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Abstract

To elucidate the mechanisms underlying the divergent clinicopathologic spectrum of EWSR1/
FUS-CREB translocation-associated tumors, we performed a comprehensive genomic analysis 

of fusion transcript variants, recurrent genetic alterations (mutations, copy number alterations), 

gene expression, and methylation profiles across a large cohort of tumor types. The distribution 

of the EWSR1/FUS fusion partners – ATF1, CREB1, and CREM – and exon involvement 

was significantly different across different tumor types. Our targeted sequencing showed that 

secondary genetic events are associated with tumor type rather than fusion type. Of the 39 cases 

that underwent targeted NGS testing, 18 (46%) had secondary OncoKB mutations or copy number 

alterations (29 secondary genetic events in total), of which 15 (52%) were recurrent. Secondary 

recurrent, but mutually exclusive, TERT promoter and CDKN2A mutations were identified only 

in clear cell sarcoma (CCS) and associated with worse overall survival. CDKN2A/B homozygous 
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deletions were recurrent in angiomatoid fibrous histiocytoma (AFH) and restricted to metastatic 

cases. mRNA upregulation of MITF, CDH19, PARVB, and PFKP was found in CCS, compared 

to AFH, and correlated with a hypomethylated profile. In contrast, S100A4 and XAF1 were 

differentially upregulated and hypomethylated in AFH but not CCS. A sarcoma methylation 

classifier was able to accurately match 100% of CCS cases to the correct methylation class; 

however, it was suboptimal when applied to other histologies. In conclusion, our comprehensive 

genomic profiling of EWSR1/FUS-CREB translocation-associated tumors uncovered mostly 

histotype, rather than fusion-type associated correlations in transcript variants, prognostically 

significant secondary genetic alterations, and gene expression and methylation patterns.
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CREB ; ATF1 ; secondary recurrent genetic alterations; gene expression; methylation; fusion 
transcripts

Introduction

Recurrent gene fusions involving EWSR1/FUS with members of the cAMP response 

element binding protein (CREB) family (ATF1, CREB1 and CREM) are shared amongst 

multiple tumor-types spanning a wide clinicopathologic spectrum. Despite sharing related 

gene fusions, members of the EWSR1-CREB family of translocation-associated tumors 

exhibit significantly different clinicopathologic characteristics. The prototypic example is 

angiomatoid fibrous histiocytoma (AFH) vs clear cell sarcoma (CCS)—two morphologically 

distinct tumors, the former mostly associated with a benign behavior, while the latter being 

an aggressive sarcoma with a high metastatic potential and poor outcome, as illustrated by 

the survival analysis of our cohort. Clear cell sarcoma-like tumor of gastrointestinal tract 

(GICCS, also known as gastrointestinal neuroectodermal tumor) and hyalinizing clear cell 

carcinoma of salivary gland (HCCC) had intermediate overall survival relative to AFH and 

CCS.

To elucidate the molecular mechanisms underlying their differences, we performed a 

comprehensive genomic analysis of fusion transcript variants, secondary recurrent genetic 

alterations (mutations, copy number alterations), gene expression and methylation profiles 

across a large cohort of tumour-types defined by EWSR1/FUS-CREB gene fusions. 

Specifically, the tumors included in this study encompassed AFH, CCS, GICCS, HCCC, 

clear cell odontogenic carcinoma (CCOC), malignant epithelioid neoplasm with predilection 

for mesothelial-lined cavities (ME), mesothelioma (Meso), myxoid mesenchymal tumor 

(MMT), and primary pulmonary myxoid sarcoma (PPMS).

Materials and Methods

Case selection and study cohort

After approval from the Institutional Review Board, cases were identified from the 

Memorial Sloan Kettering Cancer Center (MSKCC) surgical pathology archives, or from 

collaborating institutions, based on tumor types and/or presence of EWSR1/FUS-ATF1/
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CREB1/CREM fusions. The diagnosis of all 137 cases included molecular confirmation of 

both fusion partners: 37 cases by fluorescence in situ hybridization, 24 cases by reverse 

transcription PCR (RT-PCR), 29 cases by Memorial Sloan Kettering-Integrated Mutation 

Profiling of Actionable Cancer Targets (MSK-IMPACT) only, 10 cases by MSK-Fusion 

only, 10 cases by both MSK-IMPACT and MSK-Fusion, 21 cases by TruSight RNA Fusion 

Panel (Illumina, San Diego, CA), with the remaining cases based on NGS testing performed 

by referring institutions. The meta-analysis of the published literature was based on an 

exhaustive literature search on any fusions or gene rearrangements reported in all of the 

listed entities in Supplementary Table 1 that we could identify on PubMed.

DNA Seq and RNA Seq

Detailed descriptions of MSK-IMPACT workflow and data analysis, a hybridization capture-

based targeted DNA NGS assay for solid tumor, and MSK-Fusion, an amplicon-based 

targeted RNA NGS assay using the Archer™ FusionPlex™ standard protocol, were described 

previously1,2.

