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Abstract

Idiopathic pulmonary fibrosis (IPF) is a chronic lung condition with poor survival times. 

We previously published a genome-wide meta-analysis of IPF risk across three studies with 

independent replication of associated variants in two additional studies. To maximise power and to 

generate more accurate effect size estimates, we performed a genome-wide meta-analysis across 

all five studies included in the previous IPF risk GWAS. We utilised the distribution of effect 

sizes across the five studies to assess the replicability of the results and identified five robust 

novel genetic association signals implicating mTOR signalling, telomere maintenance and spindle 

assembly genes in IPF risk.

Introduction

Idiopathic pulmonary fibrosis (IPF) is a chronic lung disease believed to result from an 

aberrant response to alveolar injury leading to a build-up of scar tissue. This progressive 

scarring is eventually fatal with half of individuals dying within 3 to 5 years of diagnosis1. 

The cause of IPF is unknown but genetics play an important role in how susceptible an 

individual is to IPF2.

Genome-wide association studies (GWAS) are an approach whereby genetic variants from 

across the genome are tested for their association with a disease. Genetic loci identified by 

GWAS can implicate genes important in disease pathogenesis and drugs which target the 

products encoded by these genetically-supported genes are twice as likely to be successful 

during development. The genetic association statistics from a GWAS are also widely used to 

identify causal markers of disease through Mendelian randomisation, to conduct heritability 

estimation and for genetic correlation analyses.
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We recently published a GWAS of IPF risk2. The discovery GWAS consisted of three studies 

(named as the UK, Chicago and Colorado studies) and a replication analysis performed in 

two independent studies (named as the UUS [USA, UK and Spain] and Genentech studies). 

This analysis reported 14 genetic signals which implicated host defence, cell-cell adhesion, 

spindle assembly, TGF-β signalling regulation and telomere maintenance as important 

biological processes involved in IPF disease risk. The effect size estimates from this analysis 

have been widely used in other genetic analyses3–5 and have been integrated into drug target 

discovery pipelines.

To maximise sample sizes for detection of new genetic associations, and to generate more 

precise effect size estimates, we have reanalysed the data and present a meta-analysis of 

genome-wide data from all 5 datasets included in our previous study. The results of this 

analysis implicate new genetic loci in IPF pathogenesis and provide a unique resource for 

other studies of IPF risk and pathogenesis.

Methods

Quality control and sample selection have been previously described2. In summary, datasets 

comprised of unrelated European-ancestry individuals from across the USA, UK and Spain, 

diagnosed using ATS/ERS guidelines6,7. Individuals in the Genentech study were sequenced 

using HiSeq X Ten platform (Illumina) and all other individuals were imputed from 

genotyping data using the HRC reference panel8. Genome-wide analyses were performed 

in each study separately using an additive logistic regression model adjusting for the first 10 

genetic principal components to account for population stratification.

The five separate study-level GWAS were meta-analysed into one single GWAS, using an 

inverse-variance weighted fixed effect meta-analysis using METAL9. Variants were included 

in the meta-analysis if they were available in at least four studies. Genomic control was 

performed on the meta-analysis results using the LD score regression intercept to account 

for inflation not explained by polygenic effects10. Significant variants were defined as those 

with meta-analysis p<5×10−8 and conditional analyses were performed using GCTA-COJO 

to identify additional independent associated variants11. Independent associated variants 

were defined as variants remaining genome-wide significant after conditioning on the 

most significant variant (sentinel) in the region with consistent effect size estimates in 

the conditional and non-conditional analysis. Annotation of the sentinel variants was then 

performed using Variant Effect Predictor12.

To assess the robustness of novel results, we tested the strength and consistency of results 

across studies using MAMBA (Meta-Analysis Model-Based Assessment of replicability)13. 

Variants with a posterior probability of replicability (PPR)≥90% were considered robust and 

likely to replicate should additional independent datasets become available.

Summary statistics (i.e. effect size estimates, standard errors, p values and basic variant 

information) for all variants included in the genome-wide meta-analysis can be accessed at 

https://github.com/genomicsITER/PFgenetics.
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Results

A total of 4,125 cases, 20,464 controls and 7,554,248 genetic variants were included in the 

analysis (Figure 1). The UUS study included one additional case (due to resolving a sample 

ID issue since the previous publication) and one fewer control (where the individual has 

since withdrawn consent from UK Biobank) than described in the previous GWAS2.

After conditional analyses, there were 23 independent signals with p<5×10−8 in the genome-

wide meta-analysis (Figure 2). These 23 signals included all 14 associations reported in 

the previous GWAS (Supplementary Table 1). Of the nine novel genetic associations (Table 

1), five showed evidence of replicability (PPR≥90%). The sentinel variants of these five 

loci included variants in introns of KNL1, NPRL3, STMN3 and RTEL1, and an intergenic 

variant in 10q25.1. All five novel variants had consistent direction of effect across all of 

the individual studies and reached nominal significance (p<0.05) in at least 3 of the studies. 

Twelve of the 14 previously reported signals had PPR>90% (Supplementary Table 1).

Discussion

By increasing the number of cases in the discovery analysis by more than 50% compared 

with the previous IPF risk GWAS, we identified novel genetic signals associated with IPF 

risk and improved the precision of estimations for previously reported signals. The five 

novel loci had internal evidence of replicability giving us confidence that these signals are 

likely to be generalisable.

