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Abstract

Chronic kidney disease (CKD) is a common complex condition associated with high morbidity 

and mortality. Polygenic prediction could enhance CKD screening and prevention, but this 

approach has not been optimized for ancestrally diverse populations. By combining APOL1 risk 

genotypes with GWAS for kidney function, we designed, optimized, and validated a genome-wide 

polygenic score (GPS) for CKD. The new GPS was tested in 15 independent cohorts, including 

3 cohorts of European ancestry (total N=97,050), 6 cohorts of African ancestry (total N=14,544), 

4 cohorts of Asian ancestry (total N=8,625), and 2 admixed Latinx cohorts (total N=3,625). We 
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demonstrated score transferability with reproducible performance across all tested cohorts. The 

top 2% of the GPS was associated with nearly 3-fold increased risk of CKD across ancestries. 

In African-ancestry cohorts, APOL1 risk genotype and the polygenic component of the GPS had 

additive effects on the risk of CKD.

Editor summary:

A new study generated and optimized a polygenic score for chronic kidney disease with 

reproducible performance across 15 cohorts of different ancestries, and identified potentially 

clinically-relevant thresholds with predicted effects comparable to having family history of the 

disease

Keywords

chronic kidney disease (CKD); polygenic risk score (PRS); GWAS; APOL1 

INTRODUCTION:

Chronic kidney disease (CKD) affects 10-16% of general population and has high morbidity 

and mortality1,2. In the US, CKD disproportionally affects African Americans (16.3%) 

when compared to European Americans (12.7%), Asian Americans (12.9%), or Hispanic 

Americans (13.6%)3. CKD stage 3 or greater is defined by a chronic loss of glomerular 

filtration rate (GFR) to below 60 mL/min/1.73m2. Because this definition is based on 

estimated kidney function rather than markers of specific kidney injury, it captures an 

etiologically heterogeneous set of primary and secondary kidney disorders. As expected 

for a highly heterogeneous trait, CKD has a complex determination with both genetic and 

environmental contributions. The observational heritability of CKD in the largest analysis of 

medical records ranged from 25% to 44%4. These estimates were generally consistent with 

smaller family-based studies of CKD and glomerular filtration rate5–7.

High heritability of CKD is attributed to both monogenic8,9 and polygenic causes10,11. 

Moreover, in individuals of African ancestry, two common risk alleles (G1 and G2) in 

APOL1 gene convey a large effect on the risk of kidney disease12,13. While heterozygotes 

for G1 or G2 alleles appear to be protected from trypanosomal sleeping sickness, kidney 

disease risk is conveyed under a recessive model in carriers of two risk alleles (G1G1, 

G2G2, or G1G2). Because of the selective pressure exerted by endemic trypanosomal 

species in certain parts of eastern and western Africa, G1 and G2 alleles are observed 

almost exclusively in individuals whose ancestry can be linked to those areas14,15. In the 

US population, frequency of APOL1 risk genotypes is estimated at approximately 15% 

in African Americans, 0.5-2% in Hispanic Americans, and <0.01% in Europeans16. These 

differences may be contributing to the higher prevalence of CKD in African Americans, but 

additional non-APOL1 genetic risk factors have not yet been elucidated.

Genome-wide polygenic scores (GPS) have emerged as promising tools for genetic 

risk stratification that can enhance traditional risk models for complex diseases. This 

approach has been applied to a variety of traits, including heart disease17,18, diabetes18,19, 
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hypertension20,21, obesity22, schizophrenia23–25, and cancers26–31. One of the major 

limitations of the GPS approach is that existing GWAS are based predominantly on 

European cohorts and, as a result, most GPS do not perform well in more diverse cohorts, 

or in individuals with admixed ancestry32. Similar to other complex traits, GWAS for kidney 

function involved predominantly European cohorts. The latest study involved 765,348 

participants, 75% of which were European, 23% East Asian, 2% African American, and 

<1% Hispanic11. Notably, this study did not capture the effects of APOL1 risk variants 

because of their recessive inheritance and very low frequencies in non-African populations.

The objective of the present study is to test if the existing knowledge on polygenic 

contributions to kidney function is sufficient to build a clinical risk predictor for 

moderate-to-advanced CKD with adequate performance across diverse ancestral groups. We 

specifically aimed to design, optimize, and test a new GPS for clinical risk prediction of 

kidney disease that maximizes the performance across ancestries. We combined information 

on APOL1 risk genotypes with the latest GWAS for kidney function to formulate a GPS that 

can reliably discriminate moderate to advanced CKD (stage 3 or greater) from population 

controls. In our approach, we took advantage of the power of the existing GWAS for 

a quantitative biomarker of kidney function (serum creatinine-based eGFR) to predict a 

disease state. To demonstrate transferability across different ancestral groups, we performed 

rigorous testing of our GPS in 15 independent and ancestrally diverse case-control cohorts 

following ClinGen standards33.

RESULTS:

GPS Optimization

The flowchart summary of our overall strategy is provided in Figure 1. In the GPS 

optimization step, a total of 19 candidate scores were generated using 1000G (all 

populations) linkage disequilibrium (LD) reference and summary statistics from GWAS 

for eGFR11. We then used a large optimization dataset comprised of 70% of European 

UK Biobank participants to select the best performing model (Table 1, Supplemental Table 

1). The best model was based on the P-value thresholding (P+T) method and involved 

41,426 markers with non-zero weights selected based on r2=0.2 and P=0.03. The score was 

standardized to zero-mean and unit-variance based on ancestry-matched population controls. 

In the optimization dataset, the polygenic component of the score explained 4% of variance 

(R2), with one standard deviation of the score increasing CKD risk by 86% (OR=1.86, 

95%CI 1.83-1.89, P<1.00E-300) after controlling for age, sex, diabetes, center, genotyping/

imputation batch, and genetic ancestry (Supplemental Table 1).

The second optimization step involved testing for independent contributions of APOL1 risk 

genotypes and included 7,158 UKBB participants of genetically defined African ancestry 

(967 cases and 6,191 controls). In the model adjusted for age, sex, diabetes, batch, and 

PCs of ancestry, we observed statistically significant independent effects of the polygenic 

component (OR per SD =1.16, 95%CI: 1.09-1.25, P=1.00E-04) and the recessive APOL1 
risk genotype (OR=1.19, 95%CI: 1.01-1.38, P=4.00E-02), but no significant multiplicative 

interactions between the two predictors (P interaction=0.29) (Supplemental Table 2). 

Given these findings, we subsequently modeled APOL1 risk as additive to the polygenic 
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component, assuming the APOL1 risk genotype effects approximately equivalent to one 

standard deviation of the standard-normalized polygenic score (the weight of one was used 

because the β per standard deviation of the polygenic score and the β for APOL1 risk 

genotype were comparable in magnitude).

Population differences in GPS distributions

We next examined the distributions of the polygenic risk component (without APOL1), as 

well as the final combined GPS (with APOL1) in the reference populations of 1000G. We 

detected significant differences in the mean polygenic risk across populations (Figure 2, 

ANOVA P=3.40E-154), with a notable shift towards higher average risk in African ancestry 

compared to all other populations (P=4.92E-163). This shift became even more pronounced 

after including APOL1 risk genotype information in the combined GPS (P=1.58E-168). 

These results suggest that the polygenic risk score for CKD is considerably higher in 

African compared to non-African populations independent of APOL1.