850k methylation array

Details of the methylation array protocol were described previously3. Briefly, for each 

sample, 250 ng of input DNA was used for bisulfite conversion (EZ DNA Methylation 

Kit; Zymo Research; catalog number D5002), followed by an FFPE restoration step using 

the Infinium HD FFPE DNA Restore Kit (Illumina; catalog number WG-321–1002). 

All samples were processed on the Infinium methylationEPIC 850k BeadChip array and 

scanned using the Illumina iScan. Each CpG site interrogated by the Infinium array was 

identified by a unique cg identifier in the format of cg#, where # is a number. The 

methylation level for each CpG site was quantified using β values (continuous values 

between zero and one), calculated as the ratio of methylated signal/total signal plus 

an offset. 850k methylation array profiling was performed in a total of 80 samples, 

including: 7 AFH, 4 CCS, 8 GICCS, and compared to 51 soft tissue tumors of various 

histotypes (4 angiosarcomas, 27 gastrointestinal stromal tumors, 1 HCCC, 1 ME, 3 Meso, 11 

paragangliomas, 4 small blue round cell tumors) and 10 normal tissues (8 human peripheral 

white blood cell samples, 2 normal adrenal medulla). A minimum cutoff of log2FC (fold 

change) > 1.0 and FDR < 0.01 was used for statistical analysis of differential methylation 

analysis using t-test, focusing on comparison of the 7 AFH against all other samples and 

4 CCS against all other samples. Unsupervised hierarchical clustering was performed using 

the pheatmap R package version 1.0.12 with Ward’s linkage and Euclidean distance for 

clustering.

Sarcoma classification by DNA methylation profiling

Details of the DNA methylation-based machine learning sarcoma classification algorithm 

were described in Koelsche et al4. This random forest-based machine learning algorithm was 

developed at the German Cancer Research Center (DKFZ) in Heidelberg, Germany. Briefly, 

the method defines 62 methylation classes based on a reference cohort of 1077 samples 

encompassing a broad range of sarcomas. The classifier quantifies the confidence of the 

sample’s assigned methylation class using a calibrated score between 0 and 1. The sum of 

all calibrated scores across all methylation classes is 1.0. A confident match is generally 
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considered > 0.9 and a poor match < 0.54. The 22 cases that underwent analysis with the 

DNA methylation classification algorithm corresponded to 6 AFH, 4 CCS, 8 GICCS, 1 ME, 

3 Meso among the 80 samples that underwent methylation profiling.

Affymetrix microarray gene expression analysis

Details of the microarray protocol were described previously5,6. RNA was isolated using 

RNAwiz RNA isolation reagent (Ambion) and run through a column with RNase-free 

DNase (Qiagen). Ten micrograms of labeled and fragmented cRNA were then hybridized 

onto a Human Genome U133A expression array (Affymetrix, Santa Clara, CA). Post-

hybridization staining, washing, and scanning were done according to instructions from 

the manufacturer (Affymetrix). The raw expression data were derived using the Affymetrix 

Microarray Analysis 5.0 (MAS 5.0) software. The data were normalized using a scaling 

target intensity of 500 to account for differences in the global chip intensity. The 

expression values were transformed using the logarithm base two. Affymetrix U133A gene 

expression array analysis was performed in a total of 58 samples, including 3 AFH, 4 

CCS, 1 GICCS, and compared to 44 soft tissue tumors of various histotypes (3 adult 

fibrosarcomas, 5 angiosarcomas, 3 leiomyosarcomas, 10 gastrointestinal stromal tumors, 

3 myxoid liposarcomas, 6 paragangliomas, 4 small blue round cell tumors, 4 solitary 

fibrous tumors, 3 synovial sarcoma, 3 undifferentiated pleomorphic sarcomas) and 6 normal 

tissues (adrenal gland, brain, kidney, small intestine, stomach, testis). For differential gene 

expression analysis, a minimum cutoff of log2FC (fold change) > 1.0 and FDR adjusted 

p-value < 0.01 were used for t-test. We compared one histotype against all other tumors for 

each respective analysis. For example: CCS (4 cases) vs all others (54 cases) in one analysis, 

and AFH (3 cases) vs all others (55 cases) in a different analysis. Unsupervised hierarchical 

clustering was performed using the pheatmap R package version 1.0.12 with Ward’s linkage 

and Euclidean distance for clustering.

Integration of gene expression and methylation analysis

First, we performed differential gene expression and differential methylation analysis by 

setting a false discovery rate (FDR) adjusted p-value of 0.01 and a minimum log2FC (fold 

change) of 1.0 for t-test, comparing one histotype against all other tumors each time (e.g., 

CCS vs all others, AFH vs all others). Thereafter, for integration of transcriptomic and 

methylation data, we matched all the genes that were both differentially expressed based on 

log2FC > 1.0 and FDR < 0.01 and differentially methylated based on log2FC > 2.0 and FDR 

< 0.01 for the CCS vs all others and AFH vs all others comparisons. Out of the 3 AFH, 4 

CCS and 1 GICCS on the Affymetrix U133 microarray, 1 AFH and 2 CCS did not overlap 

with the samples used for the methylation array.

