target DDOST>*“Y amplification were mixed in PCR reactions in
atotal volume of 25 pl. Then, 20 pl of the reactions were mixed with
70 pl of Droplet Generation Oil for Probes (Bio-Rad) and loaded into
aDG8 cartridge (Bio-Rad). AQX200 Droplet Generator (Bio-Rad) was
used to make the droplets, which were transferred to a 96-well plate
and the following PCR reaction was then run: 5 min at 95 °C; 40 cycles
of 94 °C for 30s and 53 °C for 1 min; and finally 98 °C for 10 min. The
QX200 Droplet Reader (Bio-Rad) was then used to analyse the droplets
for fluorescence measurement of the fluorescein amidite (FAM) and
hexachloro-fluorescein (HEX) probes. The data were analysed using
the QuantaSoft analysis software (Bio-Rad) and gating was performed
on the basis of positive and negative DNA oligonucleotide controls.

Comparison of APOBEC3-associated mutational signaturesin
cell lines with cancer data

Annotations of mutational signatures across 1,001 human cancer cell
lines and 2,710 cancers from multiple cancer types were published
previously*. Where possible, we matched cancer and cell line cancer
classes as described in Supplementary Table 1. Eventually, 780 cell
lines and 1,843 cancers from matching types were used in analyses
presented in Fig. 1a. Individual classes and samples per class used are
listed in Supplementary Table 1, and the signature annotation was
published previously*.

Whole-genome sequencing

Genomic DNA was extracted from a total of 251individual clones using
the DNeasy Blood and TissueKit (Qiagen) and quantified with the Bio-
tium Accuclear Ultra high-sensitivity dSDNA Quantitative kit using



Article

Mosquito LV liquid platform, Bravo WS and the BMG FLUOstar Omega
platereader. Samples were diluted to 200 ng per 120 pl using the Tecan
liquid handling platform, sheared to 450 bp using the Covaris LE220
instrument and purified using Agencourt AMPure XP SPRI beads on
the Agilent Bravo WS. Library construction (ER, A-tailing and ligation)
was performed using the NEB Ultrall custom kit on an Agilent Bravo WS
automationsystem. PCR was set up using Agilent Bravo WS automation
system, KapaHiFiHot start mixand IDT 96 iPCR tag barcodes or unique
dualindexes (UDI, llumina). PCR included 6 standard cycles: (1) 95 °C
for 5 min; (2) 98 °C for 30 s; (3) 65 °C for 30's; (4) 72 °C for 1 min; (5)
cycle fromstep 2 five more times; (6) 72 °C for 10 min. Post-PCR plates
were purified with Agencourt AMPure XP SPRIbeads onthe Beckman
BioMek NX96 or Hamilton STAR liquid handling platform. Libraries
were quantified using the Biotium Accuclear Ultra high sensitivity
dsDNA Quantitative kit using Mosquito LV liquid handling platform,
Bravo WS and the BMG FLUOstar Omega platereader, pooled inequimo-
laramounts onaBeckman BioMek NX-8 liquid handling platform and
normalized to 2.8 nM ready for cluster generation on a c-BOT system.
Pooled sampleswereloaded onto the lllumina Hiseq X platform using
150 bp paired-end run lengths and sequenced to approximately 30x
coverage, as described in Supplementary Table 1. Sequencing reads
were aligned to the reference human genome (GRCh37) using Bur-
rows-Wheeler Alignment (BWA)-MEM (https://github.com/cancerit/
PCAP-core). Unmapped, non-uniquely mapped reads and duplicate
reads were excluded from further analyses.

Mutation identification

Somatic SBSs were discovered with CaVEMan (https://github.com/
cancerit/cgpCaVEManWrapper)*®, with the major and minor copy
number options set to 5 and 2, respectively, to maximize discovery
sensitivity. Rearrangements and indels were identified using BRASS
(https://github.com/cancerit/BRASS) and cgpPindel*’ (https://github.
com/cancerit/cgpPindel), respectively. The sequences of the corre-
sponding parent clones were used as reference genomes to discover
mutationsinindividual daughter clones, whereas asequence froman
unrelated normal human genome* (Supplementary Table 1) was used
asareference to discover mutationsin parent clones. SBSs, indels and
rearrangements were further filtered as described below. Comparisons
performed and the numbers of mutations removed with individual
filters are listed in Supplementary Table 1. SBSs, indel and rearrange-
ment calls are available in Supplementary Tables 8-10.

SBSs discovered with CaVEMan were filtered over the six filters split
into two steps: first, to remove the low-quality loci and, second, to
ensure that the mutational catalogues from daughter clones retained
exclusively mutations that were acquired during the relevant in vitro
periods spanning the two cloning events and that the mutational cata-
logues from parent clones retained mutations unique to individual par-
entclones. SBSs shared between parent clones (see below) were used to
derive proxies for the mutational catalogues of bulk cell lines (Fig. 1b).

First, only SBSs flagged by Caveman as ‘PASS’ when analysed
against the panel of 98 unmatched normal samples (https://github.
com/cancerit/cgpCaVEManWrapper)*® were considered, removing
large proportions of mapping and sequencing artifacts, as well as
the common germline variation®. Four post-hoc filters were applied
to PASS variants to retain only mutations presenting at high-quality
loci. SBSs were removed (1) if the median alignment score (ASMD) of
mutation-reporting reads was less than orequal to130; (2) if the muta-
tion presented at alocus with the clipping index (CLPM) > 0; (3) if the
mutationlocus was covered by 15 or less reads in the reference samples
usedincomparisons; and (4) if mutations were not reported by at least
one sequencing read of each direction.

