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Abstract

Background: Improved predictive models are needed in lung transplantation in the setting of 

a proposed allocation system that incorporates longer-term post-transplant survival in the United 

States. Allocation systems require accurate mortality predictions to justly allocate organs.

Methods: Utilizing the United Network for Organ Sharing database (2005–2017), we fit models 

to predict 1-year mortality based on the Lung Allocation Score (LAS), the Chan, et al., 2019 
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model, a novel “clinician” model (a priori clinician selection of pre-transplant covariates), and 

two machine learning models (LASSO and Random Forests) for predicting 1-year and 3-year 

post-transplant mortality. We compared predictive accuracy among models. We evaluated the 

calibration of models by comparing average predicted probability versus observed outcome per 

decile. We repeated analyses fit for 3-year mortality, disease category, including donor covariates, 

and LAS era.

Results: The area under the cure (AUC) for all models was low, ranging from 0.55 to 0.62. 

All exhibited reasonable negative predictive values (0.87–0.90), but the positive predictive value 

for was poor (all PPV <0.25). Evaluating LAS calibration found 1-year post-transplant estimates 

consistently overestimated risk of mortality, with greater differences in higher deciles. LASSO, 

Random Forests, and clinician models showed no improvement when evaluated by disease 

category or with the addition of donor covariates and performed worse for 3-year outcomes.

Conclusions: The LAS overestimated patients’ risk of post-transplant death, thus 

underestimating transplant benefit in the sickest candidates. Novel models based on pre-transplant 

recipient covariates failed to improve prediction. There should be wariness in post-transplant 

survival predictions from available models.

Introduction

Lung transplant (LTx) can improve quality of life and increase survival for patients with 

advanced lung disease. However, many potential candidates for LTx die before organs 

become available, with waiting list mortality (14.6%) the highest of any solid organ1 and 

donor supply being the rate limiting resource in providing this effective therapy.2

Greater than 60% of LTx worldwide3 utilize the Lung Allocation Score (LAS).4 In designing 

the LAS, quantitative variables from the Organ Procurement and Transplantation Network 

(OPTN) Scientific Registry of Transplant Recipients (SRTR) database were selected to 

create disease-specific models to predict 1-year mortality without transplant, i.e. waitlist 

mortality, and 1-year post-transplant survival.5 The LAS is the difference between predicted 

waitlist survival (weighted double) and post-transplant survival, net transplant benefit,6 

normalized to a range from 0–100. Lungs are prioritized to those with higher scores. 

Its 2005 implementation in the United States resulted in decreased waiting list mortality, 

increased LTx rates, and an initial small improvement in 1-year post-transplant survival.7

Despite the improvements seen in the LAS era, the score’s ability to allocate lungs 

justly remains highly dependent on its performance in predicting pre- and post-transplant 

outcomes. This, and an interest in broader organ sharing, have led to re-examination of 

the current allocation system. Recent literature suggests a need for improved predictive 

models. A 2021 United Network for Organ Sharing (UNOS) proposal suggested transition 

towards utilizing longer-term survival in order to better reflect meaningful transplant 

benefit.8,9 In this study, our primary aim was to assess the accuracy of the LAS and 

other models for predicting 1-year post-transplant mortality. In addition to refitting the 

Houston Methodist model by Chan, et al.,10 we also developed and validated novel models: 

a “clinician” model based on a priori selection of covariates by transplant pulmonology 

experts and two statistical machine learning models based on Least Absolute Shrinkage 
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and Selection Operator (LASSO) and Random Forests, respectively. Finally, at a time when 

the United States allocation system transitions towards estimating longer-term survival,9,11 

our secondary aim was to evaluate the predictive performance of all models by considering 

3-year post-transplant outcomes, fit by disease category, with inclusion of donor covariates, 

or by LAS era.

Materials and Methods

Study Design and Participants

This retrospective cohort study included adult patients (≥18-years-old) from the UNOS 

dataset provided by the OPTN who had their first LTx between May 1, 2005, and May 

1, 2017. UNOS follow-up data was available through mid-June, 2020. Patients lost to 

follow-up were designated as such in the UNOS dataset (n=309, “UNOS PX_STAT”) and 

were removed from our analyses. The University of Washington IRB approved this study 

(#9226). This study complied with the ISHLT ethics statement.

Variables of Interest

Our initial models considered all pre-transplant recipient covariates from the UNOS dataset. 

A complete list of UNOS variables is included in the online supplement (Table S-1). For the 

clinician model, 27 predictors of interest were selected a priori by transplant pulmonology 

experts (co-authors KJR, SGK, and CAM). These covariates included transplant year, forced 

expiratory volume in one second (FEV1) percent predicted, forced vital capacity (FVC) 

percent predicted, six minute walk (SMW) distance, oxygen requirement, diagnosis, mean 

pulmonary arterial pressure, arterial partial pressure of carbon dioxide (PCO2), body mass 

index (BMI), albumin, total bilirubin, creatinine, dialysis, mechanical ventilation at time 

of transplant, hospitalization status at time of transplant, sex category, education, diabetes, 

waitlist time, cigarette use, functional status, insurance, cytomegalovirus (CMV) status, 

glomerular filtration rate (GFR), steroid usage, bilateral versus single LTx, and multi-organ 

transplant (Table 2). Age was removed from the clinician model due to collinearity with 

diagnosis. We then utilized the statistical machine learning approaches, LASSO12 and 

Random Forests,13 to identify covariates of significance from the same UNOS dataset (Table 

3 and Figure 3).Statistical significance for a priori selected covariates in the clinician model 

was adjusted for multiple comparisons using Bonferroni correction of the p-values. Analyses 

were performed in R version 3.6.3.