Results

Clinicopathologic summary

A total of 137 cases were identified [76 females, 61 males, mean age 37 (range 2–86)], 

including: 40 CCS (29%), 36 AFH (26%), 20 GICCS (15%), 14 ME (10%), 10 HCCC 

(7%), 8 Meso (6%), 5 MMT (4%), 3 PPMS (2%), and 1 clear cell odontogenic carcinoma 

(CCOC) (1%) (Figure 1A). The mean ages in HCCC, PPMS and CCOC were higher than 
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those in AFH, CCS, GICCS, MMT, and ME (Table 1). As expected, the primary sites were 

predominantly soft tissue for AFH and CCS, gastrointestinal tract/pelvis for GICCS, brain 

for MMT, thoracic or abdominopelvic cavities for Meso and ME, lung for PPMS, and major 

and minor salivary glands for HCCC.

Fusion types and transcript variants by diagnosis

The distribution of the EWSR1/FUS fusion partners, ATF1, CREB1, and CREM, was 

significantly different across different tumor types (chi-square P < 0.0001) (Figure 1B). 

Specifically, EWSR1-ATF1 fusions were the only fusion type in HCCC (100%) and the 

predominant fusion type in CCS (85%) and Meso (88%); EWSR1-CREB1 fusions were 

the only fusion type in PPMS (100%) and the predominant fusion type in AFH (60%); 

EWSR1/FUS-CREM fusions were the predominant fusion type in ME (86%) and MMT 

(50%). ATF1 and CREB1 fusions were equally distributed in GICCS. The single case of 

CCOC had a EWSR1-ATF1 fusion. Of the 137 cases, only 5 (4%) harbored FUS fusions: 

four were FUS-CREM fusions in ME, one was a FUS-ATF1 fusion in a Meso.

The exon usage for the fusion transcript variants for each tumor type was derived from 

either MSK-Fusion and/or MSK-IMPACT testing and available in 48 cases (8 AFH, 

18 CCS, 9 GICCS, 7 HCCC, 3 Meso, 1 PPMS, 2 ME) (Table 2). The predominant 

fusion transcript variants were EWSR1ex8-ATF1ex4 in CCS and GICCS; EWSR1ex7-

ATF1ex5 and EWSR1ex7-CREB1ex7 in AFH; EWSR1ex11-ATF1ex3 in HCCC; FUSex8-

CREMex5/7 for ME (Figure 2). Supplementary Table 1 summarizes the CREB family fusion 

variants of various tumor types derived from our meta-analysis of published studies in 

comparison to those detected in the current cohort.

Clinically significant recurrent genetic alterations

39 cases [6 AFH, 14 CCS, 9 GICCS, 5 HCCC, 3 Meso, 1 PMMS, 1 clear cell odontogenic 

carcinoma (CCOS)] were analyzed by MSK-IMPACT. Only clinically significant variants 

with OncoKB annotations (Chakravarty 2017) (or known recurrent hotspots) and secondary 

recurrent genetic alterations (events that occur > 1 in our cohort) were included. Variants 

of unknown significance were excluded. Of the 39 cases that underwent targeted NGS 

testing, 18 (46%) had OncoKB mutations or copy number alterations (29 secondary genetic 

events in total), of which 15 (52%) were recurrent. Specifically, TERT promoter hotspot 

mutations (n=5) and CDKN2A X51_splice and P81Lfs*30 mutations (n=2) were mutually 

exclusive and identified in CCS only. Other secondary recurrent genetic alterations identified 

were: TP53 R248Q and T155Pfs*15 mutations (n=2, 1 CCS, 1 GICCS), 9p21.3 (CDKN2A/

CDKN2B) copy number loss (homozygous deletion) (n=4, 2 AFH, 1 CCS, 1 HCCC), 

and DIS3 D479G and D488N mutations (n=2, both GICCS) (Figure 3A). No secondary 

recurrent genetic alterations were identified in any of the 3 Meso, 1 PMMS, or 1 CCOC. 

The type of secondary recurrent genetic alterations did not correlate with the EWSR1/FUS 
fusion partner type (Supplementary Figure 1).

Interestingly, AFH cases with CDKN2A/CDKN2B homozygous deletion (n=2, 33%) were 

exclusively found in metastatic cases, whereas the remaining CDKN2A/CDKN2B non-

altered AFH cases were non-metastatic (Figure 3B). On the other hand, CCS cases with 
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TERT promoter mutations and CDKN2A loss-of-function mutations (frameshift and splice 

site mutations) (n=7, 50%) were significantly correlated with decreased overall survival 

(Mantel Haenszel chi-square P = 0.0196) (Figure 3C), with a median survival of 5.13 vs 
22.85 months in non-altered CCS cases (n=7, 50%). The presence of DIS3 mutations were 

not correlated with metastatic nor survival status in GICCS.