Second, the remaining mutation loci were genotyped across all
clones from the belonging cell lines. We used cgpVAF (https://github.
com/cancerit/vafCorrect) to count the number of mutant and wild
type reads across individual clones. Mutations were removed from

each parent or daughter clone (5) if they presented in any reads of the
corresponding reference samples or if (6) they presented in >50% of
clonesfromother parental lineages from belonging cell lines. In muta-
tional catalogues from parent clones, these steps served toremove the
majority of the germline mutations and asmaller proportion of somatic
mutations shared between parent clones, therefore retaining predomi-
nantly mutations unique to individual parent cell lineages acquired
before the examined in vitro periods. In mutational catalogues from
daughter clones, these steps served to remove small proportions of
mutations (Supplementary Table 2) that were probably acquired before
the examined periodsinvitro that were not capturedinthe correspond-
ing reference sequences. Mutations removed over these two steps were
accumulated into approximate mutational catalogues of bulk cell lines
(Fig.1b).Onaverage, only asmall proportion of mutations was removed
(-2%) with the final filter (6) from the daughter clones, pointingtoa
high-confidence ability to call de novo acquired mutations. Although
these filters remove most of the germline and the pre-existing varia-
tion, aminor proportion of the removed mutations may have arisen
independently across multiple parental lineages at the hairpin loci that
are hotspots for APOBEC3-associated mutagenesis?.

This analysis revealed that, inrareinstances, high proportions (>30%)
of SBS mutations were shared betweenthe related daughters and absent
fromtheir corresponding parents, indicating that such daughters were
most likely established from a common subclone that arose during
the cultivation of the parent clone. In total, 21 daughter clones (Sup-
plementary Table 1; indicated in the relevant figures) were excluded
from statistical comparisons relating to mutational burdens to ensure
that considered daughter clones did not share high proportions of SBS.

Rearrangements and indels were identified only across daughter
clones. Rearrangements that were not correctly reconstructed and were
identified in the reference sequences by BRASS were removed. Indels
were removed if they (1) presented at loci covered by 15 or less reads
inthe corresponding reference samples to ensure sequence coverage
was sufficient to remove pre-existing mutations, (2) presented at only
asingle read in a considered sample to remove putative artifacts, (3)
presentedinany reads of areference sample to ensure only mutations
absent from the references were considered. Rearrangements and
indelsin daughter clones were further removedif they were detectedin
more than 50% of daughter clones from the related lineages to remove
possibly pre-existing mutations.

Validation of clonal sample origins

Toensure thatsamples were single-cell derived, we examined the pro-
portions of the variant-reporting reads (equivalent to variant allele
fraction (VAF)) at the mutationloci (Extended DataFig.4b). Consistent
with the polyploid background of most of the cell lines under inves-
tigation®, VAF distributions often deviated from the average of ~50%
expected for clonal heterozygous somatic mutations occurringin a
diploid genome. The largely unimodal VAF distributions confirmed
the clonal origins of the majority of the samples. On occasions inwhich
bimodal VAF distributions were observed, at least one of the peaks fol-
lowed the VAF distribution of all of the other related clones, indicating
that the other peak originates from mutations acquired subclonally.
Suchinstances were observed only in the BC-1cell line.

Sequence-context-based classification of single-base
substitutions

SigProfilerMatrixGenerator (v.1.1; https://github.com/Alexandrov-
Lab/SigProfilerMatrixGenerator) was used to categorize SBSs into
three separate sequence-context based classifications. The algorithm
allocates each SBS to (1) one of the 6 class categories (C>A, C>G, C>T,
T>A, T>C and T>G) in which the mutated base is represented by the
pyrimidine of the base pair; (2) to one of the 96 class categories (in which
each of 6 class mutation types is further splitinto 16 subcategories on
the basis of the 5’ and 3’ bases flanking the pyrimidine of the mutated


https://github.com/cancerit/PCAP-core
https://github.com/cancerit/PCAP-core
https://github.com/cancerit/cgpCaVEManWrapper
https://github.com/cancerit/cgpCaVEManWrapper
https://github.com/cancerit/BRASS
https://github.com/cancerit/cgpPindel
https://github.com/cancerit/cgpPindel
https://github.com/cancerit/cgpCaVEManWrapper
https://github.com/cancerit/cgpCaVEManWrapper
https://github.com/cancerit/vafCorrect
https://github.com/cancerit/vafCorrect
https://github.com/AlexandrovLab/SigProfilerMatrixGenerator
https://github.com/AlexandrovLab/SigProfilerMatrixGenerator

base pair); (3) to one of the 288 class categories (in which each of 96
class mutation typesis further split on the basis of whether it presents
onthetranscribed or untranscribed strand); and (4) to one of the 1,536
class categories (inwhich each of 6 class mutation typesis further split
into 256 subcategories on the basis of two 5’ and 3’ bases flanking the
pyrimidine of the mutated base pair). The relevant outputs are shown
inSupplementary Table 3.

Enrichment of APOBEC3-associated mutations at trinucleotide
and pentanucleotide motifs
Once SBSs were allocated to their sequence context classes as
described, enrichment of C>T and C>G mutations was investigated
across the APOBEC3-associated target trinucleotide motifs (TCN and
TCA, where N is any base and the target base is underlined), and pen-
tanucleotide motifs, which were previously associated with activities
of APOBEC3A (YTCA, where Y is a pyrimidine base) and APOBEC3B
(RTCA, where Ris a purine base) in yeast overexpression systems?.
C>A SBSs at TCN were not considered because those mutation types
have been attributed to both APOBEC3-associated mutagenesis and
other mutational processes arising during in vitro cell cultivation*.
Trinucleotide and pentanucleotide sequence motifs were quantified
using sequence_utils (v.1.1.0, https://github.com/cancerit/sequence_
utils/releases/tag/1.1.0;https://github.com/cancerit/sequence_utils/
wiki#sequence-context-of-regions-processed-by-caveman) across
regions of human autosomal chromosomes (GRCh37) that are con-
sidered by the CaVEMan algorithmin detecting SBSs. The middle base
pair of each reference trinucleotide and pentanucleotide sequence
was considered to be a putative mutation target and the surrounding
sequence context was extracted by using the DNA strand belonging
to the pyrimidine base of the target base pair. A total of 96 possible
trinucleotide and 512 pentanucleotide contexts were quantified across
both DNA strands (for example, the AGT trinucleotide is reported as
ACT; the AAGCA pentanucleotideisreported as TGCTT). Enrichment of
APOBEC3-associated mutations at the motifs of interest was calculated
asdescribed previously**. For example, to calculate enrichment () of
cytosine mutations at RTCA sites the following was used:

Errca= (Mutgrca/Congrea)/(Mut/Cong)

where Mutgc, is the total number of C>G and C>T mutations at RTCA
contextsin autosomal chromosomes; Mut is the total number of C>G
and C>T mutationsin autosomal chromosomes; Cong;c, and Concare
the totalnumbers of available RTCA contexts and C bases, respectively.
Enrichments of mutations in the other contexts, TCA, TCNand YTCA,
were calculated analogously.

Mutational signature analysis

Mutational signature analyses were performed over three steps using
the SigProfilerExtractor tool (v.1.1.4; https://github.com/Alexandrov-
Lab/SigProfilerExtractor)*. First, de novo signatures were extracted
across 288-channel matrices (see the ‘Sequence-context-based classifi-
cation of single-base substitutions’section) 0f1,317,120 genome-wide
mutations from 5bulk cell lines and 251 clones, using the non-negative
matrix factorization (NNMF)-based function sig.sigProfilerExtrac-
tor, with factorizations between k=1and k = 20 signatures and over
500 iterations. This analysis revealed 10 signatures with an average
stability of over 0.8, termed SBS288A-J (Supplementary Table 4). Sec-
ond, the decomp.decompose function was used to match de novo
identified mutational signatures to a set of reference set of COSMIC
Signaturesidentified previously across more powered cancer datasets
(v3.2; https://cancer.sanger.ac.uk/cosmic/signatures; Supplementary
Table4). This step enables distinguishing de novo signatures that have
not been completely separated during the extraction and that can be
explained by a combination of the known signatures from de novo
signatures that have not been previously identified. Note that this

step collapses 288-channel profiles of de novo identified signatures
into 96-channel profiles to match the highly annotated 96-channel
format of COSMIC signatures. SBS288A, SBS288B, SBS288C, SBS288F
and SBS288H were successfully decomposed into a spectrum of known
mutational signatures (cosine similarity > 0.97). Low-confidence
decomposition (cosine similarity < 0.95) was achieved for SBS288D,
SBS288E, SBS288G, SBS2881 and SBS288J, indicating that these signa-
tures probably represent new signatures that are absent fromthe COS-
MIC reference set. SBS288G was the only signature with low-confidence
decomposition that was extracted over alow stability score (0.75) and
was therefore not considered to be a new signature. SBS288E reflects
patterns of SBS2 and SBS13, albeit with a higher relative proportion
of C>A mutations in TCN contexts, and was therefore considered to
be anew signature associated with APOBEC3-mediated deamination.
SBS288I, SBS288) and SBS288D were considered new signatures of
possibly unknown in vitro processes because they presented across
multiple lineages of mostly individual cell lines and were not discovered
previously across much larger sets of primary cancers from matching
cancer types used to derive COMIC reference signatures. Third, the
decomp.decompose function was used to quantify the activities of the
final set of 96-channel mutational signatures, composed of the new
andidentified COSMIC signatures, across individual samples. Analyses
were performed with default penalties for discovery of signatures in
individual samples (results reported in Supplementary Table 4 (higher
penalty)), as well as with lowered penalties (options ‘nnls_add_pen-
alty’=0.005 and ‘nnls_remove_penalty’=0.001) to enable higher sensi-
tivity of signature discovery (Supplementary Table 4 (lower penalty)).
Manualinspection of mutational spectra of individual clonesindicated
that the higher discovery penaltiesincrease the false-negative signature
callsacross the study. Thus, the signature estimations across individual
samples displayed in the figures were performed using analyses with
lowered discovery penalties.

Note thatincorporation of the higher signature discovery penalties
reduces the overall number of clones with APOBEC3-associated SBS2/13
in experiments in which their burdens are generally low, including in
APOBEC3Aknockoutsofsomecelllines,indouble APOBEC3A/APOBEC3B
knockouts and in wild-type and APOBEC3A- and APOBEC3B-knockout
clones from the HT-1376 cell line. However, it does not change any of
thefindings pertaining to the SBS2/13 acquisition in those experiments
(notshown). Despite this, we cannot exclude the possibility that SBS2/13
burdens may be overestimated in samples in which their overall bur-
dens are low (<100 mutations). However, higher burdens of SBS2/13
(>100 mutations) have been detected among some, or multiple, clones
from the indicated genotypes, consistent with persistent APOBEC3
mutagenesis. Moreover, reported NNMF-independent analyses, includ-
ing analyses of clustered mutationsin APOBEC3-associated sequence
contexts, APOBEC3-associated spectrum of mutations in TCN contexts
and enrichment of cytosine mutations at APOBEC3-associated cyto-
sine mutations in TCN/TCA sequence contexts, further indicate that
APOBEC3 mutagenesis is present or cannot be excluded in some, or
multiple, clones from these genotypes.

Discovered signatures that are not APOBEC3-associated are signa-
tures of flat profiles and/or low mutational burdens (Extended Data Fig.
4aand Supplementary Table 4) that challenge the accurate estimation
of their activities in individual samples®® and/or were, after manual
inspection, determined to probably be false-positive calls. This s fur-
ther reflected in highly variable discovery of such signatures, with
the exception of SBS5, inindividual clones after different penalties
used in signature discovery (Supplementary Table 4). Their activities
were therefore summed for simplicity and represented together as
‘SBS_other’. SBS5 was accumulated into ‘SBS_other’, unless otherwise
indicated. Given the general challenges associated with estimating
the activities of signatures of flat profiles®®, we cannot exclude the
possibility that mutational burdens of SBS5 were overestimated in the
study. However, analyses using both higher and lower penalties for
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signature discovery revealed a decrease in SBSS5 after REVI knockout
(Extended Data Fig. 9k).