Outcomes of Interest

In designing our new models, we used death or re-transplant within the indicated timeframe 

as the outcome of interest.

Model Development

A random 85% of patients were selected to form a development set to fit the clinician, 

LASSO, and Random Forests models. The remaining 15% formed the validation set. We felt 

this split balanced the tradeoff between model development and evaluation precision. We fit 

logistic regression models on the development set with covariates chosen using the methods 

denoted above. Additionally, we evaluated the Chan, et al.,10 model, which used patients 
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age, diagnosis, BMI, diabetes, total bilirubin, GFR, cardiac index, and SMW to develop a 

risk score.

For binary and categorical variables, patients with missing measurements were grouped into 

their own category. Missing measurements for continuous variables were estimated using 

mean imputation.

Primary Analysis

On the validation set, we compared the clinician, LASSO, and Random Forests models to 

the LAS at time of transplant and the Chan, et al,10 model. Prediction performance of the 

five different models was assessed by the area under the receiver-operator characteristic 

(ROC) curve (AUC), sensitivity, specificity, positive predictive value (PPV), and negative 

predictive value (NPV) using the cutoff value that maximized combined sensitivity and 

specificity. Calibration of each model was evaluated by calibration slope14 using logistic 

regression with the predicted probability as the independent variable and the observed 

outcome as the dependent variable.

Secondary Analyses

We next explored various methods to improve the predictive performance of the prognostic 

models by repeating the primary analysis: 1. fitting separate models on each disease [cystic 

fibrosis (CF), chronic obstructive pulmonary disease (COPD), idiopathic pulmonary fibrosis 

(IPF), and other] individually; 2. including donor covariates; and 3. evaluating 3-year instead 

of 1-year post-transplant survival.

To account for potential changes over time, prediction performance of the five models 

was also analyzed by LAS era, 2005–2010, 2011–2014, and 2015–2017. Calibration of the 

LASSO, Random Forests, and clinician models was repeated for each LAS era as well. 

Notably, the patient cohort to determine the LAS was updated in 201215 and the LAS 

equation was updated in 2015.16

Results

Cohort Characteristics

The UNOS dataset included 19,900 adults who received their first LTx between May 

1, 2005, and May 1, 2017. Of the total cohort, 2,765 (14%) died and 171 (1%) were 

re-transplanted within one year. Compared to those who survived at least one year, those 

who died or were re-transplanted were more likely to have been male, have only a single 

lung transplanted, use pre-transplant mechanical ventilation, have had dialysis prior to LTx, 

and used pre-transplant steroids (Table 1). They were also more likely to be transplanted 

for IPF, hospitalized or in the intensive care unit, have high or low BMI, or required total 

assistance. Patients who died were older and had higher LAS, oxygen requirements, mean 

pulmonary arterial pressure, total bilirubin, and serum creatinine but lower SMW distance, 

serum albumin, and GFR.
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Assessment of Diagnostic Accuracy in the Validation Cohort

While the clinician and Random Forests models showed significant improvements in AUC 

over the LAS (Figure 1), the AUC for all models were low, ranging from 0.55 to 0.62. 

All exhibited reasonable NPV (0.87–0.90), but the PPV for was poor (all PPV <0.25). 

Calibration plots (Figure 2) for the clinician and Random Forests models suggested that 

they can identify those at the highest and lowest risks of 1-year death or re-transplant 

with reasonable calibration, but do not discriminate patients well in the middle quantiles. 

The calibration slope for the LASSO model (1.45, 95% CI [1.10, 1.80]) indicated poor 

calibration, where risk is underestimated for high-risk patients and overestimated for low-

risk patients. No significant evidence for poor calibration was seen among the clinician 

(0.85, 95% CI [0.67, 1.10]) and the Random Forests models (0.96, 95% CI [0.76, 1.16]).

Among the 27 variables considered in the clinician model, only gender, medical condition 

(ICU, hospitalized, or not hospitalized), BMI, GFR, serum albumin, and total bilirubin 

were found to be significantly associated with death or re-transplant in the multivariable 

model (Table 2). The LASSO model, which considered all variables available in UNOS, 

selected the same six variables along with age, mechanical ventilation, SMW distance, 

PCO2, waitlist time, dialysis prior to LTx, EBV, steroid usage, functional status, and 

serum creatinine (Table 3). Random Forests, which allows for non-linearity and interactions 

between covariates, identified GFR, SMW distance, and BMI to be most important in 

predicting death or re-transplant along with smaller importance for time on waitlist, weight, 

age, FVC, hemodynamics cardiac (Figure 3).

The LAS Post-Transplant Survival Measurement

LAS post-transplant survival measures were available for patients who underwent LTx after 

February 2015, of which there were 3,964 in the training set and 706 in the validation 

set. While there was no statistically significant evidence for poor calibration slopes among 

LASSO (1.27, 95% CI [0.29, 2.26]), clinician (0.94, 95% CI [0.35,1.53]), and Random 

Forests (0.90, 95% CI [0.38, 1.43]) models, the confidence intervals were wide indicating 

large uncertainty on their accuracy (Figure 4). The calibration slope for the LAS post-

transplant survival measure (0.38, 95% CI [0.03, 0.73]) indicated poor calibration, with the 

LAS overestimating the risk of post-transplant mortality (Figure 4). Evaluating the LAS 

post-transplant survival at 3-, 6-, 9-, and 12-months demonstrated that the risk of death was 

overestimated at each interval (Figure 5).