Methylation and gene expression correlation

Gene expression profiling were performed on the Affymetrix U133A expression array 

comparing 3 AFH, 4 CCS cases, and 1 GICCS to a group of 44 soft tissue tumors of 

various histotypes and 6 normal tissue samples (Supplementary Figure 2 and Supplementary 

Table 2). Methylation profile testing was performed comparing 7 AFH, 4 CCS, 4 GICCS 

to a group of 51 soft tissue tumors of various histotypes and 10 normal tissue samples 

on the 850k methylation array (Supplementary Figure 3 and Supplementary Table 3). The 

goal is to identify correlates between differential gene expression (1.5 log2 FC, FDR 0.01) 

and differential methylation (4 log2 FC and FDR 0.01) for EWSR1-ATF1-rearranged CCS 

and EWSR1-CREB1-rearranged AFH, respectively, in relation to other tumor types. Gene 

expression profiling revealed upregulation of PMP22, MITF, SLC7A5, CDH19, WIPI1, 

FYN, PARVB, and PFKP in CCS but not AFH, and upregulation of SGK1, S100A4, XAF1 
and LY96 expression in AFH but not CCS. However, despite differential gene expression, 

CREB family translocation tumors mostly cluster together in terms of methylation profile in 

relation to other tumor types (Supplementary Figure 3 and Supplementary Table 3).

Thereafter, differentially expressed genes were matched to CpG sites based on chromosomal 

locations. We matched all the genes that were both differentially expressed based on 

log2FC > 1.0 and FDR < 0.01 and differentially methylated based on log2FC > 2.0 and 

FDR < 0.01. We focused on upregulated genes with corresponding hypomethylation. Our 

analyses revealed genes (MITF, CDH19, PARVB, and PFKP) with increased expression 

and hypomethylation in CCS but not AFH (Figure 4A), and genes (S100A4, XAF1) with 

increased expression and hypomethylation in AFH but not CCS (Figure 4B). MITF is 

involved in melanogenesis and overexpressed in CCS as part of its core gene signature5,7. 

CDH19 and PARVB are involved in cell adhesion and were highly expressed in primary 

melanoma8. S100A4 has been implicated in cell migration and cancer metastases9. XAF1 is 

a proapoptotic tumor suppressor gene10.

Tumor type prediction by the Sarcoma Methylation Classifier

The DNA-methylation based sarcoma classification algorithm described in Koelsche et al4 

was applied to 22 cases (6 AFH, 4 CCS, 8 GICCS, 1 ME, and 3 Meso) (Table 3). This 

algorithm was able to accurately match 100% of four CCS cases to the correct methylation 

class (calibrated score = 0.99 in all cases), but only 33% (2 of 6) of AFH cases (calibrated 

score = 0.75 and 0.33, respectively). GICCS was not a methylation class in the original 

classifier. Interestingly, the algorithm matched 1 GICCS to AFH (calibrated score 0.56) and 

2 GICCS to CCS (calibrated score = 0.65 and 0.96, respectively).
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Survival analysis

The overall survival across AFH, CCS, GICCS, HCCC was significantly different (log rank 

P = 0.023), with CCS associated with the worse survival (median survival 15 months), 

followed by HCCC (median survival 36 months) and then GICCS (median survival 43 

months). All AFH patients remained alive across the follow-up period of 42 months (Figure 

5).

Discussion

The EWSR1-CREB family of translocation-associated tumors encompasses a wide and 

heterogenous clinicopathologic spectrum. To understand the pathogenesis that sets them 

apart, we performed comprehensive genomic analysis of fusion variants, secondary recurrent 

genetic alterations (mutations, copy number alterations), gene expression and methylation 

profiles across a large cohort of EWSR1-CREB family of translocation-associated tumors, 

with emphasis on AFH, CCS, GICCS, and HCCC.

Although the analysis of fusion transcript variants in our cohort largely paralleled the 

published literature, some new interesting findings emerged. For AFH, the most common 

reported fusion transcript variant is EWSR1-CREB1 (ex7-ex7) (58%)7,11–15. However, we 

identified a significant proportion (39%) of AFH cases with EWSR1-ATF1 (largely ex7-

ex5). A minority (3%) of AFH harbored EWSR1-CREM fusions. Interestingly, MMT16–21, 

which remains disputed by some authors to be related to a myxoid, intracranial variant of 

AFH22–27, harbor roughly equal proportions of EWSR1-ATF1 and EWSR1-CREB1 fusions, 

with a significant minority harboring EWSR1-CREM. For CCS, the predominant fusion 

transcript is EWSR1ex8-ATF1ex415,28–34. This pattern is mirrored by a subtype of Meso, 

initially described by our group and occurs in younger patients without asbestos exposure 

history, which are driven predominantly by EWSR1-ATF1ex535–37. Of interest, in contrast 

to prior data, GICCS showed similar proportions of EWSR1-ATF1 (mostly ex8-ex4) and 