Given that the weights of the score equation are fixed, we hypothesized that the observed 

distributional differences were driven by a higher frequency of CKD risk alleles in African 

genomes. Therefore, we examined the overall frequency spectrum of CKD risk alleles 

included in the GPS between European and African reference populations (Extended Data 

Figure 1). First, we observed a greater number of risk alleles in the African compared 

to European populations of 1000G at the extremes of the frequency spectrum (risk allele 

frequencies (RAF) < 0.01 or > 0.99). This observation is expected due to the MAF filter 

of 1% used in the European GWAS discovery cohorts. Second, across all variants included 

in the score, the mean difference in RAF between African and European populations was 

positive (i.e. greater than the expected mean of 0), indicating higher average frequency of 

risk alleles in African genomes. We further observed that the risk alleles with largest weights 

(effect sizes in GWAS) had a significantly higher frequency in African genomes compared 

to those with low effect sizes (P=0.025), or intermediate effect sizes (P=0.018) (Extended 

Data Figure 1d). Thus, it appears that the observed GPS distributional shifts between 

European and African populations are driven predominantly by frequency differences of 

large effect risk alleles.

GPS testing in cohorts of European ancestry

We next tested the final GPS in three European cohorts, including the remaining 30% 

of the UKBB (2,759 cases and 72,968 controls) and two large US-based European 

ancestry cohorts, eMERGE-III (10,572 cases and 8,030 controls) and BioMe (870 

cases and 1,851 controls). In the combined meta-analysis, the GPS exhibited highly 

reproducible performance, with pooled OR per SD = 1.46, 95%CI: 1.43-1.48, P<1.00E-300 

(Supplemental Table 3). While the UKBB testing cohort had nearly identical performance 

metrics to the optimization cohort, the effect sizes were attenuated slightly in the US-based 

cohorts. The frequency of APOL1 risk genotype was extremely low (Supplemental Table 4), 

thus its effect was negligible in the European cohorts.
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GPS testing in cohorts of African ancestry

The GPS was tested in six independent African ancestry cohorts, including eMERGE-III 

(1,143 cases and 1,600 controls), BioMe (729 cases and 1,149 controls), HyperGEN (109 

cases and 619 controls), REGARDS (1,055 cases and 4,314 controls), GenHat (924 cases 

and 2,454 controls) and Warfarin (308 cases and 140 controls). In the combined meta-

analysis, the GPS had pooled OR per SD of 1.32, 95%CI: 1.26-1.38, P =1.78E-33 (Table 2 

and Supplemental Table 5). The inclusion of APOL1 risk genotype considerably enhanced 

CKD risk prediction across all African ancestry cohorts, substantially improving tail cut-off 

discrimination i.e., the risk for the top 2% of individual was approximately 1.80-fold higher 

in the model without APOL1 and 2.70-fold higher in the model with APOL1 compared to 

the remaining 98% of individuals (Table 3). The effects of the GPS stratified by APOL1 risk 

genotype across all 6 African ancestry cohorts are depicted in Figure 3a.

GPS testing in admixed ancestry Latinx cohorts

The GPS was also tested in two admixed ancestry Latinx cohorts from eMERGE-III 

(382 cases and 533 controls) and BioMe (1,004 cases and 1,706 controls). The combined 

meta-analysis of these cohorts resulted in pooled OR per SD = 1.42, 95%CI: 1.29-1.57, 

P=4.56E-12 (Supplemental Table 6). Similar to African ancestry cohorts, the inclusion of 

APOL1 risk genotypes in the GPS improved risk prediction in these admixed cohorts (Table 

3).

GPS testing in cohorts of Asian ancestry

We tested GPS in four diverse Asian cohorts including UKBB South-West Asian (209 cases 

and 6,258 controls), UKBB East Asian (26 cases and 1,525 controls), eMERGE-III East 

Asian (96 cases and 97 controls) and BioMe East Asian (61 cases and 353 controls) cohorts. 

The combined meta-analysis resulted in pooled OR per SD = 1.68, 95%CI: 1.45-2.06, 

P =7.11E-13 (Supplementary Table 7). APOL1 risk genotypes were absent in the Asian 

cohorts, thus the modelled risk was entirely attributable to the polygenic component.

Tail discrimination performance by ancestry

For each individual testing cohort, we derived risk estimates comparing extreme tails of the 

risk score distribution to all other cohort members, and estimated sensitivity and specificity 

for a range of tail cutoffs (20%, 10%, 5%, 2% and 1%). These metrics were meta-analyzed 

by ancestry and summarized in Table 2, Figure 3b, and Supplemental Tables 3, 5–7. 

Depending on ancestry, the top 2% tail of the risk score distribution was associated with 

2.66-4.93 fold higher risk of CKD than for the remaining 98% of individuals, including 

in European (OR=3.60, 95%CI: 3.11-4.17, P=4.26E-66), African (OR=2.66, 95%CI: 

2.01-3.51, P=4.93E-12), admixed Latinx (OR=4.93, 95%CI: 2.46-9.89, P=6.69E-06) and 

Asian ancestry (OR=3.81, 95%CI: 1.91-7.59, P=1.35E-04) cohorts. We consider this cut-off 

as clinically meaningful, since this degree of risk is approximately equivalent to the risk 

reported for a family history of kidney disease34. In Supplementary Table 8, we summarize 

various metrics of diagnostic performance for this cut-off by ancestry, including sensitivity, 

specificity, as well as prevalence-adjusted positive and negative predictive values. For 

comparison, we provide similar metrics for the top 5% of the risk score distribution.
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Ancestry adjustments and calibration

We next compared the effect of two different ancestry adjustment methods on the GPS 

distributions in 1000G, eMERGE-III, and UKBB testing cohorts (Figure 2 and Extended 

Data Figure 2). Adjusting for mean only (method 1, see Methods) eliminated major 

distributional shifts by ancestry, but did not fully resolve the observed tail differences. 

The ancestry adjustment method 2 (adjusting for both mean and variance) resulted in 

comparable shapes of the GPS distributions by ancestry and facilitated the selection of 

a single trans-ancestry tail cut-off. Both methods result in comparably good risk score 

calibration when applied to the combined multiethnic eMERGE-III dataset (Extended Data 

Figure 3). As a trade-off, however, the ancestry adjustments reduced tail discrimination at 

extreme cut-offs as summarized in Supplementary Table 9. This trade-off appeared most 

pronounced for method 2, as well as for more admixed cohorts (African-American and 

Latinx).

Sensitivity analyses

The use of race in clinical predictive models has been scrutinized, and a new CKD-EPI 

2021 equation without a race variable has recently been proposed35. We therefore performed 

sensitivity analyses to examine the effect of the new equation on the GPS performance 

within eMERGE-III, our largest and most diverse testing dataset. The CKD-EPI 2021 

equation without race35 was applied to re-define cases and controls across among all 

eMERGE-III participants. As expected, the new equation reduced the number of CKD cases 

(and increased the numbers of controls) in the European, Latinx and East Asian cohorts, 

while the opposite effect was observed in the African ancestry cohort. Importantly, across all 

ancestral groups, the GPS had comparable performance between the new and old phenotype 

definitions, with a notable trend for improved performance in the African ancestry cohort 

(Supplemental Table 10a).

We additionally tested the effect of using self-reported race/ethnicity vs. genetic (principal 

component-based) ancestry to define our testing cohorts. Despite smaller sample sizes of the 

cohorts defined by self-report, we observed no major performance differences between self-

report and genetic ancestry-defined cohorts. Similarly, the use of the 2021 CKD-EPI eGFR 

equation to define CKD in self-report-based cohorts resulted in comparable performance 

to the 2009 equation, with a similar trend for improved performance in African ancestry 

cohorts (Supplemental Table 10b).