Identification of clustered mutations

To detect clustered SBSs, a sample-dependent intermutational dis-
tance (IMD) cut-off was derived, which is unlikely to occur by chance
given the mutational pattern and mutational burden of each clone™.
To derive abackground model reflecting the distribution of mutations
that one would expect to observe by chance, SigProfilerSimulator
(v.1.1.2; https://github.com/AlexandrovLab/SigProfilerSimulator)
was used to randomly simulate the mutations in each clone across
the genome®’. Specifically, the model was generated to maintain the
+1bp sequence context for each SBS, the strand coordination, including
the transcribed or untranscribed strand within genic regions®, and the
total number of mutations across each chromosome for agiven sample.
AlISBSs were randomly simulated 100 times and used to calculate the
sample-dependent IMD cut-off so that 90% of mutations below this
threshold were clustered with respect to the simulated model (that
is, not occurring by chance with a g value of <0.01). Furthermore, the
heterogeneity in mutation rates across the genome were considered by
correcting for mutation-rich regions presentin 10-Mb-sized windows
andby usingathreshold for the differencein VAFs between subsequent
SBSsin a clustered event (VAF difference < 0.10).

Identified clustered SBSs were categorized into specific classes: (1)
omikli® class, consisting of two or three mutations with all IMDs less than
the sample-dependent IMD cut-off, at least a single IMD greater than
1bpand consistent VAFs; (2) kataegis' class, consisting of four or more
mutations with all IMDs less than the sample-dependent IMD cut-off, at
leastasingle IMD greater than1bp and with consistent VAFs; (3) doublet
class, consisting of two adjacent mutations with consistent VAFs; (4)
multibase class, consisting of three or more adjacent mutations with
consistent VAFs. Doublet and multi-base classes, alongside all of the
other clustered SBSs with inconsistent VAFs, were classified as ‘other’.

Classes were presented as both clustered SBSs (Fig. 4 and Extended
DataFig.8a,c-e), whichreflect single mutations, and clustered events
(Extended Data Fig. 8b), which encompass the local grouping of clus-
tered SBS (thatis, a kataegis event encompasses four or more adjacent
clustered SBS). For example, a single sample might have 5 kataegis
events, with 6 SBSs per event, which would encompass a total of 30
SBSs. Clustered SBS tumour mutational burden was calculated using
the total number of SBSs across a given clustered class, whereas the
clustered event tumour mutational burden was calculated using the
total number of events across a given clustered class. The combined
clustered mutation tumour mutational burden was calculated by sum-
ming the total number of clustered SBSs or events across all subclasses.
Clustered SBSs were further classified into 96-class categories (see the
‘Sequence-context-based classification of single-base substitutions’
section). SBSs at cytosine bases in TCN contexts were classified as
‘APOBEC3’, while all other mutations were classified as ‘non-APOBEC3'.
Statistical comparisons of the differencesin burdens of clustered SBSs
and events across various genotypes and cell lines were calculated
using two-tailed Mann-Whitney U-tests and FDR correction using the
Benjamini-Hochberg procedure (Supplementary Table 6).

Dependency on REV1in BRCA celllines

CRISPR dependency data®®®* of BRCA cell lines on REV1 was downloaded
from DepMapPortal (DepMap 21Q4 Public; https://depmap.org/portal/
gene/REV1?tab=overview). The Chronos dependency score is based
ondataacquired froma cell depletion assay®*. Alower Chronos score
indicatesalikelihood that the gene of interestis essentialinagiven cell
line. Ascore of O indicates that agene is non-essential; correspondingly
-1is comparable to the median of all pan-essential genes. Mutational
signature annotationin BRCA cell lines was published previously*. BRCA
celllines with a sum of APOBEC3-associated SBS2 and SBS13 of 0 and
greater than 80 mutations were considered to be APOBEC-negative

and APOBEC-positive, respectively. A total of 27 BRCA cell lines with
available Chronos scores and APOBEC-associated mutational signature
status allocation were considered in the analysis (Extended Data Fig. 9j
and Supplementary Table 7) and the difference in dependency scores
on REV1was compared between two sets of cell lines using one-tailed
Mann-Whitney U-tests.

APOBEC3H haplotype I genotyping

APOBEC3H (A3H) haplotype I was genotyped across the relevant SNP
loci (rs34522862/rs139292, rs139293, rs139297, rs139298, rs139299,
rs139302) using the aligned whole-genome sequencing data and as
reported previously®. The analysis revealed that BT-474, MDA-MB-453
and]JSC-1cell lines carry A3H haplotype I, whereas JSC-1and HT-1376
donot.

Statistical analyses
Statistical comparisons were performed using the tests and corrections
indicated in the figure legends.

Reporting summary
Further information on research design is available in the Nature
Research Reporting Summary linked to this paper.

Data availability

All sequencing data generated in the study have been deposited in
the European Nucleotide Archive database under accession number
ERP137590. Access numbers and IDs of sequence files from individual
samplesarelistedinSupplementary Table1.Sourcedata, includingquan-
tification of mutational sequence contexts (Supplementary Table 3)
and quantification of mutational signatures (Supplementary Table 4);
and SBS, indel and rearrangement mutation calls (Supplementary
Tables 9 and 10) are provided. Publicly available source dataincludes
annotation of mutational signatures across human cancer celllinesand
human cancers (Fig. 1) accessed from supplementary table 3 of ref. *,
and DepMap dependency data of BRCA cell lines on REV1 downloaded
from the DepMapPortal (DepMap 21Q4 Public; https://depmap.org/
portal/gene/REVI1?tab=overview) (Supplementary Table 7).