EWSR1-CREB1 fusions5,34,38. On the other hand, the recently described distinct tumor 

type, so-called ‘malignant epithelioid neoplasm with predilection for mesothelial-lined 

cavities’39 and subsequently validated by Shibayama et al40, most commonly harbor either 

fusions between EWSR1 or FUS and exon 7 of CREM. In contrast, PPMS is almost 

exclusively driven by EWSR1-CREB1 (mostly ex7-ex7)41–48 except for a rare case with 

EWSR1-ATF149. Some authors proposed that PPMS and AFH exist on a morphologic and 

molecular spectrum43,49. Finally, both HCCC50–55 and CCOC56–60 harbor only EWSR1-
ATF1, supporting the notion that HCCC and CCOC are likely related tumors. Nevertheless, 

it is evident from our meta-analysis of the published literature and from the current 

study that there is significant intertumoral overlap as well as intratumoral heterogeneity 

of fusion transcript variants and exon usage across the different CREB family translocation 

tumors. Here, intratumoral heterogeneity refers to variation of fusion transcript variants, e.g., 

EWSR1-ATF1 and EWSR1-CREB1 in GICCS, and exon usage within the same histotype, 

e.g., FUS-CREM exon 5 and FUS-CREM exon 7 in ME.

This is the first study to report secondary recurrent genomic alterations in CCS, AFH and 

GICCS. In CCS, we identified the presence of recurrent TERT promoter and CDKN2A 
hotspot mutations, which were mutually exclusive but in combination strongly associated 
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with worse overall survival. TERT promoter somatic mutations and amplifications 

are frequently found across multiple tumor types61,62. In soft tissue tumors, TERT 
promoter mutations have been identified in myxoid liposarcomas63, atypical fibroxanthoma/

pleomorphic dermal sarcomas64, chondrosarcomas65, and solitary fibrous tumors66; this is 

reported to be associated with a worse prognosis in the latter. Our findings suggest that 

TERT promoter and CDKN2A mutations may serve as prognostic biomarkers for worse 

survival in CCS.

In AFH, we identified CDKN2A/CDKN2B homozygous deletions exclusively amongst 

cases with metastasis. Genomic profiling of multiple sarcoma types has revealed secondary 

recurrent CDKN2A alterations67,68, with a role suggested as a biomarker for poor 

prognosis67. Compared to other CREB family translocations tumors, AFH is a soft tissue 

tumor of borderline malignant potential and a relatively good prognosis; metastasis is 

usually < 2%. In fact, all the patients whose AFH were sequenced in our cohort remain 

alive at the time of reporting. Our finding of CDKN2A/CDKN2B deletions in the two AFH 

cases with biopsy-proven metastasis, but not in the non-metastatic AFH cases, raises the 

possibility of CDKN2A/CDKN2B deletion testing as a biomarker for metastatic potential. 

Although not a recurrent abnormality in this cohort, one of the metastatic AFH case showed 

a co-existing BRAF V600E mutation which was confirmed by immunohistochemistry to 

have diffuse and strong VE1 expression. This was the only case in our cohort to have a 

BRAF mutation detected.

Gene expression profiling revealed differential gene expression in AFH vs CCS, which 

clustered in distinct genomic groups by unsupervised analysis. A number of genes involved 

in melanocyte regulation and cellular membrane/migration were upregulated in CCS 

compared to AFH, including PMP22, MITF, SLC7A5, CDH19, WIPI1, FYN, PARVB, 

and PFKP, while upregulation of SGK1, S100A4, XAF1 and LY96 mRNA expression was 

detected in AFH but not CCS. An expression profiling analysis of CCS cell lines revealed 

upregulation of S100A11 (encoding for S100 protein), MITF (microphthalmia-associated 

transcription factor), and Pmel17 (SILV) (silver mouse homologue-like melanosomal protein 

detected by the IHC marker HMB45)69. Moreover, in an in vitro CCS induced pluripotent 

stem cell model, Komura et al reported expression of several Schwann cell marker genes, 

such as P75NTR, S100b, Mbp, Plp1, and Pmp2270. They proposed that S100-expressing 

peripheral nerve cells could be a cell of origin for EWS/ATF1-induced CCS. In a recent 

study using human embryonic stem (hES) cell models, hES cells driven by EWSR1-CREB1 
and EWSR1-ATF1 fusions recapitulate the core gene signatures, respectively, of AFH 

(SGK1 and MXRA5 upregulation) and GICCS (SGK1, MXRA5, SOX10, and DUSP4 
upregulation)71. Our gene expression profiling of patient samples validates a subset of the 

findings of these preclinical studies.