Secondary Analysis – Disease Specific Models, Donor Covariates, Long Term (3-year) 
Survival, and LAS Era

The LASSO and Random Forests models re-fit on disease-specific subgroups (CF, IPF, 

COPD, and other) separately did not show any improvement in prediction accuracy (Figure 

S-1). No significant improvement in AUC was observed using disease specific models 

rather than fitting a single model on all patients. Adding donor covariates to the LASSO 

and Random Forests models did not improve AUC over using recipient covariates alone 

(Figures S-2 and S-3). LASSO, Random Forests, and clinician models re-fit using 3-year 

survival instead of 1-year survival demonstrated that longer term survival is more difficult 
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to predict than shorter term survival, and every model considered had lower AUC on 3-year 

predictions than 1-year predictions (Figure S-4).

There were no differences in predictive accuracy at 1-year by LAS era: 2005–2010, 2011–

2014, and 2015–2017 (Figure S-5). Calibration plots for the LASSO, Random Forests, and 

clinician models for each LAS era (Figure S-6) discriminated only those at the highest and 

lowest risks of 1-year death or re-transplant with reasonable calibration in the 2005–2010 

era, but not in the 2011–2014 or 2015–2017 era.

Discussion

In this large retrospective analysis, we demonstrated that the LAS and several other 

models lacked a meaningful ability to accurately predict post-transplant mortality using 

pre-transplant covariates. The LAS overestimated patients’ risk of death (particularly for 

those in the highest deciles of LAS) and thus may disadvantage some waitlisted patients. 

Machine learning models, disease-specific models, and models with donor characteristics 

did not improve predictive accuracy. Because of the importance of longer-term survival after 

LTx, in keeping with proposed UNOS policy changes, we assessed 3-year survival models, 

but found the predictive accuracy was even worse than that seen in the 1-year models. 

Several variables individually were associated with re-transplant or death within 1-year. 

Unfortunately, aggregate models designed by expert selection or machine learning, even 

when incorporating variables with significance when isolated, were unable to meaningfully 

predict post-transplant mortality. The available covariates do not capture the data needed to 

do so. These findings are disappointing, but very relevant as the US attempts to revise its 

lung allocation system with a focus on prioritizing post-transplant survival.

Our findings confirm an earlier study by Gries, et al.,17 who used an ISHLT dataset and 

demonstrated that a model based on pre-transplant covariates poorly predicted 1-year or 

5-year survival (AUC 0.553 and 0.591, respectively), the LAS had poor predictive ability at 

1-year and 5-years (AUC 0.58 and 0.566, respectively), and there was no improvement when 

fitting these models for individual disease groups.17

In the 2019 study by Chan, et al.,10 the Houston Methodist model was predictive of 1-year 

mortality and was able to designate patients into risk categories, but we were unable to 

replicate these findings in our larger, more contemporary dataset. The Houston Methodist 

model was designed by Chan, et al.,10 using the UNOS dataset, containing 10533 patients 

who underwent LTx between 1994–2014, to identify and randomly cohort the 633 patients 

who underwent LTx at Houston Methodist Hospital into equal development and validation 

cohorts with which to form a predictive model. The Chan, et al.,10 model had an AUC 

for 1-year mortality of 0.74 and 0.67 for the development cohort and validation cohort, 

respectively. On our attempt to recreate the Chan, et al.,10 model within our development 

cohort, we found an AUC for 1-year mortality of only 0.59. The difference in populations 

and size of our cohorts may account for the difference in AUC of the original model to our 

recreation. Chan, et al.,10 also found that the LAS had a lower AUC for 1-year mortality, at 

0.58 and 0.55 for their development and validation cohorts respectively, similar to the AUC 

for the LAS for our cohort (0.55).
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In a recent study by Parker, et al.,8 the predictive accuracy of the LAS was analyzed using a 

Cox proportional hazard model and post-transplant survival Cox proportional hazard model 

which comprise the LAS. They, too, found poor calibration between predicted and observed 

waitlist survival, post-transplant survival, and LAS, respectively. The authors suggested that 

prediction could be better with updated models, specifically mentioning machine learning, 

and noting that the lack of donor variables may have contributed to the LAS not being 

effective for predicting post-transplant mortality.8 Unfortunately, the novel models assessed 

in our study did not show improved predictive accuracy despite utilizing machine learning 

techniques, including alternate pre-transplant recipient covariates, including available donor 

covariates, or stratifying by diagnosis.