Code availability

Software central to analyses in this Article is available online and
includes the core computational pipelines (versions listed in Supple-
mentary Tablel) for sequence alignment (https://github.com/cancerit/
PCAP-core); identification of SBSs (https://github.com/cancerit/cgp-
CaVEManWrapper), indels (https://github.com/cancerit/cgpPindel)
andrearrangements (https://github.com/cancerit/BRASS); genotyping
of specificlociacross multiple samples (https://github.com/cancerit/
vafCorrect); as well as code for theidentification and quantification of
SBS sequence contexts (v.1.1; https://github.com/AlexandrovLab/Sig-
ProfilerMatrixGenerator); for the quantification of reference sequence
contexts (v.1.1.0; https://github.com/cancerit/sequence_utils/releases/
tag/1.1.0); for the analysis of mutational signatures (v.1.1.4; https://
github.com/AlexandrovLab/SigProfilerExtractor) and for the analysis
of clustered mutations (v.1.1.2; https://github.com/AlexandrovLab/
SigProfilerSimulator; v.1.1.0 https://github.com/AlexandrovLab/Sig-
ProfilerClusters/releases/tag/v1.0.0).
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Extended DataFig. 5| Analysis ofindels and chromosome rearrangements
across cellline clones. a) Plots showing numbers of indels and b) chromosome
rearrangements detected genome-widein theindicated cellline clones. Clones

markedinred were excluded from statistical tests on mutational burdens
across the study (Methods).



b

BT-474 BT-474 (60dy propagation) W ses2 M sBS13a
[wtcia ] [ Wt cl. A daugnters ] M sBS13b  SBSother
60 100~ 4005, )
v 50,?421 200120415 3 4800
700 o-stmdlo o _..J.l_.J. ]
0 350-2963 LI S 2000
[ 1300-p 7 100044 9 10004575 800777 1700377 @
;g?s 650-4945 h 5004234 50044115 400-3143 850-6303 h (£ o _ ll-
> ot il il SR |l DT 0N | R TR O o Al 3 ool== -
. N Y C oY - 00 - a9
1400-373 800777 < < O 0 0o 0000 0000
_6549 3407
fodiy L| oo wtcl. A A3AKOcl.B A3AKOcl.C A3BKOcl.D
PRSI oden
TE T ‘ C BT-474 (60dy propagation d
g0 100°B7 10052 100183 10057 S .
days 5o-305 501366 50419 50047 ] s
6005 g . [y T [ PO TR ST PR Q H
M 300-2745 LI h »
e e T B b
32 s0 50- 50 50 50
L Y PR O | By VI T PP B 1Y | o kbl Jbid s bt N
10057 100-Bgs——— 2
w,t\ﬁ 50 1011 ]
T i shiad u].hjw
|asakocic | [A3AKO cl. C daughters
w 70T e 100 10052 1001c3 100C5
@ 350-3531 u days 50-215 50222 504419 50286 g
[ R T e P NN PR PPETIURSMIN I T NSO STl PR e
[asBkOclD | [43BK0 cl. D daughters |
47 40057 40057 30003 1000 4
800-p, days poo-1740 Ll 2001728 L 1501015 I.I 550-4611 ll h
B 003707 > ool ll ol el PRETINN | B
[P | B i Ay R T 4001577 5009p.13 800p 15 8009p 16
2ys 5504236 I h 2001741 Ll 25041817 0 LI 40043196 LI h 40043249 1],
odom LW ol T T | DA DT | Wt ASAKO ASBKO
A3A ASBKO cl. L [A34 A3B KO cl. L daughters | E ©
1400 100~ 1002 10013 1007 10015
2 7001'5753 Ll 12 50,'5‘7'4 1535 50}705 50-502 50839 E QU,
2ys S < o
=R S P Y T TSRl FY TGN PN V1 | WTRTETI PNTOUTONOTI 1 18 | 2 I
c =
[A3A ATE KO el W] > )
~ T
o 13007y 1o 10T 100z 1003 100z 2 @
M 506528 days 50-563 50678 50470 50568 [T
CZ A_;_,L l.| > bbb o bbb atididi o tmibesaibois o dacasinis BC>ABC>GEC>T Z<<< z<<< Za<< Z<<<
5355 8533 8333 883¢
FREE FFESE FREE FREER
f usc g usc 1 BC-1
[ ] [t cl. A daugnters ] 250
|oo—§>‘62 200 N 700 mE 200%156 100 R © © oo
20073 50-" 100 50 100 50
» 82 © ®
@ 10041256 days "o dadbleeaimadt oLl Ll s il bl oduddl sl I.niL 5 5 10
[2I .IJ].“ > 0075 2005733 m m 100
% “ ? ? 9
o waba o LA 0
[wtorB | [wecl. B daughters a a %
bt WEr By WEE By & 5
300-g 50 50 50 50 T [} [}
@ 150-2018 B o J.ul.... o |l“lL_.ln o .lJlJiL_u..uJ.l o Lalblo anttl o LALA 2 B 20
@ °J"‘uL 100-g35 10057 100555 100-5 53 0
76 715 85 6
50- 50 50 50 12000
et 2L e 2P B
o A 8000
[asakocc | [A3AKO cl. C daughters ] [4)] [9]
10033 100c 77 1001c75 10075 1001c7g % % 4000
66 501665 501764 J. 0 ZSLL 501685
il ssen o badbl . olabil it %o Ladbl it % Ll 0
‘°°’g7bﬂ ‘001%21 ‘00156224 <<cl<<< sEsnEadnn  GOOGUG00 GEEGE686a
50- 50 50
FRVH TR O v O MAA WMAB ABKO  AHKO
|asakoe.p | | A34 KO cl. D daughters. |
100573 1001577 66| 1001075 100576 752 1007547 ) h JSC—1
» 2005 50—59nL_ o791 L 501704 L. 50 IJ. 50 L
B o stL._ e, o bbbl nans o il p9 FE| Yo VT | PPN g FY V| RPT Wt ASAKO A3BKO
Lubih =
0 100-51g 100575 1001557 1001522 658 2007027 =
50,awi 50721 I.__ 50 73T l 50 ]‘L 1004742 @ o
Ty | . o Ll P 1Y 11 RPPORPisel 1 11 Y Vil PP N E_ 5
|asBKOCLE | [A38KO cl. E daughters | L S
B Yoo Bco B oo o e o ol = 5 g
150~ 2y 50~ 1 100 50 .L 50 L B 3
@« uJ.iJ.lL.n..h > ujt.h].._n.ll P PURTINN 0N | R WIS R ¥ [ SRS g T | A 2 @
[assKOGLF | [A3B KO cl. F daughters ] B e Rl
85 4003 4005 20074 2005 10007 S0P Bppe fesp
days pgp-1857 2010 1004979 1001237 5004055 ﬂ 33 33 33
LGP | B0y DI o kadnlo sl P WY 1 PO Tl PO O Sequence context
BC>ANC>GHEC>T
HT-1376 HT-1376 HT-1376 —~ HT-1376
i<
[wei A [Weel. A daughters | wt__ ASAKO A3BKO 5200
400~ 100-p 5 1004 4 100146 100-p7 @ 750 - 27
0 200-4437 55 50-893 50758 50h€29 50-891 e c o =8
e} 5 =1
a7 Ll B T T YT F T TR T PO P T ¥ o bitalhashbi i 050 g T SSo02
[wter.B ] [wtel. B daughters ] (% 250 S - S c)(’)\
. . 8 <
B o ot e oo [ o B o = g 5B
200~ 2yS 50- 200- 50 50- 50 « & oW
® Junk.ulull > ik i da L b shidd, bbbl L. he] © 2=
ol ok P BRI | W VR T o o-badi pe <b
0.0
[ASAKO cl.C A3AKO cl. C daughters 1 =z Z<B-NnB0aNO0d
‘ ‘ ‘ & ‘ °Z<x< z<<< zZ<=<x< ’18 85 _down- ooog
10057 10075 100754 10075 10075 3353 83338 8589 2w O ASBKO
- /851 73 l§74 815 57 FrREE FrEE FREE Q = ]
o 400 O s 100 50 o 50 " 50 L 50 i 50 I.E.Il ES ES ES 2 2
@ 200- days o kil o-balln shasl o bl iLm..llJ.ﬂ.l o o-hi il m 3
%) oJ"-m _'mu—C, T 10055 wt cl. B daughters <
e 500927 = weB B1 B2 B3 B5 _B7
o hiski o Lidthas bl g .
[A3BKO cl. D /A3BKO cl. D daughters | 5 °
100-57 587 100 ?‘%5 100 EDE% |UD’D?3 100 gﬂg E o~
4005 50 50 50 50 o - II I
2 200 Buot ays oj.u.li o kbbbl o bl o bbb thies LoEee SRt s o I | L]
BTk days wicl Awtcl. B ABAKO A3BKO @ “zx<«< z<<< z<s<z<<<z<<<zisx
o 100-p 6 100-p 7 o.C c.D iy GO835 5000 5000 5000 50080 5088
889 735 . : FRES FRES FREE FREE FRER FREE
TITTVI 1YY s I RTIEY HC>ANC>GEC>T