Our methylation analysis did not reveal significant differential methylation profiles among 

different tumor types within the CREB family translocation-associated tumors. Rather, 

these tumors clustered together and displayed methylation profiles distinct from other 

soft tissue tumor types and normal tissue. However, when matching the differentially 

expressed genes to the corresponding methylation probes/CpG sites, we found significant 

correlations between upregulated genes that were hypomethylated in CCS but not AFH. 
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These genes included MITF, CDH19, PARVB, and PFKP in CCS. MITF is involved in 

melanogenesis and found to be overexpressed in CCS as part of its core gene signature, 

but not in AFH or GICCS5,7. More recently, a Cre-loxP-induced Ewsr1-Atf1-driven 

CCS model demonstrated that Mitf and Myc can contribute to sarcomagenesis72. Both 

CDH19 and PARVB are involved in cell adhesion and were highly expressed in primary 

melanoma, associated with worse survival8. It is interesting how they were found to show 

increased expression and hypomethylation in CCS in our study. On the other hand, we 

identified upregulation and hypomethylation of S100A4 and XAF1 in AFH but not CCS. 

S100A4 protein is a member of the S100 calcium binding protein family, also known as 

metastasin, and has been implicated in cell migration and cancer metastases9. XAF1 is a 

proapoptotic, interferon-stimulated tumor suppressor gene that suppresses tumorigenesis10. 

While XAF1 is usually hypermethylated and downregulated in most cancers, it was found to 

be paradoxically hypomethylated in glioblastoma with adaptive temozolomide resistance73. 

These findings serve as a proof-of-concept example of how integrative gene expression 

and methylation profiling may provide interesting biological insights into the different 

pathogenesis underlying tumors sharing the same driver gene fusions. Integrated DNA 

methylation and gene expression studies have been performed in Ewing sarcoma74, pediatric 

rhabdomyosarcomas75, myxoid, dedifferentiated, and pleomorphic liposarcomas76, which 

identified sets of genes with inverse methylation and gene expression relationship. In a 

comprehensive molecular and genomic study of undifferentiated sarcomas (USARC), DNA 

methylation profiling failed to identify distinct USARC subgroups and did not correlate with 

gene expression, but showed MSH2 and TERT promoter hypermethylation77. On the other 

hand, DNA methylation profiling also revealed epigenetic heterogeneity within the same 

tumor type, e.g., Ewing sarcoma78. Unfortunately, the sample size of individual tumor types 

used for methylation profiling in the current study is insufficient to perform differential 

methylation analysis within the same tumor type, which could be explored in future studies.

Genome-wide DNA methylation profiling has largely been performed for tumor 

classification purposes in a wide range of mesenchymal tumors, with varying degree of 

success. These include: benign and malignant nerve sheath tumors79, osteosarcomas80, 

undifferentiated small round blue cell tumors81, CIC-rearranged undifferentiated 

sarcomas82. Most recently, a Random Forest machine learning sarcoma classifier from 

the German Cancer Research Center (DKFZ) in Heidelberg were developed to classify a 

wide spectrum of 66 soft tissue and bone tumors using a large reference and validation 

cohort4. The limitations of using methylation profiling alone to differentiate soft tissue 

tumors were illustrated by the inability of the Heidelberg methylation classifier to accurately 

classify tumor entities in our cohort, with the exception of CCS. There are several major 

shortcomings to the applicability of this methylation classifier for soft tissue tumors with 

EWSR1/FUS fusions with CREB family transcription factors. First, several tumor types, 

including GICCS and Meso, were not included in the reference cohort that was used to 

develop the classifier. Second, although the reference cohort included 8 cases of AFH, only 

1 case was used in the validation cohort, which was misclassified as desmoplastic small 

round cell tumor4. In our study, the classifier was able to correctly classify one-third of the 

AFH cases. On the other hand, the methylation classifier performed very well, both in the 

Koelsche et al study and in our experience, in the classification of CCS: classifying 100% 
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of the cases correctly. It is also interesting that when we applied the classifier to GICCS, 2 

cases were classified as CCS and 1 case as AFH, illustrating their overlapping methylation 

profiling as described above. All 3 of these GICCS cases were located in the gastrointestinal 

tract (1 stomach, 2 small bowel), and were diffusely and strongly positive for S100 and 

negative for HMB45. The combined clinical and immunohistochemical profile essentially 

excludes CCS and AFH. These findings highlight the existing limitation of methylation 

profiling in soft tissue tumor classification, which may require further algorithm refinement 

as well as larger reference and validation cohorts83.

In addition to these molecular mechanisms, the nature of the initial stem cell host in which 

the fusion, and its degree of commitment / plasticity, arose may also play a significant 

role in ultimate tumor type (i.e., depending on location / extent of totipotency). These are 

interesting questions that are beyond the scope of the current study. Recent studies using 

Cre inducible mouse and human embryonic stem cell models have begun to address these 

questions71,72.