Lastly, using our multiethnic eMERGE-III cohorts, we compared the performance of our 

GPS to an alternative score recently proposed by Yu et al36 (Supplementary Table 11). 

This score was based on a GWAS with higher proportion of Europeans, did not include 

APOL1 risk genotype, and was not optimized for transethnic performance. Given these 

differences, the score by Yu et al. performed better in cohorts of European ancestry but 

was less predictive in cohorts of African or Asian ancestry. Notably, the African ancestry 

distribution of the GPS by Yu et al. was also shifted towards higher values compared to other 

ancestries, confirming that the observed shift is independent of a specific method used to 

design the score (Extended Data Figure 4).
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DISCUSSION:

We developed a GPS for CKD that captures polygenic determinants of kidney function 

emerging from recent GWAS studies and predicts CKD across four ancestry groups. Our 

score was designed and validated for individual level risk prediction following ClinGen 

guidelines33. The score had consistent performance despite heterogenous genotyping 

platforms and imputation methods employed in our testing studies. We also developed 

continuous ancestry adjustment methods to allow for cross-ancestry standardization of the 

score. Importantly, our testing studies demonstrated that extreme tails of the risk score 

distribution (top 2%) conveyed approximately 3-fold increase in the disease risk across 

all ancestries. This magnitude of risk is equivalent to a positive family history of kidney 

disease34.

In this study, we were unable to assess if the GPS conveys kidney disease risk independently 

of positive family history, mainly because family history is poorly captured in electronic 

health records, and thus it is not routinely available for large EHR-linked biobanks37. 

However, prior cohort studies in cardiovascular disease38–41 and breast cancer42 clearly 

demonstrate that polygenic scores for these conditions capture independent information 

from family history or traditional risk factors. For CKD, this specific question will be 

addressed by a prospective eMERGE-IV study testing the performance of our score against 

family history collected using MeTree software43. Additional studies are also needed to 

test if our GPS modifies penetrance of monogenic kidney disorders, similar to the effects 

reported for tier 1 genetic disorders44.

Beyond enhanced disease screening of asymptomatic individuals, other potential 

applications of the GPS may include improved risk stratification of potential living kidney 

donors, or enhanced quality assessment of deceased donor organs in the setting of kidney 

transplant45. The hypothesis that a donor polygenic risk is relevant to kidney allograft 

outcomes remains to be tested but is supported by the fact that most candidate causal 

genes from GWAS for kidney function map to kidney cell types46,47. The clinical practice 

and local guidelines for genetic screening of living donors continue to evolve rapidly, but 

presently only monogenic causes of kidney disease and APOL1 risk genotypes are being 

considered48. Our results stress an urgent need to test the utility donor GPS in this setting to 

better assess its impact on living donation risks as well as allograft outcomes.

Although our score is based on a multiethnic GWAS for eGFR, the allelic effect estimates 

remain heavily biased by the predominant Euro-Asian composition of the discovery GWAS 

that included 75% European, 23% East Asian, 2% African, and only <1% admixed ancestry 

Latinx participants. Because there are currently no studies of similar size performed in 

African and admixed ancestry participants, we were unable to improve the accuracy of 

effect estimates for these populations, and our model assumed fixed effects across ancestries. 

We used a diverse linkage disequilibrium reference in order to improve the trans-ethnic 

performance of the score, and we further enhanced the model by including African ancestry-

specific recessive APOL1 risk genotypes known to have large effects on the risk of kidney 

disease. We demonstrated that APOL1 risk genotypes (coded under a recessive model) have 

Khan et al. Page 8

Nat Med. Author manuscript; available in PMC 2023 January 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



an additive effect with the polygenic component, and significantly enhance case-control 

discrimination in African and admixed ancestry Latinx cohorts.

Several important limitations of this work need to be discussed. First, we are most limited 

by the lack of large-scale GWAS for kidney function in non-European populations, as 

well as small sizes of existing cohorts that could be used for performance optimization in 

non-Europeans49. As a result, the largest cohorts presently available for robust risk score 

optimization are also of predominantly European ancestry. The assumption of fixed allelic 

effects across different ancestral groups is likely inaccurate, because many disease-related 

lifestyle factors and environmental exposures correlated with ancestry could modify allelic 

effects. Accordingly, the overall tail discrimination of the score was lower in African than 

in European or Asian ancestry cohorts with notably lower sensitivity for the top 2% GPS 

cut-off. Although it is not possible to overcome this limitation in the present study, our GPS 

approach could be refined by inclusion of larger non-European GWAS studies for eGFR or 

CKD once available in the future.

Second, the performance comparisons between different ancestral groups could be biased 

by differences in genotyping platforms and ascertainment methods employed by various 

biobanks. For example, the UK Biobank represents a population-based cohort recruiting 

European participants in the 40-60 age group, while the eMERGE and BioMe case-control 

cohorts are ascertained among older patients with more comorbidities receiving care at 

tertiary U.S. medical centers. The inclusion of older participants in our testing cohorts might 

lead to some case misclassification due to age-related kidney function decline. To mitigate 

this issue, we excluded CKD stage 2 from all performance tests in our study. However, stage 

3a may also be prone to residual misclassification50, resulting in risk underestimation for 

cohorts comprised of older participants.

Third, the ancestry definitions varied in our testing cohorts. While in eMERGE and UKBB 

the ancestry was defined agnostically using genetic approaches, all other testing cohorts 

relied on self-report. Despite these differences, the risk score performance was similar across 

all cohorts, and our sensitivity analyses demonstrated no major change in performance 

when cohorts were defined by genetics vs. self-report. Notably, the African ancestry cohorts 

included in this study were predominantly of West African descent. Due to the lack of 

relevant genetic cohorts, we were unable to test the GPS performance in other African 

populations, such as from East or South Africa. These populations have relatively low 

frequency of APOL1 risk alleles, which could potentially dampen the score effects, but 

follow-up studies are needed for these populations. Additional GPS validation is also needed 

in Native American and Pacific Islander populations that were not represented here.

Fourth, by design, our score models polygenic effects from GWAS for kidney function 

as approximated by estimated GFR from serum Cr (filtration marker) rather than CKD 

itself. We recognize multiple limitations to the use of estimated GFR as a phenotype in 

GWAS, including the fact that serum Cr level is influenced by the rate of Cr production and 

metabolism in addition to kidney clearance. Accordingly, to capture a clinically meaningful 

disease state, we designed the score to predict moderately advanced CKD (stage 3 and 

above) rather than a mild degree of kidney dysfunction. Notably, our risk score does 

Khan et al. Page 9

Nat Med. Author manuscript; available in PMC 2023 January 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



not incorporate available information on the polygenic determination of albuminuria51 

or primary kidney diseases52,53. However, current GWAS for these traits remain several 

orders of magnitude smaller in sample size compared to the GWAS for eGFR and thus 

incorporation of such data must await more powerful studies.

Fifth, we observed significant differences in the mean and variance of the GPS distributions 

by ancestry. The observed shift in the mean GPS towards higher values in individuals of 

African ancestry is independent of APOL1 and is driven by a higher average RAF in the 

African genomes. The inter-population RAF differences are greatest for the risk alleles with 

largest effects. This pattern may be consistent with polygenic adaptation, but the effects of 

uncorrected population stratification in the discovery GWAS may also potentially explain 

this phenomenon54. Therefore, based on this observation alone we are unable to determine if 

the observed shift contributes to the higher prevalence of CKD among individuals of African 

ancestry.