We were unable to identify a model which provided better 1-year or 3-year accuracy in 

predicting survival. The OPTN Board of Directors established continuous organ distribution 

as the preferred framework to distribute all organs18 to improve transparency and equity 

in organ allocation. Lung was selected as the first organ to make this change, leading to 

the proposal of the composite allocation score (CAS) by the OPTN Lung Transplantation 

Committee.9 The Lung CAS will utilize 5-year predicted post-transplant outcomes model, 

rather than the 1-year predicted post-transplant outcomes model currently utilized.11 The 

5-year model, much like the 3-year model considered in this study, did not have better 

predictive accuracy than the 1-year model, but was demonstrated to have similar level 

of confidence as the 1-year models in the report by the Scientific Registry of Transplant 

Recipients.11 The 5-year model allows consideration of a longer outcome period and, in the 

context of continuous allocation, showed greater variability across age groups than 1-year 

models, which may allow for stratification by age.11

Numerous studies have endeavored to validate the effectiveness of the LAS as a system 

to allocate organs to those most in need of a donor lung and its success in predicting post-

transplant mortality. Earlier studies suggested that those with higher LAS experienced worse 

absolute survival after transplant than patients with lower LAS.19–24 Since its introduction, 

the mean LAS in the upper quartile of patients who receive transplants has steadily risen,25 

suggesting sicker patients being listed for transplant. Earlier studies looked at absolute 

survival and worse outcomes may have reflected a sicker population being listed. Later 

studies show that recipients with higher LAS experienced greater survival benefit than those 

with lower LAS and that nuances exist between various diagnostic groups.25–27

Though several studies have shown modifiable pre-transplant variables, such as weight and 

albumin levels, that correlate with post-LTx mortality, our study did not find significant 

correlation when considering these as covariates aggregated within models.28–33 Several 

scoring systems, such as the Oto-Score34,35 and the Louisville-UNOS scale in conjunction 

with the LAS,36 predict post-transplant outcomes including 1-year mortality of the organ 

recipient based on donor and organ variables. The inclusion of donor covariates in a unifying 

model to predict post-LTx outcomes did not improve predictive accuracy in our study.

Our study involved a thorough approach to evaluating the available predictive models for 

post-LTx survival in a contemporary national sample of LTx recipients. There are, however, 

limitations to this study. First, we are limited to variables available in the OPTN registry. 
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The data available may be insufficient to design a model with highly predictive accuracy. 

There may be factors we do not capture, whether in the OPTN registry or otherwise, which 

impact long-term mortality (see Table S-6). Second, while our data set was up to date, we 

have fewer outcomes, particularly 3-year survival from the most recent years, which could 

have impacted our assessment of 3-year survival prediction.

Our findings serve several cautionary tales. The LAS can overestimate an individual 

patient’s risk of death (particularly those with the highest LAS) and potentially limit access 

to transplant for certain patients. There should be wariness in the clinical utility of short-

term survival predictions from the LAS and other models based on pre-transplant recipient 

covariates, and there is no identifiable model to reliably predict medium- and long-term 

survival after transplant. This may be due, in part, to the limitations of which variables 

are available in the OPTN registry. Additionally, we must consider whether the diversity of 

pulmonary diagnoses leading to end-stage lung disease lend to a single, unifying model for 

predicting post-transplant outcomes – though models stratified by diagnosis do not perform 

more accurately.

Stewardship of donated organs while caring for vulnerable patients is a solemn 

responsibility. Maintaining equity in allocating these organs while assuring that recipients 

and donated organs have the best chance for long-term survival are inexorable tenets. 

Though implementation of the LAS improved waitlist mortality and resulted in increased 

transplant rates, there continues to be room for improvement. Developing accurate models to 

predict long-term post-transplant survival is vitally important for ethical organ allocation and 

scarce resource-utilization.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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FEV1 Forced Expiratory Volume in One Second

FVC Forced Vital Capacity

GFR Glomerular Filtration Rate

IPF Idiopathic Pulmonary Fibrosis

LAS Lung Allocation Score
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LTx Lung Transplant

NPV Negative Predictive Value
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UNOS United Network for Organ Sharing

References

1. Valapour M, Lehr CJ, Skeans MA, et al. OPTN/SRTR 2019 Annual Data Report: Lung. Am J 
Transplant Off J Am Soc Transplant Am Soc Transpl Surg. 2021;21 Suppl 2:441–520. doi:10.1111/
ajt.16495

2. Rodriguez P, Veenstra D, Heagerty P, Goss CH, Ramos KJ, Bansal A. A framerwork for using 
real world data and health outcomes modeling to evaluate machine-learning based risk prediction 
models. [In Press]. Value Health.

3. van der Mark SC, Hoek RAS, Hellemons ME. Developments in lung transplantation 
over the past decade. Eur Respir Rev Off J Eur Respir Soc. 2020;29(157):190132. 
doi:10.1183/16000617.0132-2019

4. Egan TM, Murray S, Bustami RT, et al. Development of the new lung allocation system in the 
United States. Am J Transplant Off J Am Soc Transplant Am Soc Transpl Surg. 2006;6(5 Pt 
2):1212–1227. doi:10.1111/j.1600-6143.2006.01276.x

5. Patricia George M, Pipeling MR. Prognostic Markers and the LAS for Lung Transplantation: Impact 
of New Revisions for Successful Outcome. In: Raghu G, Carbone RG, eds. Lung Transplantation. 
Springer International Publishing; 2018:93–109. doi:10.1007/978-3-319-91184-7_7

6. Davis SQ, Garrity ER. Organ allocation in lung transplant. Chest. 2007;132(5):1646–1651. 
doi:10.1378/chest.07-0011 [PubMed: 17998365] 

7. Egan TM, Edwards LB. Effect of the lung allocation score on lung transplantation in the 
United States. J Heart Lung Transplant Off Publ Int Soc Heart Transplant. 2016;35(4):433–439. 
doi:10.1016/j.healun.2016.01.010