The lack of consistency in the sample sizes of the cases with each technique is a major 

drawback of our paper. Further studies focusing on specific molecular profiling techniques 

with deeper genomic characterization utilizing a larger sample size of some of the rarer 

histotypes would be beneficial to validate or expand on our findings.

In conclusion, our comprehensive genomic profiling of EWSR1/FUS-CREB translocation-

associated tumors uncover fusion transcript variant heterogeneity, prognostically significant 

secondary recurrent genetic alterations, and differentially hypomethylated and upregulated 

genes. These findings underscore the utility of integrative genomic approaches in the study 

of translocation-associated tumors with diverse clinicopathologic features, and whether 

some of the entities in this family could be unified under the same morphologic/molecular 

spectrum (e.g., CCS and GICCS, AFH and PPMS).
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Figure 1. 
A, Study cohort showing number of cases and percentages by tumor type. B, Distribution 

of EWSR1/FUS fusion partners (ATF1, CREB1, CREM) by diagnosis (number of cases 

for each histotype indicated between parenthesis). Abbreviations—AFH: angiomatoid 

fibrous histiocytoma; CCS: clear cell sarcoma; CCOS: clear cell odontogenic carcinoma; 

GICCS: clear cell sarcoma-like tumor of gastrointestinal tract; HCCC: hyalinizing clear 

cell carcinoma of salivary gland; ME: malignant epithelioid neoplasm with predilection 

for mesothelial-lined cavities; Meso: mesothelioma; PPMS: primary pulmonary myxoid 

sarcoma.
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Figure 2. 
Schematics of predominant fusion transcript variants, for AFH, CCS, GICCS, HCCC, 

and ME. Exon numbers were based on canonical transcripts for each gene. Percentage 

indicates frequency of the fusion transcript variant within the corresponding histotype 

subgroup. RefSeq accession number: ATF1 (NM_005171); CREB1 (NM_134442); 

CREM (NM_181571); EWSR1 (NM_005432); FUS (NM_004960). Abbreviations—AFH: 

angiomatoid fibrous histiocytoma; CCS: clear cell sarcoma; GICCS: clear cell sarcoma-like 

tumor of gastrointestinal tract; HCCC: hyalinizing clear cell carcinoma of salivary gland; 

ME: malignant epithelioid neoplasm with predilection for mesothelial-lined cavities; Meso: 

mesothelioma.
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Figure 3. 
A, Recurrent genomic alterations identified by MSK-IMPACT, including OncoKB mutations 

and copy number alterations84, in 6 AFH, 14 CCS, 9 GICCS, and 5 HCCC. Only 

genomic alteration events occurring > 1 were included. B, Presence of TERT, CDKN2A, 

and CDKN2B alterations in AFH with or without metastatic disease. C, Presence of 

TERT, CDKN2A, CDKN2B and TP53 alterations in living vs deceased CCS patients. 

Data generated from cBioPortal and visualized using OncoPrint85. Abbreviations—AFH: 

angiomatoid fibrous histiocytoma; CCS: clear cell sarcoma; GICCS: clear cell sarcoma-like 

tumor of gastrointestinal tract; HCCC: hyalinizing clear cell carcinoma of salivary gland.
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Figure 4. 
Differential gene upregulation corresponding to hypomethylation on matched CpG sites in 

CCS (A) and AFH (B). Affymetrix U133A was performed comparing 3 AFH, 4 CCS cases, 

and 1 GICCS to a group of 44 tumors of various histotypes and 6 normal tissues, using log2-

fold change threshold of 1 and P < 0.01. Infinium 850k methylation array was performed 

comparing 7 AFH, 4 CCS, 4 GICCS to a group of 29 tumors of various histotypes and 

8 normal tissues, using a log2-fold change threshold of 2 and P < 0.01. Differentially 

expressed genes were matched to CpG site identified by a unique cg identifier in the format 

of cg#. The numbers of CpG sites assigned to each of these 4 genes on the 850k array 
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were as follows: 8 for S100A4, 14 for XAF1, 27 for MITF, and 3 for CDH19. Out of 

these, the numbers of CpG sites that showed negative correlation with gene expression are as 

follows: 3 for S100A4, 6 for XAF1, 3 for MITF, and 3 for CDH19. The most representative 

CpG site from each gene is displayed in this figure. Abbreviations—AFH: angiomatoid 

fibrous histiocytoma; CCS: clear cell sarcoma; GICCS: clear cell sarcoma-like tumor of 

gastrointestinal tract.
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Figure 5. 
Comparison of overall survival in 6 AFH, 14 CCS, 9 GICCS, and 5 HCCC. Median survival 

time (months) for each tumor type listed beneath Kaplan-Meier curves. Hazard ratios 

compared using log-rank analysis. Abbreviations—AFH: angiomatoid fibrous histiocytoma; 

CCS: clear cell sarcoma; GICCS: clear cell sarcoma-like tumor of gastrointestinal tract; 

HCCC: hyalinizing clear cell carcinoma of salivary gland.
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Table 2.