We note that the observed differences in the GPS distributions by ancestry represent a 

significant challenge for the clinical implementation of polygenic scores. The key problem 

is that it is not possible to select a single GPS threshold for all ancestries that results in 

the similar magnitude of risk. Therefore, we have explored several approaches that could be 

used to overcome this issue. One approach involves classifying individuals undergoing GPS 

testing into one of the four ancestry groups based on self-report, then using ancestry-specific 

cut-offs to interpret the results. However, because of a potential for racial bias, the use 

of race in clinical algorithms has been discouraged.55 One could also classify a tested 

individual based on genetic ancestry inferred from SNP data with subsequent application 

of ancestry-specific cut-offs. This approach still categorizes individuals into distinct groups, 

and can be inaccurate especially for those individuals with admixed genomes. We have 

therefore tested two different regression-based ancestry correction methods that model a 

continuous spectrum of genetic ancestry based on the diverse reference panel of 1000 

Genomes. We demonstrate that the reference population-based correction for both mean and 

variance can best align distribution tails for selection of a single trans-ancestry GPS cut-off. 

This, however, results in some performance trade-offs, especially in admixed populations. 

Although still imperfect, this ancestry adjustment may be helpful in improving risk score 

standardization for clinical use in diverse populations.

Lastly, we used the 2009 CKD-EPI equation (with a race coefficient), since no alternatives 

were available at the time of our analyses. We do not expect this equation to affect the 

GPS performance, since our analyses were stratified by genetic ancestry, and the race 

coefficient was uniformly applied to all African ancestry cohorts. Importantly, our sensitivity 

analyses confirmed a comparable performance of the GPS when the case-control status was 

re-defined using the newly proposed 2021 CKD-EPI equation without a race variable35,56.

In summary, we derived, optimized, and tested a new GPS for CKD across major ancestries 

and proposed new methods for its trans-ethnic GPS standardization. We demonstrated that 

the polygenic component and APOL1 risk genotypes had additive effects on the risk of 

CKD. Our study showed that individuals in the highest 2% of the risk score distribution had 

nearly 3-fold increase in the disease risk, the degree of risk equivalent to a positive family 
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history. The key advantage of the GPS over traditional screening is that it can identify at risk 

individuals before the onset of any disease manifestations. Timely communication of high-

risk status may lead to adoption of protective lifestyle changes and improved adoption of the 

recommended screening guidelines. Because the cost of SNP arrays is no longer prohibitive, 

and multiple polygenic scores can be determined using a single array, a population-based 

genetic screening approach for common diseases (e.g. individuals >40 years old) may prove 

to represent a cost-effective public health strategy. While our study represents only the first 

step in this direction, prospective studies are needed to test the clinical utility and cost 

effectiveness of this approach. The prospective eMERGE-IV study is specifically designed 

to test this strategy in a newly recruited population-based cohort of over 20,000 volunteers.

METHODS:

Ethics Statement:

The study was approved by the Columbia University Institutional Review Board (IRB 

numbers IRB-AAAQ9205, IRB-AAAT8208, and IRB-AAAS3500). All participating studies 

were approved by their local institutional review boards, including all sites contributing 

human genetic and clinical data to the Electronic Medical Records and Genomics phase 3 

(eMERGE-III) consortium. Of note, BioVU operated on an opt-out basis until January 2015 

and on an opt-in basis since. The phenotypic data in BioVU are all deidentified, and the 

study was designated “nonhuman subjects” research by the Vanderbilt Institutional Review 

Board. All other participants provided written informed consent to participate in genetic 

studies.

Study cohorts:

Electronic Medical Records and Genomics (eMERGE): The eMERGE network 

provides access to electronic health record (EHR) information linked to GWAS data for 

102,138 individuals recruited in three phases (eMERGE-I, II, and III) across 12 participating 

medical centers in years 2007-2019 (54% female, mean age 69 years, 76% European, 

15% African American, 6% Latinx, 1% East or Southeast Asian by self-report). All 

individuals were genotyped genome-wide, and details on genotyping and quality control 

analyses have been described previously4,57. Briefly, all GWAS datasets were imputed using 

the multiethnic Haplotype Reference Consortium (HRC) panel on Michigan Imputation 

Server58. The imputation was performed in 81 batches. Post-imputation, we included only 

markers with minor allele frequency (MAF) ≥ 0.01 and R2 ≥ 0.8 in ≥ 75% of batches. A 

total of 7,529,684 variants were retained for the GPS analysis. For principal component 

analysis (PCA), we used FlashPCA59 on a set of 48,509 common (MAF ≥ 0.01) and 

independent variants (pruned in PLINK with --indep-pairwise 500 50 0.05 command). The 

G1 and G2 alleles of APOL1 were imputed separately using the TOPMed imputation 

server60. The allelic frequencies of G1 and G2 alleles were comparable to previous 

studies61, as summarized in Supplementary Table 4. The analyses were performed using 

a combination of VCFtools62 and PLINK v.1.963.

UK Biobank (UKBB): UKBB is a prospective cohort based in the United Kingdom 

that enrolled individuals ages 40-69 across the UK in years 2006-201064. This cohort 
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comprised of 488,377 individuals (54% female, mean age 57 years, 94% European, 2% East 

or Southeast Asian, and 2% African ancestry by self-report), genotyped with high-density 

SNP arrays, and linked to EHR data. All individuals underwent genotyping with UK 

Biobank Axiom array from Affymetrix and UK BiLEVE Axiom arrays (~825,000 markers). 

Genotype imputation was carried out using a 1000 Genomes reference panel with IMPUTE4 

software, as previously described64. We then applied QC filters similar to eMERGE-III, 

retaining 9,233,643 common (MAF ≥ 0.01) variants imputed with high confidence (R2 ≥ 

0.8). For PCA by FlashPCA59, we used a set of 35,226 variants that were common (MAF ≥ 

0.01) and pruned using --indep-pairwise 500 50 0.05 command in PLINK v.1.963. APOL1 
G1 and G2 alleles were imputed separately using the TOPMed imputation server60.

BioMe Biobank: The BioMe Biobank is an EHR-linked biorepository that has been 

enrolling participants non-selectively from across the Mount Sinai Health System in New 

York between 2007-2021. A total of 32,595 BioMe participants were genotyped on the 

Illumina Global Screening Array (GSA) through a collaboration with Regeneron Genetics 

Center and 11,953 on the Illumina Global Diversity Array (GDA) through a collaboration 

with Sema4. Population groups were determined by self-reported race/ethnicity as published 

previously, with 32% Hispanic/Latinx, 27% Europeans, 22% African Americans, and 2.6% 

East and Southeast Asian participants65. We removed participants under 40 years of age and 

those included in the CKDGen GWAS dataset11. We applied standard GWAS quality control 

analyses, removing participants with genotype missing rates >5% and variants with missing 

rates >5%, or Hardy-Weinberg Equilibrium violation per each ancestral group (P<1.00E-5 

and P<1.00E-6 for GSA and GDA arrays respectively). We additionally removed individuals 

who were cryptically related (2nd degree or above), or whose genotype-inferred sex did 

not match the self-reported gender. Imputation (including G1 and G2 variants in APOL1) 

was performed using the TOPMed Imputation Server with the TOPMed Freeze 8 reference. 