Extended DataFig. 6| See next page for caption.
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Extended DataFig.6|APOBEC3 deaminases drive acquisition of SBS2

and SBS13 in human cancer cells. a,f,j) Mutational profiles of indicated
clones plotted as numbers of genome-wide substitutions (y-axis) at cytosine
bases classified into 48 possible trinucleotide sequence contexts (x-axis;
detailed in Extended Data Fig. 4a). Arrows indicate the number of days
spanning the cloning events of parents (left of arrow) and daughters (right),
during whichmutation acquisition was tracked. b) Numbers of SBS attributed
to colour-coded mutational signatures discovered inindicated daughter
clones. Q-values were calculated using one-tailed Mann-Whitney U-tests and

FDR corrected using the Benjamini-Hochberg procedure.c,d,g,i,k) Focused
plots showingindicated SBS2, SBS13a/bburdensinindicated daughter clones.
e,h,I,m) Enrichment of cytosine mutations at APOBEC3B-preferred RTCA and
APOBEC3A-preferred YTCA sequence contexts (R=purinebase, Y = pyrimidine
base, N=any base) in daughter clones fromindicated cell lines and genotypes.
m) Quantification of DDOST558C>U levelsintheindicated HT-1376 cells. Bars
represent the mean of 3 technical replicates and n =2 experiments. Clones
marked inred across panels were excluded from statistical tests (Methods).
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Extended DataFig.7|Characterization of APOBEC3A and APOBEC3B
expressionlevels. a) Quantification of APOBEC3A protein levels relative
to correspondingactinsignalsintheindicated daughter clones as shownin

Fig.3k (Mean,***p =

0.0003, Student’s t-test, n =2 experiments).

b-h) Immunoblotting with anti-APOBEC3A (01D05), anti-APOBEC3B, and
anti-actinantibodiesintheindicated cell lines. i) Quantification of DDOST