Distribution of the most prevalent fusion transcript variants by exon usage in the current study

Histotype Fusion transcript variant Number Percentage

Angiomatoid fibrous histiocytoma (AFH) EWSR1-ATF1 ex7-ex5 3 37.5

EWSR1-ATF1 ex7-ex7 1 12.5

EWSR1-CREB1 ex7-ex7 3 37.5

Clear cell sarcoma (CCS) EWSR1-ATF1 ex7-ex4 1 5.6

EWSR1-ATF1 ex7-ex5 3 16.7

EWSR1-ATF1 ex8-ex4 10 55.6

EWSR1-ATF1 ex9-ex4 2 11.1

EWSR1-CREB1 ex7-ex7 1 5.6

EWSR1-CREM ex8-ex7 1 5.6

Clear cell sarcoma-like tumor of the gastrointestinal tract (GICCS) EWSR1-ATF1 ex7-ex5 1 11.1

EWSR1-ATF1 ex8-ex4 5 55.6

EWSR1-CREB1 ex6-ex6 1 11.1

EWSR1-CREB1 ex7-ex6 1 11.1

EWSR1-CREB1 ex7-ex7 1 11.1

Hyalinizing clear cell carcinoma (HCCC) EWSR1-ATF1 ex7-ex4 1 14.3

EWSR1-ATF1 ex8-ex4 1 14.3

EWSR1-ATF1 ex9-ex2 1 14.3

EWSR1-ATF1 ex10-ex3 1 14.3

EWSR1-ATF1 ex11-ex3 3 42.9

Malignant epithelioid neoplasm with predilection for mesothelial-lined cavities (ME) FUS-CREM ex8-ex5 1 50.0

FUS-CREM ex8-ex7 1 50.0

Mesothelioma (Meso) EWSR1-ATF1 ex7-ex5 1 33.3

EWSR1-ATF1 ex13-ex5 1 33.3

EWSR1-CREM ex10-ex5 1 33.3

Transcripts: ATF1 (NM_005171); CREB1 (NM_134442); CREM (NM_181571); EWSR1 (NM_005243); FUS (NM_004960).
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Table 3.

Tumor type prediction by sarcoma methylation classifier*

Diagnosis Age/Sex Site Fusion Calibrated score Matching methylation class

AFH 21/M groin EWSR1-CREB1 0.33 angiomatoid fibrous histiocytoma

AFH 16/M scalp EWSR1-CREB1 0.75 angiomatoid fibrous histiocytoma

AFH 79/F knee EWSR1-ATF1 < 0.3 no matching methylation class

AFH 22/F inguinal EWSR1-CREB1 < 0.3 no matching methylation class

AFH 34/M foot EWSR1-ATF1 < 0.3 no matching methylation class

AFH 17/M axilla EWSR1-CREB1 0.74 squamous cell carcinoma (cutaneous)

CCS 20/F heel EWSR1-ATF1 0.99 clear cell sarcoma of soft parts

CCS 30/M knee EWSR1-ATF1 0.99 clear cell sarcoma of soft parts

CCS 24/M arm EWSR1-ATF1 0.99 clear cell sarcoma of soft parts

CCS 46/F hip EWSR1-ATF1 0.99 clear cell sarcoma of soft parts

GI CCS 42/F small bowel EWSR1-CREB1 0.56 angiomatoid fibrous histiocytoma

GI CCS 47/F small bowel EWSR1-CREB1 0.65 clear cell sarcoma of soft parts

GI CCS 57/M stomach EWSR1-CREB1 0.96 clear cell sarcoma of soft parts

GI CCS 42/F small bowel EWSR1-CREB1 0.51 neurofibroma (plexiform)

GI CCS 19/F mesentery EWSR1-ATF1 < 0.3 no matching methylation class

GI CCS 76/F colon EWSR1-CREB1 < 0.3 no matching methylation class

GI CCS 18/F small bowel EWSR1-ATF1 < 0.3 no matching methylation class

GI CCS 25/M stomach EWSR1-CREM 0.68 sclerosing epithelioid fibrosarcoma

ME 20/F peri-rectal EWSR1-CREM < 0.3 no matching methylation class

Meso 26/F peritoneal FUS-ATF1 < 0.3 no matching methylation class

Meso 34/F pleura EWSR1-ATF1 < 0.3 no matching methylation class

Meso 79/F mediastinum EWSR1-ATF1 < 0.3 no matching methylation class

*
Percentage matched: AFH 33.3%, CCS 100%, GICCS/ME/meso (methylation class doesn’t exist in the classifier)

Abbreviations—AFH: angiomatoid fibrous histiocytoma; CCS: clear cell sarcoma; GICCS: clear cell sarcoma-like tumor of gastrointestinal tract; 
ME: malignant epithelioid neoplasm with predilection for mesothelial-lined cavities; Meso: mesothelioma.
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