Post-imputation, variants with quality scores <0.7 were removed. After QC, there were 

9,154 BioMe participants of European ancestry, 7,318 African ancestry, 11,606 admixed 

ancestry Latinx cohorts, and 843 East Asian ancestry included in the analysis.

Reasons for Geographic and Racial Differences in Stroke Study 
(REGARDS): REGARDS is a population-based, longitudinal study of incident stroke and 

associated risk factors in over 30,000 adults aged 45 years or older between 2003 and 2007 

from all 48 contiguous US states and the District of Columbia66. By design, participants 

were oversampled if they were African American. Genotyping was performed on 8,916 

self-identified African American participants using Illumina MEGA-EX arrays and imputed 

using the NHLBI TOPMed reference panel (Freeze 8). Participants were excluded if they 

had call rates less than 95%, if they were internal duplicates, had sex mismatches, or were 

outliers on PCA (outside of 6 standard deviations). After QC, there were 8,669 participants 

available for analysis (63% females, average age 62 years, 100% African-American by 

self-report). Over 99% of the variants with MAF>1% had an imputation quality of 0.6 or 

higher, and for GPS calculation we retained genotypes with genotypic probability of 0.9 or 

higher. APOL1 G1 and G2 alleles were genotyped directly using TaqMan SNP Genotyping 

Assays (Applied Biosystems/ThermoFisher Scientific).
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The Hypertension Genetic Epidemiology Network (HyperGEN): HyperGEN is 

a cross-sectional, population-based study and a component of the NHLBI Family Blood 

Pressure Program that was designed to identify genetic risk factors for hypertension and its 

complications67. The cohort was recruited in years 1995–2000 and comprised of sibships 

with at least two siblings diagnosed with hypertension before age 60, their adult offspring, 

and age-matched controls. The study was subsequently expanded to include additional 

siblings and offspring to a total N=5,000. African American participants (62% females, 

average age 52 years) underwent whole genome sequencing (WGS) through the NHLBI 

WGS program. To harmonize WGS data with the array-based studies, we compiled a set of 

non-monomorphic and non-multi-allelic SNPs with MAF >1% that were overlapping with 

our array-typed African American cohorts. This yielded a total of 2,204,415 SNPs that were 

used as fence post markers for imputation using the same TOPMed release 2 reference panel 

as for the REGARDS, GenHAT and WPC studies. Over 99% of the variants with MAF>1% 

had an imputation quality of 0.6 or higher. Only genotypes with genotypic probability over 

0.9 were retained for the risk score calculation. APOL1 genotypes were called directly from 

the WGS data. Individuals younger than 40 years of age were excluded, and a total of 1,898 

participants self-identified as African American were retained in the testing cohort.

Warfarin Pharmacogenomics Cohort (WPC): WPC is a prospective cohort 

of first-time warfarin users aged 19 years or older starting anticoagulation for 

venous thromboembolism, stroke/transient ischemic attacks, atrial fibrillation, myocardial 

infarction, and/or peripheral arterial disease68. The genotype data was generated using 

Illumina’s MEGA-EX and 1M duo arrays for 599 and 297 participants, respectively (58% 

females, average age 61 years, 100% African American by self-report). Imputation was 

performed using the TOPMed r2 reference panel (Freeze 8). More than 99% of the imputed 

variants with MAF>1% had R2 of 0.6 or higher, and genotypes with genotypic probability 

of 0.9 or higher were retained for PRS calculation. PCA was performed using EIGENSOFT 

version 6.1.4 based on 44,137 high quality directly genotyped (missingness <5%), common 

(MAF ≥ 5%), and independent (r2<0.05) SNPs. APOL1 information was obtained from 

genotypic array data; rs143830837 was used as a proxy for rs71785313 since these SNPs 

represent the same G2 variant and were recently merged in dbSNP. For this analysis, only 

participants aged 40 years or older were included, leaving a total of 448 self-identified 

African-American participants.

The Genetics of Hypertension Associated Treatments (GenHAT) 
Study: GenHAT is an ancillary study to the Antihypertensive and Lipid Lowering 

Treatment to Prevent Heart Attack Trial (ALLHAT)69. ALLHAT was a randomized, double 

blind, multicenter clinical trial with over 42,000 high-risk individuals with hypertension, 

aged 55 years or older, and with at least one additional risk factor for cardiovascular 

disease. ALLHAT was the largest antihypertensive treatment trial to date and was 

ethnically diverse, enrolling >15,000 African American participants70. Participants were 

randomized into four groups defined by the class of assigned antihypertensive medication 

including chlorthalidone, lisinopril, amlodipine, and doxazosin. The original GenHAT study 

(N=39,114) evaluated the effect of the interaction between candidate genetic variants 

and different antihypertensive treatments on the risk of cardiovascular outcomes69. In an 
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ancillary study to the original study, genotyping using Illumina MEGA-EX arrays was 

performed on 7,546 African American participants. Samples with low call rate (<95%), sex 

mismatches, and outliers in the PCA (>6 standard deviations) were excluded, which resulted 

in 6,919 participants with genotypes available for analysis (58% females, average age 66 

years, 100% African American by self-report). Genotype imputation was carried out using 

the NHLBI TOPMed r2 reference panel (Freeze 8), and only genotypes with genotypic 

probability of 0.9 or higher were retained. APOL1 information was extracted from the 

genotypic array data, similar to the WPC cohort.

Ancestry definitions

In UKBB and eMERGE-III datasets, the ancestry sub-cohorts were defined based on PCA-

based clustering. We grouped all individuals into four major continental ancestry clusters by 

projecting each sample onto the reference principal components calculated from the 1000G 

reference panel71. Briefly, we merged our UKBB and eMERGE genotypes with 1000G data 

and kept only SNPs in common with 1000G. The markers were then pruned using PLINK --

indep-pairwise 500 50 0.05. The numbers of pruned variants for UKBB and eMERGE were 

35,091 and 43,080 respectively. We then calculated principal components for 1000G using 

FlashPCA and projected each of our samples onto those PCs. Ancestry assignments were 

then performed by co-clustering of the reference populations. Ancestry memberships were 

verified by visual inspection of PCA plots and projections of self-reported race and ethnicity 

labels on the genetically defined ancestral clusters (Extended Data Figure 5). Ancestry in 

BioMe, REGARDS, HyperGEN, WPC, and GenHAT was determined by self-reported race/

ethnicity, and PCA was subsequently performed for ancestry verification and to exclude 

outliers.

CKD phenotyping and case-control definitions

For phenotyping, we used the computable CKD phenotype extensively validated by the 

eMERGE-III network4. We defined cases as having CKD stage 3 or above based on 2009 

CKD-EPI72 eGFR <60 mL/min/1.73m2 on at least two serum Cr measurements 3 months 

apart, or patients on chronic dialysis, or after a kidney transplant. The controls were defined 

by eGFR > 90 mL/min/1.73m2 based on the latest serum Cr in the absence of CKD-related 

ICD codes4. The exclusion of individuals with CKD stage 2 (eGFR 60-90 mL/min/1.73m2) 

from case-control cohorts aimed to minimize potential case-control misclassification due 

to age-related decline in eGFR. The CKD definition of eGFR <60 mL/min/1.73m2 is 

thought to reflect <50% of the kidney function in adults, has been associated with increased 

morbidity and mortality, and has been endorsed as a clinically meaningful threshold by 

the Kidney Disease: Improving Global Outcomes (KDIGO) 2012 clinical practice guideline 

for the evaluation and management of CKD73. Only individuals 40 years of age or older 

were included across all datasets for consistency with the UKBB ascertainment strategy. 