The signals in RTEL1 and OBFC1 have been reported previously but did not meet the 

significance criteria of the previous three-way GWAS2. The new MAMBA analysis suggests 

that the consistency of effect across studies provides high confidence that the RTEL1 signal 

will replicate should an independent dataset become available. This is not the case for the 

OBFC1 signal where a low posterior probability of replication suggests that there may be 

heterogeneity in effect across the contributing studies.

The novel signals require further characterisation to determine the likely causal gene 

and underlying functional effect of the variants. However, some of the genes that are 

closest to these new signals have strong candidacy for involvement in IPF pathogenesis. 

NPRL3 encodes a GATOR1 complex function component and acts through mTORC1 

signalling to inhibit mTOR kinase activity14. mTOR regulates TGF-β collagen synthesis 

and inhibiting mTOR leads to increased deposition of scar tissue15. We previously reported 

an association implicating DEPTOR, another mTOR inhibiting gene. We also add to the 

evidence that cellular ageing plays a key role in IPF pathogenesis through associations at the 

telomere maintenance genes TERT, TERC and RTEL1. We previously reported associations 

in spindle assembly genes (MAD1L1 and KIF15) and have identified a novel genetic 

association in another spindle assembly gene KNL1 (Kinetochore Scaffold 1 also known as 

CASC5). STMN3 (Stathmin 3) implicates another cell replication process through tubulin 

binding14.

Our analysis also shows the benefits of including all samples in the genome-wide analysis. 

By utilising recent statistical methodological advances to test for the replicability of signals 
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when all available datasets are included in the discovery GWAS13, we were able to identify 

five additional variants with evidence of being robustly associated with IPF risk. Additional 

independent replication of these signals would strengthen the evidence for their role in IPF 

susceptibility.

By maximising the statistical power of the analysis, we identified novel genetic associations 

with IPF risk. These signals may implicate biologically relevant genes that support the 

importance of TGF-β signalling and cell replication as important processes in disease 

pathogenesis

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Study design and sample sizes.
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Figure 2. 
Manhattan plot. Each point shows a genetic variant with chromosomal position on the x 

axis and the −log(p value) on the y axis. The grey dashed line shows the genome-wide 

significance level (p=5×10−8). Each signal is labelled with the gene implicated by that 

signal. Genes in grey are the novel loci that do show evidence of replicability. The plot has 

been truncated at p=10−30
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Table 1:

Sentinel variants of novel associations.

Chr Position rsid Annotation Ref 
allele

Effect 
allele EAF Direction Study 

p≤0.05

OR 
[95% 
CI]

p PPR

i) Novel variants with high posterior probability of replication (PPR≥90%)

10 111229861 rs79684490 Intergenic 
(10q25.1) G A 4.6% + + + + + YYNYY

1.40 
[1.24, 
1.57]

3.52×10−8 94.0%

15 40931708 rs12912339 
a Intron of 

KNL1 G A 15.9% + + + + + YYNYY
1.30 

[1.21, 
1.39]

7.41×10−13 96.5%

16 162240 rs74614704 Intron of 
NPRL3 G A 5.6% + + + + + YNNYY

1.49 
[1.33, 
1.67]

2.57×10−12 99.4%

20 62284170
rs112087793 

b
Intron of 
STMN3 T C 91.5% + + + + + YYYYY

1.34 
[1.21, 
1.48]

1.09×10−8 96.8%

20 62324391 rs41308092 
b Intron of 

RTEL1 G A 2.1% + + + + + YYYYN
1.75 

[1.45, 
2.10]

3.13×10−9 99.9%

ii) Novel variants not reaching PPR≥90% threshold

1 214659598 rs4233306 Intron of 
PTPN14 T C 80.2% + + + + + YYNNN

1.23 
[1.15, 
1.32]

3.41×10−9 37.4%

6 43352980 rs1214759 Intergenic 
(6p21.2) A G 67.9% + + + + + NYYYN

1.18 
[1.11, 
1.25]

1.71×10−8 21.9%

9 109480268 rs11788059

Regulatory 
region 
variant 

(9q31.2)

T C 34.2% + + + + + NYNYY
1.17 

[1.10, 
1.23]

4.85×10−8 3.1%

10 105640978 rs7100920
Regulatory 
region of 
OBFC1

C T 49.0% + + − + + NYNYY
1.19 

[1.13, 
1.26]

1.67×10−10 32.1%

Novel variants are defined as those not reaching significance criteria in previous analysis2 (the RTEL1 and OBFC1 signals have previously shown 
a possible association – see discussion). Effect sizes and directions are given in terms of the allele that increases risk of IPF. Chr=Chromosome. 

Position is based on genetic build 37. Annotation obtained from Variant Effect Predictor12. EAF=Effect allele frequency calculated across the five 
studies. The “Direction” column shows the direction of the beta in each of the five individual studies (+ means beta>0, − means beta<0). The 
“Study p≤0.05” column denotes which individual studies the variant reached nominal significance in (Y means p≤0.05, N means p>0.05). Both 
the direction and study p<0.05 are given in the order UK, Colorado, Chicago, UUS and then Genentech. OR=Odds ratio. CI=Confidence interval. 

PPR=posterior probability of replicability calculated using MAMBA13.

a
The signal at KNL1 is independent of the previously reported nearby signal in the IVD gene.

b
The RTEL1 and STMN3 signals are independent of each other.
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