8. Parker WF, Dussault NE, Jablonski R, Garrity ER, Churpek MM. Assessing the accuracy of the 
lung allocation score. J Heart Lung Transplant Off Publ Int Soc Heart Transplant. Published online 
October 28, 2021:S1053-2498(21)02570-5. doi:10.1016/j.healun.2021.10.015

9. Miller E Establish Continuous Distribution of Lungs; Public Comment Proposal. 
Organ Procurement and Transplantation Network; :139. Accessed November 

Brahmbhatt et al. Page 9

J Heart Lung Transplant. Author manuscript; available in PMC 2023 August 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



20, 2021. https://optn.transplant.hrsa.gov/policies-bylaws/public-comment/establish-continuous-
distribution-of-lungs/

10. Chan EY, Nguyen DT, Kaleekal TS, et al. The Houston Methodist Lung Transplant Risk Model: 
A Validated Tool for Pretransplant Risk Assessment. Ann Thorac Surg. 2019;108(4):1094–1100. 
doi:10.1016/j.athoracsur.2019.03.108 [PubMed: 31082356] 

11. Wey A, Skeans M, Valapour M. The Impact of Extending Follow-up for the PTAUC Model from 1 
Year to 5 Years after Transplant. Scientific Registry of Transplant Recipients; 2021:14.

12. Tibshirani R Regression Shrinkage and Selection Via the Lasso. J R Stat Soc Ser B Methodol. 
1996;58(1):267–288. doi:10.1111/j.2517-6161.1996.tb02080.x

13. Breiman L Random Forests. Mach Learn. 2001;45(1):5–32. doi:10.1023/A:1010933404324

14. Crowson CS, Atkinson EJ, Therneau TM. Assessing calibration of prognostic risk scores. Stat 
Methods Med Res. 2016;25(4):1692–1706. doi:10.1177/0962280213497434 [PubMed: 23907781] 

15. Miller E Updated Cohort for Calculation of the Lung Allocation Score (LAS). Organ Procurement 
and Transplantation Network; :33. Accessed March 13, 2022. https://optn.transplant.hrsa.gov/
media/4206/bp_202012_updated-cohort-for-calculation-of-the-lung-allocation-score.pdf

16. Preparing Your patients for changes to the lung allocation system - OPTN. Changes to 
the lung allocation system. Published February 17, 2015. Accessed March 13, 2022. https://
optn.transplant.hrsa.gov/news/changes-to-the-lung-allocation-system/

17. Gries CJ, Rue TC, Heagerty PJ, Edelman JD, Mulligan MS, Goss CH. Development of a 
predictive model for long-term survival after lung transplantation and implications for the lung 
allocation score. J Heart Lung Transplant Off Publ Int Soc Heart Transplant. 2010;29(7):731–738. 
doi:10.1016/j.healun.2010.02.007

18. Ad Hoc Geography Committee. OPTN Policy Notice Frameworks for Organ Distribution. 
Organ Procurement and Transplantation Network; 2018:2. Accessed November 19, 2021. https://
optn.transplant.hrsa.gov/media/2789/geography_policynotice_201901.pdf

19. Weiss ES, Allen JG, Merlo CA, Conte JV, Shah AS. Lung allocation score predicts survival in 
lung transplantation patients with pulmonary fibrosis. Ann Thorac Surg. 2009;88(6):1757–1764. 
doi:10.1016/j.athoracsur.2009.07.005 [PubMed: 19932231] 

20. Merlo CA, Weiss ES, Orens JB, et al. Impact of U.S. Lung Allocation Score on Survival After 
Lung Transplantation. J Heart Lung Transplant. 2009;28(8):7.

21. Liu V, Zamora MR, Dhillon GS, Weill D. Increasing lung allocation scores predict worsened 
survival among lung transplant recipients. Am J Transplant Off J Am Soc Transplant Am Soc 
Transpl Surg. 2010;10(4):915–920. doi:10.1111/j.1600-6143.2009.03003.x

22. Russo MJ, Iribarne A, Hong KN, et al. High lung allocation score is associated with increased 
morbidity and mortality following transplantation. Chest. 2010;137(3):651–657. doi:10.1378/
chest.09-0319 [PubMed: 19820072] 

23. Russo MJ, Worku B, Iribarne A, et al. Does lung allocation score maximize survival benefit 
from lung transplantation? J Thorac Cardiovasc Surg. 2011;141(5):1270–1277. doi:10.1016/
j.jtcvs.2010.12.028 [PubMed: 21497235] 

24. Maxwell BG, Levitt JE, Goldstein BA, et al. Impact of the lung allocation score on survival beyond 
1 year. Am J Transplant Off J Am Soc Transplant Am Soc Transpl Surg. 2014;14(10):2288–2294. 
doi:10.1111/ajt.12903

25. Crawford TC, Grimm JC, Magruder JT, et al. Lung Transplant Mortality Is Improving 
in Recipients With a Lung Allocation Score in the Upper Quartile. Ann Thorac Surg. 
2017;103(5):1607–1613. doi:10.1016/j.athoracsur.2016.11.057 [PubMed: 28223052] 

26. Vock DM, Durheim MT, Tsuang WM, et al. Survival Benefit of Lung Transplantation in 
the Modern Era of Lung Allocation. Ann Am Thorac Soc. 2017;14(2):172–181. doi:10.1513/
AnnalsATS.201606-507OC [PubMed: 27779905] 