Additional covariates used in the predictive models included age, sex, diabetes, and principal 

components of ancestry. The diagnosis of diabetes, an established risk factor for kidney 

failure, was defined based on ICD codes as previously published18. The diagnosis of 

hypertension was not added as a covariate to avoid over-adjustment, since cause-effect 

relationship of hypertension to CKD is difficult to establish based on EHR data, and CKD 

itself represents the most common cause of secondary hypertension.
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Polygenic score design and optimization

We used 70% Europeans of UKBB (6,573 cases and 170,635 controls) to optimize the 

polygenic component of the GPS. The optimization was performed by selecting the best 

model between two commonly used methods and a range of input parameters (Table 1, 

Supplemental Table 1). We used the summary statistics for 8.2 million SNPs from the 

CKDGen consortium GWAS for eGFR11 in combination with the LD reference panel 

from phase 3 1000G project (all populations, N=2,504)71. We first computed 7 candidate 

GPSes using the LDPred algorithm74 across the following range of rho (fraction of casual 

variants): 1.00E+00, 1.00E-01, 1.00E-02, 1.00E-03, 3.00E-01, 3.00E-02 and 3.00E-03. We 

also generated 12 pruning and thresholding (P+T) scores with r2=0.2 and P-value thresholds 

of 1.0, 1.00E-02, 1.00E-03, 1.00E-04, 1.00E-05, 1.00E-06, 1.00E-07, 1.00E-08, 3.00E-02, 

3.00E-03, 3.00E-04 and 3.00E-05. Based on the above parameters, each GPS was expressed 

as a weighted sum of alleles with weights based on the GWAS for the eGFR study:

GPS = −
j = 1

M
βj × (dosagej or genotypej)

where M is number of variants in the model and βj is the weight based on GWAS summary 

statistics and the negative sign reflects an inverse relationship between eGFR and CKD.

Each of the 19 scores derived above was subsequently assessed for discrimination of 

CKD cases from controls in the first UKBB optimization dataset after adjustment for age, 

sex, diabetes status and four principal components of ancestry. The score with the best 

performance was defined by the maximal area under the receiver operator curve and the 

largest fraction of variance explained. The best performing score was based on P+T method 

(r2=0.2, P=0.03) and comprised of 471,316 variants, 41,426 of which had non-zero weights 

(Supplemental Table 1). This score was normal-standardized (by subtracting control mean 

and dividing by control standard deviation) and advanced for testing in the second UKBB 

optimization cohort of African ancestry.

Modeling the effects of APOL1 risk genotypes

To optimize trans-ethnic performance, our final score was further optimized using the 

second UKBB optimization dataset of African ancestry (967 cases and 6,191 controls). 

We aimed to assess if adding APOL1 risk genotype (under a recessive model) enhanced 

CKD risk prediction. For this purpose, we first removed any variants in the APOL1 
region from the GPS equation to avoid duplicate scoring of this region. Next, we tested 

the GPS and APOL1 risk genotype jointly for association with CKD in this dataset. 

The GPS (without APOL1 region) and recessive APOL1 risk genotypes both represented 

independently significant predictors of CKD before and after adjustment for age, sex, 

diabetes, and 4 principal components of ancestry. The risk effects of APOL1 and GPS 

were additive, with one standard deviation unit of the standard-normalized GPS conveying 

the risk that was approximately equivalent to APOL1 risk genotype (Supplemental Table 2). 

We also tested for effect modification of APOL1 risk genotype by the polygenic component 

in CKD prediction, but found no significant interactive effects (P interaction = 0.29). To 
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account for the additive effect of APOL1 risk genotypes, we therefore updated the GPS for 

each subject using the following equation:

GPS = Standardized GPS + 1, if APOL1 Risk Genotype is present
Standardized GPS + 0, Otℎerwise

Predictive performance in independent testing datasets:

The predictive performance of the final GPS formulation was assessed in 15 ancestrally 

diverse testing datasets, including 3 cohorts of European ancestry (14,201 cases and 82,849 

controls in total), 6 cohorts of African ancestry (4,268 cases and 10,276 controls), 4 

cohorts of Asian (East and South-West) ancestry (392 cases and 8,233 controls), and 2 

admixed ancestry Latinx cohorts (1,386 cases and 2,239 controls). We calculated a full set 

of standardized performance metrics following ClinGen guidelines33. Logistic regression 

models were used for predicting case-control status with adjustment for age, sex, diabetes, 

center and genotype/imputation batch (if relevant), and four principal components of 

ancestry using glm function in R version 3.6.3.

We used pROC R package to calculate the receiver operating characteristic area under curve 

(AUC). We calculated variance explained using the Nagelkerke’s pseudo-R2, including 

for the full model (GPS plus covariates), for the covariates-only model, and for the GPS 

component alone expressed as the R2 difference between the full and the covariates-only 

model. We also expressed the effect of standardized risk score as odds ratios (with 

95% confidence intervals) per standard deviation unit of the control standard normalized 

risk score distribution in each of the validation cohorts. We examined the risk score 

discrimination at tail cut-offs corresponding to the top 20%, 10%, 5%, 2%, 1% of the GPS 

distribution by deriving odds ratios of disease for each tail of the distribution compared to 

all other individuals in each cohort. We also calculated sensitivities and specificities for each 

cut-off point in each cohort.

The performance metrics were meta-analyzed across the testing cohorts using an inverse 

variance weighed fixed-effects method to derive pooled performance metrics for each 

ancestral grouping75. Finally, we calculated prevalence-adjusted positive and negative 

predictive values for each GPS cut-off based on pooled estimates of sensitivity and 

specificity and known CKD prevalence in US population by ancestry. Statistical analyses 

were conducted using R version 3.6.3 software.

Comparing GPS distributions in the 1000G reference populations

To assess differences in the distributions of GPS by ancestry, we computed risk scores for 

the multiethnic reference of all 1000G phase 3 participants using our final equation:

GPS = −
j = 1

M
βj × (dosagej)

where M is the total number of variants included the model, βj is the optimized weight based 

on GWAS summary statistics for each marker included in the score, and dosagej refers to 
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effect allele dosage (0, 1, 2) for each variant j in 1000G samples. The distributions were 

examined visually in the form of histograms, and distributional differences by ancestry were 

tested using ANOVA.

Post-hoc ancestry adjustment

In order to express GPS effects on the same scale across ancestrally diverse individuals 

and to facilitate selection of a single cut-off for clinical implementation, we adjusted for 

differences in the first two moments of the GPS distributions by ancestry. Using multiethnic 

eMERGE cohorts, we tested two different regression-based ancestry adjustment strategies 

that utilize 1000G (all populations) reference: method 1 which adjusts for differences in 

mean, and method 2 which adjusts for both differences in mean and variance.

For method 1, we first regressed the GPS of 1000G participants against the first five PCs as 

proposed previously76:

GPS ∼ α0 +
i = 1

5
αi × PCi

Fitting the model to 1000G reference panel allows us to find α’s and generate residuals. 

Next, we used the estimated α’s to calculate the adjusted score for any individual projected 

onto the same PCA space:

Adjusted Z score (method 1) =
J 1
M wJ DJ α0 + i 1

5 αi PCi
δ

where ∑J = 1
M wJ × DJ is the raw GPS, α0 + ∑i = 1

5 αi × PCi is the predicted (ancestry-

adjusted) mean, and δ is the residual standard deviation from the 1000G model (all 

populations).