558C>Ulevelsintheindicated MDA-MB-453 cells. Barsrepresent the mean +SD
of DDOST558C>URNA editing activity across daughter clones. Data are

derived from3shCTRLand 7 shA3B daughters across 3 technical replicates and
n=1experiment. P-values were calculated using two-tailed Student’s t-test with
Welch’s correction (*p < 0.05).
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Extended DataFig.8| APOBEC3 deaminases drive acquisition of kataegis
and omikliin human cancer cells. Clustered tumour mutational burdens
(TMB), defined as numbers of total, kataegis and omikli a) APOBEC3-associated
(purple; cytosine mutations at TCN contexts) and ¢) non-APOBEC3-associated
(black; all other mutations) clustered SBS per megabase, inindicated daughter
clones. Red barsindicate median TMB. b) Clustered TMB, defined as numbers
oftotal, kataegis and omikli clustered genome-wide events, inindicated
daughter clones. g-values (panels a-c) were calculated using two-tailed
Mann-Whitney U-tests and FDR corrected using the Benjamini-Hochberg

procedure (**¢ < 0.01;*q < 0.05; ns, not significant).d) Enrichment of clustered
cytosine mutations at APOBEC3B-preferred RTCA and APOBEC3A-preferred
YTCAsequence contexts (R=purinebase, Y =pyrimidine base, N=any base) in
daughters fromindicated cell lines and genotypes. €) Mutational spectra of
clustered mutationsin non-APOBEC3-associated contexts acquired denovoin
designated clones. Clones with high proportions of shared mutations
(Methods) were excluded from representation and statistical testsin panels
a-c.Only mutations unique toindividual daughter clones were consideredin
representationsin panele.
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Extended DataFig. 9| REV1does not exhibit syntheticlethalinteraction
with APOBEC3. a) Immunoblotting with anti-APOBEC3A (04A04) and
anti-actinantibodiesintheindicated celllines (n = 3 experiments).

b) Quantification of DDOST558C>U levelsinthe indicated MDA-MB-453 cells
(Mean +SD, ns, not significant, one-way ANOVA with Tukey’s
multiple-comparisonstest, n =3 experiments). c,e) Cytosine deaminase
activity intheindicated cell lines measured against linear probes + RNase
treatment to degrade RNAin extracts. d,f) Quantification of APOBEC3
deaminaseactivity asapercentage of processed DNA asin c,e) (Mean, ns, not
significant, one-way ANOVA with Tukey’s multiple-comparisons test, n=2
experiments). g,h) Plots showing cell cycle distribution of the indicated cell
lines (mean = SD, n=3 experiments). i) YH2AX, EdU, and DAPI levels were
quantified and plotted across the indicated axes. Dots represent individual
cellsthat were coloured according to the intensity of yH2AX staining.
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j) DepMap CRISPR dependency data of 27 BRCA celllines, classified as ‘SBS2/13
negative’and ‘SBS2/13’ positive (Methods), on REVI. The dots represent cell
lines plotted alongside the y-axis denoting the Chronos Dependency Score
(Methods). The box represents the 25th-75th percentile of the data, centreline
represents the median, the upper and lower whiskersindicate the maximum
and minimum data points without considering boxplot outliers (larger dots,
respectively, any values 1.5 times the interquartile range over the 75th or under
the 25th percentile). P-value was calculated using a one-tailed Mann-Whitney
Utest. k) Focused plots showingindicated SBS5and ‘SBS other’burdensin the
indicated cell lines in analyses where signatures were identified with lower or
higher stringency discovery penalties (Methods). g-values were calculated
using one-tailed Mann-Whitney U-tests and FDR corrected using the
Benjamini-Hochberg procedure. Clones marked in red were excluded from
statistical tests (Methods).
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Statistics

For all statistical analyses, confirm that the following items are present in the figure legend, table legend, main text, or Methods section.

Confirmed
The exact sample size (n) for each experimental group/condition, given as a discrete number and unit of measurement
X A statement on whether measurements were taken from distinct samples or whether the same sample was measured repeatedly

The statistical test(s) used AND whether they are one- or two-sided
Only common tests should be described solely by name; describe more complex techniques in the Methods section.

A description of all covariates tested
A description of any assumptions or corrections, such as tests of normality and adjustment for multiple comparisons

A full description of the statistical parameters including central tendency (e.g. means) or other basic estimates (e.g. regression coefficient)
AND variation (e.g. standard deviation) or associated estimates of uncertainty (e.g. confidence intervals)

X

For null hypothesis testing, the test statistic (e.g. F, t, r) with confidence intervals, effect sizes, degrees of freedom and P value noted
Give P values as exact values whenever suitable.

X

For Bayesian analysis, information on the choice of priors and Markov chain Monte Carlo settings
For hierarchical and complex designs, identification of the appropriate level for tests and full reporting of outcomes

Estimates of effect sizes (e.g. Cohen's d, Pearson's r), indicating how they were calculated
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Our web collection on statistics for biologists contains articles on many of the points above.

Software and code

Policy information about availability of computer code

Data collection Indirect immunofluorescence microscopy was performed using softWoRx v7.0.0 and CentOS v6.3 operating system. Agarose gels and
Western blots were imaged using the ChemiDoc MP Imaging system (BioRad). Cell growth was analyzed using IncuCyte v2020b. Real Time
quantitative PCR data were collected using QuantStudio Real-Time PCR software v1.3. Deaminase assays were imaged using ImageStudio
(Licor). RNA editing assays were performed using QuantSoft analysis software (BioRad).

Data analysis Indirect immunofluorescence microscopy data and deaminase assays were analyzed using Fiji v1.53b. gPCR data were analyzed using
QuantStudio Real-Time PCR software v1.3. Data were plotted and statistical analyses were performed using Graphpad Prism v9.3.0 (Graphpad
Software Inc.). RNA editing assays were analyzed using QuantSoft analysis software (BioRad). Sanger sequencing alignments and knockout
validation were performed using Benchling [Biology Software] 2022 (https://benchling.com). Sequencing reads were aligned to the reference
human genome (GRCh37) using Burrows-Wheeler Alignment (BWA)-MEM (https://github.com/cancerit/PCAP-core). Somatic single base
substitutions (SBS) were discovered with CaVEMan (https://github.com/cancerit/cgpCaVEManWrapper). Rearrangements and indels were
identified with BRASS (https://github.com/cancerit/BRASS) and cgpPindel57 (https://github.com/cancerit/cgpPindel).
SigProfilerMatrixGenerator (v.1.1; https://github.com/AlexandrovLab/SigProfilerMatrixGenerator) was used to categorize SBSs into three
separate sequence-context based classifications. Trinucleotide and pentanucleotide sequence motifs were quantified with sequence_utils
(v.1.1.0, https://github.com/cancerit/sequence_utils/releases/tag/1.1.0;https://github.com/cancerit/sequence_utils/wiki#sequence-context-
of-regions-processed-by-caveman). Mutational signature analyses were performed using the SigProfilerExtractor tool (v. 1.1.4; https://
github.com/AlexandrovLab/SigProfilerExtractor). Clustered mutations were analyzed using SigProfilerClusters (v1.0.0; https://github.com/
AlexandrovlLab/SigProfilerClusters/releases/tag/v1.0.0). Figures assembled using lllustrator 2020 and Photoshop 2020 (Adobe).
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For manuscripts utilizing custom algorithms or software that are central to the research but not yet described in published literature, software must be made available to editors and
reviewers. We strongly encourage code deposition in a community repository (e.g. GitHub). See the Nature Portfolio guidelines for submitting code & software for further information.