27. Li SS, Miller R, Tumin D, Stewart WCL, Tobias JD, Hayes D. Lung Allocation 
Score Thresholds Prioritize Survival After Lung Transplantation. Chest. 2019;156(1):64–70. 
doi:10.1016/j.chest.2019.01.008 [PubMed: 30664859] 

28. Singer JP, Peterson ER, Snyder ME, et al. Body composition and mortality after adult lung 
transplantation in the United States. Am J Respir Crit Care Med. 2014;190(9):1012–1021. 
doi:10.1164/rccm.201405-0973OC [PubMed: 25233138] 

Brahmbhatt et al. Page 10

J Heart Lung Transplant. Author manuscript; available in PMC 2023 August 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

https://optn.transplant.hrsa.gov/policies-bylaws/public-comment/establish-continuous-distribution-of-lungs/
https://optn.transplant.hrsa.gov/policies-bylaws/public-comment/establish-continuous-distribution-of-lungs/
https://optn.transplant.hrsa.gov/media/4206/bp_202012_updated-cohort-for-calculation-of-the-lung-allocation-score.pdf
https://optn.transplant.hrsa.gov/media/4206/bp_202012_updated-cohort-for-calculation-of-the-lung-allocation-score.pdf
https://optn.transplant.hrsa.gov/news/changes-to-the-lung-allocation-system/
https://optn.transplant.hrsa.gov/news/changes-to-the-lung-allocation-system/
https://optn.transplant.hrsa.gov/media/2789/geography_policynotice_201901.pdf
https://optn.transplant.hrsa.gov/media/2789/geography_policynotice_201901.pdf


29. Ramos KJ, Kapnadak SG, Bradford MC, et al. Underweight Patients With Cystic Fibrosis 
Have Acceptable Survival Following Lung Transplantation: A United Network for Organ 
Sharing Registry Study. Chest. 2020;157(4):898–906. doi:10.1016/j.chest.2019.11.043 [PubMed: 
31958441] 

30. Lederer DJ, Kawut SM, Wickersham N, et al. Obesity and primary graft dysfunction after lung 
transplantation: the Lung Transplant Outcomes Group Obesity Study. Am J Respir Crit Care Med. 
2011;184(9):1055–1061. doi:10.1164/rccm.201104-0728OC [PubMed: 21799077] 

31. Chandrashekaran S, Keller CA, Kremers WK, Peters SG, Hathcock MA, Kennedy CC. Weight loss 
prior to lung transplantation is associated with improved survival. J Heart Lung Transplant Off 
Publ Int Soc Heart Transplant. 2015;34(5):651–657. doi:10.1016/j.healun.2014.11.018

32. Baldwin MR, Arcasoy SM, Shah A, et al. Hypoalbuminemia and early mortality after lung 
transplantation: a cohort study. Am J Transplant Off J Am Soc Transplant Am Soc Transpl Surg. 
2012;12(5):1256–1267. doi:10.1111/j.1600-6143.2011.03965.x

33. Yamamoto H, Sugimoto S, Soh J, et al. The prognostic nutritional index is correlated negatively 
with the lung allocation score and predicts survival after both cadaveric and living-donor 
lobar lung transplantation. Surg Today. 2021;51(10):1610–1618. doi:10.1007/s00595-021-02244-2 
[PubMed: 33582840] 

34. Oto T, Levvey BJ, Whitford H, et al. Feasibility and utility of a lung donor score: correlation 
with early post-transplant outcomes. Ann Thorac Surg. 2007;83(1):257–263. doi:10.1016/
j.athoracsur.2006.07.040 [PubMed: 17184674] 

35. Smits JM, van der Bij W, Van Raemdonck D, et al. Defining an extended criteria donor lung: 
an empirical approach based on the Eurotransplant experience. Transpl Int Off J Eur Soc Organ 
Transplant. 2011;24(4):393–400. doi:10.1111/j.1432-2277.2010.01207.x

36. Whited WM, Trivedi JR, van Berkel VH, Fox MP. Objective Donor Scoring System for Lung 
Transplantation. Ann Thorac Surg. 2019;107(2):425–429. doi:10.1016/j.athoracsur.2018.08.034 
[PubMed: 30312610] 

Brahmbhatt et al. Page 11

J Heart Lung Transplant. Author manuscript; available in PMC 2023 August 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 1: 
1-year survival receiver-operator curves for the LASSO (red), Random Forests (green), 

clinician (blue), Chan, et al.,10 (orange), and LAS (grey). Specificity (Spec), sensitivity 

(Sens), positive predictive value (PPV), and negative predictive value (NPV) for each model 

at cut-points selected to maximize the total sensitivity and specificity for each model are 

displayed in the table.