To adjust for ancestral differences in both mean and variance (method 2), we used the 

same method as above, but we also modeled residual variance (δ2) as a function of PCs of 

ancestry:

δ2 ∼ β0 +
i = 1

5
βi × PCi

Next, we used the estimated α’s and β’s to calculate the adjusted Z-score:

Adjusted Z score (method 2) = j 1
M

wj Dj α0 i 1
5 αi PCi

β0 + i 1
5 βi PCi

Where β0 + ∑i = 1
5 βi × PCi is the predicted (ancestry-adjusted) residual variance.
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The distributional transformations achieved by these methods were examined visually. We 

then compared the effects of these adjustments for the top percentile cut-offs in eMERGE-III 

cohorts.

Extended Data

Extended Data Fig. 1. Distribution of risk allele frequencies (RAF) and their effect sizes for the 
variants included in the GPS.
(a) comparison of RAF distributions for the risk variants included in the CKD GPS 

demonstrates higher frequency of rare (RAF<0.01) and common (RAF>0.99) risk alleles in 

African compared to European genomes (based on 1000G reference populations); this may 

be explained by the exclusion of variants with MAF<0.01 in European discovery GWAS; (b) 
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highly skewed effect size (weight) distribution for the variants included in the GPS for CKD; 

(c) Distribution of RAF difference (AFR-EUR) demonstrating higher average frequency of 

risk alleles in African genomes (mean RAF difference = 0.002) and a slight rightward shift 

of the RAF difference distribution from the expected mean of 0; (d) Mean RAF difference 

(AFR-EUR) as a function of effect size binned into three categories (high, intermediate, 

and low) based on the observed distribution of effects sizes in panel b, demonstrating that 

the risk alleles with larger effect size have higher average frequency in African compared 

to European genomes. EUR: European (N=503) and AFR: African (N=661). The bars 

represent 95% confidence intervals around the mean RAF difference estimate for each bin; 

two-sided P-values were calculated using t-test.

Extended Data Fig. 2. Risk score distributions in eMERGE-III (N=22,453) and UKBB 
(N=77,584) validation datasets.
(a) the distribution of raw polygenic score without APOL1 in UKBB by ancestry; (b) the 

distribution of ancestry-adjusted polygenic score (method 1: mean-adjusted) in UKBB by 

ancestry; (c) the distribution of ancestry-adjusted polygenic score (method 2: mean and 

variance-adjusted) in UKBB by ancestry. Panels (d), (e) and (f) show the same analyses for 

the eMERGE-III dataset, respectively.
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Extended Data Fig. 3. Final GPS calibration analysis in eMERGE-III cohorts combined 
(N=22,453).
predicted risk (X-axis) as a function of the observed risk (Y-axis) in the multiethnic 

eMERGE-III dataset after ancestry adjustment with (a) method 1 and (b) method 2. The 

bars represent 95% confidence intervals.
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Extended Data Fig. 4. 
Distributions of the raw (non-standardized) genome-wide polygenic score (GPS) by Yu et al. 

in the eMERGE-III validation datasets by ancestry.
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Extended Data Fig. 5. PCA projections of the study participants from the UKBB (top) and 
eMERGE-III (bottom) against the 1000G reference populations.
(a) UKBB (N=77,584) and (b) eMERGE-III (N=22,453) participants plotted against the 

reference 1000G populations (N=2,504); (b, e) plotted by self-reported race/ethnicity; and 

(c, f) plotted by final ancestry group assignment. X-axis: PC1; Y-axis: PC2; AFR: African; 

AMR: Native American; EAS: East Asian; EUR: European; and SAS: South Asian.
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Data Availability Statement:

The final formulation of the GPS for CKD along with the standardized metrics of 

performance were deposited in the GPS catalogue: https://www.pgscatalog.org/publication/

PGP000269/. The UK Biobank genotype and phenotype data are available through the 

UK Biobank web portal at https://www.ukbiobank.ac.uk/. The Electronic Medical Records 

and Genomics-III imputed genotype and phenotype data are available through dbGAP, 

accession number phs001584.v2.p2. The BioMe genotype datasets used in this study were 

generated by Regeneron and are not publicly available. However, the data will be made 

available for purposes of replicating the results by contacting the corresponding author and 

appropriate collaboration and/or data sharing agreements. The Warfarin and REGARDS 

imputed genotype and phenotype data are available through dbGAP, respective accession 

numbers phs000708.v1.p1 and phs002719.v1.p1. The GenHAT cohort is also available on 

dbGAP under accession number phs002716.v1.p1 (www.ncbi.nlm.nih.gov/projects/gap/cgi-

bin/study.cgi?study_id=phs002716.v1.p1). The HyperGEN cohort has been sequenced by 

the TopMED consortium and WGS data along with the phenotype data are available through 

dbGAP, accession number phs001293.v3.p1. Minimum testing datasets with the GPS, CKD 

outcome, and a set of essential clinical covariates for each cohort are also available when 

consistent with the consent given by the participants and can be requested directly from 

the corresponding author (kk473@columbia.edu) with a 2–4-week response timeframe; 

because these datasets contain clinical data, access to these datasets may require a data use 

agreement.
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Figure 1: Overview of the study design.
The CKD GPS was designed based on CKDGen GWAS summary statistics for eGFR and 

a cosmopolitan LD reference panel of 1000 Genomes (all populations); optimization was 

performed in two stages using UKBB participants of European (optimization 1) and African 

(optimization 2) ancestries; GPS performance validation was conducted in 15 additional 

independent testing cohorts of diverse ancestries.
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Figure 2: Risk score distributions in five 1000 Genomes populations:
(a) raw polygenic score without APOL1; (b) ancestry-adjusted polygenic score without 

APOL1 (method 1: mean only); (c) ancestry-adjusted polygenic score without APOL1 
(method 2: mean and variance); (d) raw combined GPS with APOL1; (e) ancestry-adjusted 

combined GPS with APOL1 (method 1) and (f) ancestry-adjusted combined GPS with 

APOL1 (method 2). AFR: African, AMR: Native American, EAS: East Asian, EUR: 

European, and SAS: South Asian.
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Figure 3. Effects of the genome-wide polygenic score (GPS) for chronic kidney disease (CKD):
(a) GPS quantile effects stratified by the APOL1 risk genotype (a total N=2,020 with 
and N=12,526 without the APOL1 risk genotype, in red and blue, respectively). The 

X-axis depicts each quantile of the GPS ordered from the first (Q1) to the last (Q5) quantile. 

The Y-axis depicts odds ratios of CKD for each of the quantile-defined sub-groups in 

reference to the middle quantile (Q3) of those without the APOL1 risk genotype. The 

effect estimates (dots) and 95% confidence intervals (vertical bars) were derived based on a 

fixed-effects meta-analysis across all 6 African ancestry testing cohorts and adjusted for age, 

sex, diabetes, and principal components of ancestry. Regression lines were fitted for each 

group defined by the presence of APOL1 risk genotype. (b) GPS tail effects by ancestry. 
The X-axis depicts odds ratio of CKD, the Y-axis depicts testing cohort meta-analysis by 

ancestry (with numbers of cases, controls, and cohorts). The effect estimates (dots) and 95% 

confidence intervals (vertical bars) are provided for the top 5% versus bottom 95% (sky 

blue), top 2% versus bottom 98% (cobalt blue), and top 1% versus bottom 99% (navy blue). 

All effect estimates are adjusted for age, sex, diabetes, and principal components of ancestry.
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Table 1:

Summary of study cohorts used for GPS optimization and testing.