Data

Policy information about availability of data
All manuscripts must include a data availability statement. This statement should provide the following information, where applicable:

- Accession codes, unique identifiers, or web links for publicly available datasets
- A description of any restrictions on data availability

- For clinical datasets or third party data, please ensure that the statement adheres to our policy

All sequencing data generated in the study have been deposited in the European Nucleotide Archive database with the accession number ERP137590. Access
numbers and IDs of sequence files from individual samples are listed in Supplementary Table 1. Source data, including quantification of mutational sequence
contexts (Supplementary Table 3) and quantification of mutational signatures (Supplementary Table 4); SBS, indel and rearrangement mutation calls
(Supplementary Tables 9-10) are provided. Publicly available source data includes annotation of mutational signatures across human cancer cell lines and human
cancers (Fig. 1) accessed from Supplementary Table 3 of previously published work (Petljak, M. et al. Characterizing Mutational Signatures in Human Cancer Cell
Lines Reveals Episodic APOBEC Mutagenesis. Cell 176, 1282—-1294.e20 (2019).); and DepMap dependency data of BRCA cell lines on REV1 downloaded from
DepMapPortal (DepMap 21Q4 Public; https://depmap.org/portal/gene/REV1?tab=overview) (Supplementary Table 7).
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Life sciences study design

All studies must disclose on these points even when the disclosure is negative.

Sample size Statistical methods were not used to pre-determine sample size. The sample size follows common standards (n = 3 or more biological
replicates) and
similar publications in the field. For examples see Jalili et al, 2020 June 12; DOI: 10.1038/s41467-020-16802-8; Cortez et al, 2019 Dec 16; DOI:
10.1371/journal.pgen.1008545 or list of references in the main text. Sample size is reported in legends for main and Extended figures.

Data exclusions  Some cell line daughter clones were excluded from statistical testing because they are suspected to be polyclonal. These are clearly marked in
red font throughout figures and in associated legends.

Replication All attempts at replication were successful. The number of experiments performed are indicated in the figures and legends.

Randomization  All the samples analyzed in this study were clearly recognizable. i.e. KO cell lines can be identified by Western blotting. For this reason
randomization was not performed and findings are supported by independent biological replicates.

Blinding For the same reasons as randomization, and the inclusion of appropriate negative and positive controls, blinding was not required or not
possible due to the experimental setup. Analyses that could be biased (i.e. H2AX foci counting) were performed using dedicated software.

Reporting for specific materials, systems and methods

We require information from authors about some types of materials, experimental systems and methods used in many studies. Here, indicate whether each material,
system or method listed is relevant to your study. If you are not sure if a list item applies to your research, read the appropriate section before selecting a response.

Materials & experimental systems Methods
Involved in the study n/a | Involved in the study
|Z Antibodies |Z |:| ChiIP-seq
Eukaryotic cell lines |Z |:| Flow cytometry
Palaeontology and archaeology |Z |:| MRI-based neuroimaging

Animals and other organisms
Human research participants

Clinical data
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Antibodies

Antibodies used The following antibodies were diluted in 1% milk in 1X TBST: anti-APOBEC3A/B/G (04A04) and anti-APOBEC3A (01D05; WB 1:1000),
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Antibodies used anti-APOBEC3B (Abcam; ab184990; WB 1:500), anti-REV1 (Santa Cruz; sc-393022, WB 1:1000), anti-SMUG1 (Abcam; ab192240; WB
1:1,000 and Santa Cruz; sc-514343; WB 1:1,000), anti-UNG (abcam; ab109214; WB 1:1,000), anti-GFP (Santa Cruz; sc-9996; WB
1:1,000), anti-B-actin (Abcam; ab8224; WB 1:3,000), anti-B-actin (Abcam, ab8227; WB 1:3,000); anti-Mouse 1gG HRP (Thermo Fisher
Scientific; 31432; 1:10,000), anti-Rabbit IgG HRP (SouthernBiotech; 6441-05; 1:10,000)

Validation All the commercial antibodies used in the study showed convincing validation data presented in the relative website with knock out
validated clones or positive controls (i.e. transfected cells). All the bands observed were at the expected and reported sizes,
decreasing in signal if sShRNAs were expressed or completely abrogated in case of KO. Custom anti-APOBEC3A/B/G (04A04) and anti-
APOBEC3A (01D05) antibodies were validated against transfection controls (Extended Data Fig. 1g) and knockdown/knockout
(Extended Data Fig. 1i-m; Fig. 3l).

Eukaryotic cell lines

Policy information about cell lines

Cell line source(s) MDA-MB-453 (Cosmic Cell Line Project); BT-474 (Cosmic Cell Line Project); JSC-1 (Cosmic Cell Line Project); BC-1 (Cosmic Cell
Line Project); MCF10A (ATCC); HT-1376 (ATCC); HEK293FT (ATCC)
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Authentication SNP profiling
Mycoplasma contamination All cell lines were periodically tested for and were negative for mycoplasma contamination.

Commonly misidentified lines  no commonly misidentified cell lines were used in this study.
(See ICLAC register)
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