Brahmbhatt et al. Page 12

J Heart Lung Transplant. Author manuscript; available in PMC 2023 August 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 2: 
Calibration of the LASSO, Random Forests, and clinician models at predicting 1-year 

survival. Patients are sorted into deciles, and each dot represents one decile. The x-axis 

represents the average predicted probability of death or re-transplant over each decile, while 

the y-axis shows the observed proportions (with standard errors) of death or re-transplant in 

each decile. The dotted line represents ‘perfect calibration’, where the predicted probabilities 

of death match the observed percentages. The density plot below each scatter plot shows the 

distribution of predicted probabilities of death or re-transplant for each model.
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Figure 3: 
The 15 most important variables (by mean decrease in Gini index) from the Random Forests 

model
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Figure 4: 
Calibration of the LASSO model (top left), Random Forests (top right), clinician model 

(bottom left), and LAS Post Transplant Survival Probability (bottom right) at predicting 1-

year survival among patients who were transplanted from 2015–2017 with an available LAS 

post-transplant survival measure. Patients are sorted into deciles, and each dot represents one 

decile. The x-axis represents the average predicted probability of death or re-transplant over 

each decile, while the y-axis shows the observed proportions (with standard errors) of death 

or re-transplant in each decile. The dotted line represents ‘perfect calibration’, where the 

predicted probabilities of death match the observed percentages. The density plot below each 

scatter plot shows the distribution of predicted probabilities of death or re-transplant for each 

model.
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Figure 5: 
Calibration of the LAS Post Transplant Survival Probability at predicting 3-month (top left), 

6-month (top right), 9-month (bottom left), and 1-year (bottom right) survival. Patients are 

sorted into deciles, and each dot represents one decile. The x-axis represents the average 

predicted probability of death or re-transplant over each decile, while the y-axis shows the 

observed proportions (with standard errors) of death or re-transplant in each decile. The 

dotted line represents ‘perfect calibration’, where the predicted probabilities of death match 

the observed percentages. The density plot below each scatter plot shows the distribution of 

predicted probabilities of death or re-transplant for each model.
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Table 1:

Descriptive Statistics

Variable Unit Alive without re-transplant 
after 1 years (n=16,964)

Death or re-transplant 
within 1 years (n=2,936)

p-value

N % N % Raw Bonferroni

Gender Female 7,019 41% 1,090 37% <0.001 <0.001

Mechanical 
Ventilation

Yes 930 5% 314 11% <0.001 <0.001

Number of Lungs Both Lungs 11,604 68% 1,884 64% <0.001 1.9e-<0.001

Multi-Organ 
Transplant

More than one 50 <1% 15 <1% 0.085 >0.99

Medical Condition ICU 1,171 9% 831 13% <0.001 <0.001

Hospitalized 1,148 8% 595 9%

Not Hospitalized 11,293 83% 4,862 77%

Diabetes None 11,027 81% 4,972 79% 0.3 >0.99

Type I 431 3% 240 4%

Type II 1,551 11% 789 13%

Other 531 4% 242 4%

Unknown 72 1% 45 1%

Dialysis prior to LTx Yes 52 <1% 46 1% <0.001 <0.001

No 9,399 69% 4,621 73%

Unknown 4,161 31% 1,621 26%

Cigarette Use Yes 8,053 59% 3,722 59% 0.86 >0.99

No 5,252 39% 2,400 38%

Unknown 307 2% 166 3%

Steroid Yes 6,117 45% 3,051 49% <0.001 <0.001

No 7,212 53% 3,104 49%

Unknown 283 2% 133 2%

CMV Status Positive 7,415 54% 3,437 55% 0.23 >0.99

Negative 5,673 42% 2,603 41%

Unknown 524 4% 248 4%

Functional Status No assistance 632 5% 244 4% <0.001 <0.001

Some assistance 9,282 68% 3,936 63%

Total Assistance 744 5% 443 7%

Unknown 2,954 22% 1,665 26%

Race White 11,316 83% 5,239 83% 0.86 >0.99

Black 1,184 9% 552 9%

Asian 212 2% 90 1%

Pacific Islander 10 <1% 7 1%

American Indian 46 <1% 16 <1%

Hispanic 804 6% 370 6%
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Variable Unit Alive without re-transplant 
after 1 years (n=16,964)

Death or re-transplant 
within 1 years (n=2,936)

p-value

N % N % Raw Bonferroni

Multi-Racial 46 <1% 17 <1%

Insurance Private 7,250 53% 3,198 51% 0.12 >0.99

Medicaid 873 6% 449 7%

Medicare 4,970 37% 2,448 39%

Other 447 3% 165 2%

None 72 <1% 28 <1%

Education No High School 337 2% 161 3% 0.2 >0.99

High School or 
GED

4,936 36% 2,349 37%

Attended College 3,446 25% 1,575 25%

Associate/Bachelor 2,742 20% 1,111 18%

Post-College 
Graduate

1,217 9% 589 9%

Unknown 918 7% 492 8%

Disease CF 1,697 12% 702 11% <0.001 <0.001

COPD 4,028 30% 1,723 27%

IPF 5,201 38% 2,588 41%

Other 2,686 20% 1,275 20%

BMI Very Low (<17) 317 2% 206 3% <0.001 0.016

Low (17–18.5) 733 5% 378 6%

Normal (18.5–25) 5,359 39% 2,252 36%

Overweight (25–30) 5,055 37% 2,366 38%

Obese (>30) 2,128 16% 1,076 17%

Unknown 20 <1% 10 <1%

N Mean (SD) N Mean (SD)