Study Sub-Cohort CKD Cases 
N=27,787

Controls 
N=280,423 Female (%) Diabetes (%) Mean Age 

(Years)

UKBB

Optimization 1: European Ancestry 
(70%) 6,573 170,635 54 5 56.65

Optimization 2: African Ancestry 967 6,191 58 12 51.77

Testing 1: European Ancestry (30%) 2,759 72,968 54 5 56.64

Testing 2: East Asian Ancestry 26 1,525 68 5 52.37

Testing 3: South Asian Ancestry 209 6,258 46 18 53.32

eMERGE

Testing 4: European Ancestry 10,572 8,030 52 35 71.23

Testing 5: African Ancestry 1,143 1,600 70 40 66.76

Testing 6: Latinx Admixed Ancestry 382 533 64 38 66.77

Testing 7: East Asian Ancestry 96 97 59 27 72.81

UAB

Testing 8: Warfarin: African Ancestry 308 140 58 50 61.48

Testing 9: REGARDS: African 
Ancestry 1,055 4,314 63 31 62.30

Testing 10: GenHAT: African Ancestry 924 2,454 58 45 65.74

Testing 11: HyperGEN: African 
Ancestry 109 619 62 31 52.23

BioMe

Testing 12: European Ancestry 870 1,851 38 14 61.87

Testing 13: African Ancestry 729 1,149 56 32 61.65

Testing 14: Latinx Admixed Ancestry 1,004 1,706 38 33 62.04

Testing 15: East Asian Ancestry 61 353 41 15 55.75
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Table 2:

The performance metrics of the GPS in the testing cohorts meta-analyzed by ancestry. For performance testing 

in individual cohorts, please refer to Supplemental Tables 4–7.

Meta-analysis Case/control OR per SD (95% CI), 
P-value AUC (Crude) PRS Threshold Odds ratio (95% CI), P-value

European (3 
cohorts) 14,201/82,849 1.46 (1.43-1.48), 

P<1.00E-300 0.81 (0.62) Top 20% vs. other 80% 2.30 (2.17-2.44), P=1.65E-174

Top 10% vs. other 90% 2.59 (2.40-2.78), P=1.27E-142

Top 5% vs. other 95% 2.92 (2.65-3.21), P=2.64E-104

Top 2% vs. other 98% 3.60 (3.11-4.17), P=4.26E-66

Top 1% vs. other 99% 4.46 (3.66-5.44), P=7.82E-50

African (6 
cohorts) 4,268/10,276 1.32 (1.26-1.38), 

P=1.78E-33 0.78 (0.57) Top 20% vs. other 80% 1.65 (1.49-1.82), P=1.17E-22

Top 10% vs. other 90% 1.84 (1.61-2.09), P=9.26E-20

Top 5% vs. other 95% 2.06 (1.72-2.47), P=2.11E-15

Top 2% vs. other 98% 2.66 (2.01-3.51), P= 4.93E-12

Top 1% vs. other 99% 3.51 (2.37-5.22), P=4.21E-10

Latinx (2 
cohorts) 1,386/2,239 1.42 (1.29-1.57), 

P=4.56E-12 0.88 (0.62) Top 20% vs. other 80% 1.88 (1.50-2.37), P=5.46E-08

Top 10% vs. other 90% 2.26 (1.66-3.06), P=1.56E-07

Top 5% vs. other 95% 2.67 (1.75-4.07), P=4.96E-06

Top 2% vs. other 98% 4.93 (2.46-9.89), P=6.69E-06

Top 1% vs. other 99% 6.61 (2.46-17.75), P=1.77E-04

Asian (4 cohorts) 392/8,233 1.68 (1.45-2.06), 
P=7.11E-13 0.91 (0.61) Top 20% vs. other 80% 2.42 (1.81-2.27), P=4.39E-09

Top 10% vs. other 90% 2.95 (2.06-4.20), P=2.43E-09

Top 5% vs. other 95% 3.56 (2.26-5.60), P=4.09E-08

Top 2% vs. other 98% 3.81 (1.91-7.59), P=1.35E-04

Top 1% vs. other 99% 8.46 (3.70-19.3), P=4.00E-07

All 15 cohorts 20,247/103,597 1.44 (1.42-1.47), 
P<1.00E-300 0.81 (0.61) Top 20% vs. other 80% 2.23 (2.11-2.35), P=8.02E-195

Top 10% vs. other 90% 2.31 (2.17-2.45), P=2.75E-168

Top 5% vs. other 95% 2.58 (2.39-2.79), P=2.02E-123

Top 2% vs. other 98% 3.26 (2.89-3.67), P=3.37E-84

Top 1% vs. other 99% 4.61 (3.84-5.53), P=1.14E-60

OR: Odds ratio for the model adjusted for age, sex, diabetes, principal components of ancestry and genotyping array or clinical site; SD: standard 
deviation of the GPS distribution in controls; AUC: area under the receiver-operator curve for the model adjusted for age, sex, diabetes, principal 
components of ancestry and genotyping array or clinical site (crude: AUC for GPS alone without any covariates).
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Table 3:

Added value APOL1 risk genotype to polygenic risk components in predicting CKD using extreme tail (98th 

percentile) of the risk score distribution in African-American (4,268 cases and 10,276 controls) and admixed 

Latinx (1,386 cases and 2,239 controls) cohorts. All effect estimates are adjusted for age, sex, diabetes, and 

principal components of ancestry.

Cohorts APOL1 Risk Genotype OR 
(95%CI), P-value

Top 2% PRS without APOL1 OR 
(95%CI), P-value

Top 2% PRS with APOL1 OR 
(95%CI), P-value

African Ancestry:

eMERGE 1.64 (1.42-1.86), P=2.00E-05 2.10 (1.46-2.74), P=2.00E-02 2.60 (1.38-4.90), P=3.10E-03

BioMe 1.38 (1.28-1.48), P=3.30E-10 2.70 (1.93-3.47), P=1.00E-02 5.75 (4.96-6.54), P=1.00E-05

UAB HyperGen 1.71 (0.93-3.12), P=8.20E-02 2.22 (0.59-8.44), P=2.40E-01 1.64 (0.43-6.20), P=4.65E-01

UAB REGARDS 1.35 (1.08-1.77), P=6.90E-03 1.26 (0.76-2.07), P=3.60E-01 1.56 (0.97-2.59), P=6.52E-02

UAB GenHAT 1.43 (1.12-1.81), P=3.20E-03 2.80 (1.64-4.77), P=1.50E-04 4.38 (2.56-7.50), P=6.80E-08

UAB Warfarin 1.93 (1.07-3.49), P=2.90E-02 -- 1.59 (0.28-8.73), P=5.96E-01

Meta-analysis 1.46 (1.38-1.54), P=2.70E-19 1.76 (1.41-2.20), P=5.90E-07 2.66 (2.01-3.51), P=4.93E-12

Latinx Admixed 
Ancestry:

eMERGE 16.5 (5.70-48.1), P=7.10E-04 1.41 (0.47-4.24), P=5.40E-01 6.89 (1.60-29.07), P=9.78E-03

BioMe 1.17 (1.10-1.24), P=2.40E-06 2.72 (1.97-3.47), P=1.00E-02 4.48 (3.69-5.27), P=2.10E-04

Meta-analysis 1.18 (1.09-1.27), P=4.40E-05 2.21 (1.19-4.10), P=1.10E-02 4.93 (2.46-9.89), P=6.69E-06
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