Age Years 16,964 55.1 (13.1) 2,936 56.5 (13.1) <0.001 <0.001

Lung Allocation Score 16,102 41.5 (14.6) 2,727 43.7 (16.5) <0.001 <0.001

FEV1 percent 
predicted

16,687 38.4 (20.9) 2,853 39.7 (20.2) 0.002 0.052

FVC percent predicted 16,748 48.6 (17.5) 2,865 47.96 (18.0) 0.093 >0.99

Six Minute Walk 16,238 812.5 (407.0) 2,764 764.1 (425.0) <0.001 <0.001

Pulmonary Arterial 
Pressure

15,577 27.6 (10.2) 2,652 28.5 (11.2) <0.001 0.004

PCO2 15,064 47.9 (13.6) 2,534 47.2 (14.1) 0.017 0.49

Serum Alb 11.542 3.9 (0.6) 2,118 3.8 (0.7) <0.001 <0.001

Total Bilirubin 16,764 0.61 (0.91) 2,892 0.78 (1.70) <0.001 <0.001

Serum Creatinine 16,934 0.85 (0.43) 2,928 0.90 (0.43) <0.001 <0.001

Time on Waiting List Days 16,964 196.1 (368.0) 2,936 205.3 (409.0) 0.25 >0.99

Oxygen Requirement 16,521 5.1 (4.8) 2,841 5.8 (5.5) <0.001 <0.001
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Variable Unit Alive without re-transplant 
after 1 years (n=16,964)

Death or re-transplant 
within 1 years (n=2,936)

p-value

N % N % Raw Bonferroni

GFR 16,964 93.4 (23.2) 2,936 89.6 (26.0) <0.001 <0.001

Differences between binary variables was tested using a test of proportions. For categorical variables, the difference in distributions was tested 
using a chi-square test. For continuous variables, the difference in means was tested by a t-test. We report both the p-value for each test individually 
(Raw), and the Bonferroni adjusted p-value (Bonferroni).
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Table 2:

Coefficients from the Clinician Model

Unit Odds Ratio (95% CI) Raw P-value Bonferroni P-value

Female 0.77 (0.70, 0.85) <0.01 <0.01

Education High School (Baseline)

None 1.25 (0.42, 3.76) 0.73 1.00

Grade School 0.93 (0.70, 1.25) 0.64 1.00

Some College 0.90 (0.80, 1.01) 0.08 1.00

College Graduate 0.91 (0.80, 1.03) 0.14 1.00

Post Graduate 1.02 (0.87, 1.20) 0.81 1.00

Unknown 1.02 (0.86, 1.21) 0.82 1.00

Insurance Private (Baseline)

None 0.70 (0.36, 1.37) 0.30 1.00

Medicare 1.11 (1.01, 1.23) 0.03 1.00

Medicaid 0.88 (0.72, 1.07) 0.19 1.00

Other 0.79 (0.60, 1.05) 0.10 1.00

BMI Normal (18.5–25) (Baseline)

Low (<18.5) 1.45 (1.22, 1.73) <0.01 <0.01

High (>25 – 30) 1.09 (0.98, 1.22) 0.11 1.00

Obese (>30) 1.02 (0.89, 1.17) 0.74 1.00

Diagnosis COPD (Baseline)

CF 0.70 (0.56, 0.87) <0.01 0.08

IPF 1.03 (0.87, 1.22) 0.73 1.00

Other 1.08 (0.91, 1.27) 0.37 1.00

Functional Status No Assistance (Baseline)

Some Assistance 1.18 (0.93, 1.51) 0.18 1.00

Total Assistance 0.99 (0.72, 1.35) 0.95 1.00

Unknown 1.58 (1.22, 2.05 <0.01 0.02

Medical Condition Not Hospitalized (Baseline)

Hospitalized 1.32 (1.13, 1.54) <0.01 0.03

ICU 2.00 (1.67, 2.38) <0.01 <0.01

Dialysis Prior to LTx No (Baseline)

Yes 2.12 (1.29, 3.48) <0.01 0.15

Unknown 0.85 (0.76, 0.94) <0.01 0.13

Steroids No (Baseline)

Yes 1.06 (0.97, 1.16) 0.22 1.00

Unknown 1.03 (0.77, 1.37) 0.86 1.00

Cigarette Use No (Baseline)

Yes 0.91 (0.82, 1.01) 0.09 1.00

Unknown 1.05 (0.75, 1.45) 0.79 1.00
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Unit Odds Ratio (95% CI) Raw P-value Bonferroni P-value

CMV Negative (Baseline)

Positive 1.00 (0.91, 1.09) 0.94 1.00

Unknown 1.07 (0.85, 1.33) 0.58 1.00

Ventilator Use 1.38 (1.14, 1.68) <0.01 0.05

Wait List Time 100 days 1.02 (1.00, 1.03) 0.02 0.12

Multi Organ Transplant 1.49 (0.72, 3.08) 0.29 1.00

O2 Used 1L 1.00 (0.99, 1.01) 0.73 1.00

FEV1 Percent Predicted 5% 1.00(0.98, 1.02) 0.76 1.00

FVC Percent Predicted 5% 0.99 (0.97, 1.00) 0.13 1.00

Six Minute Walk 100ft 0.98 (0.97, 1.00) 0.01 0.41

GFR 5 mL/min 0.97 (0.96, 0.98) <0.01 0.01

LAS 1 unit 1.00 (0.99, 1.00) 0.33 1.00

Mean Pulmonary Arterial Pressure 1 mmHg 1.01 (1.00, 1.01) 0.02 1.00

Serum Albumin 1 g/dL 0.81 (0.75, 0.88) <0.01 <0.01

Total Bilirubin 1 g/dL 1.08 (1.04, 1.11) <0.01 <0.01

Serum Creatinine 1 mg/dL 1.02 (0.85, 1.21) 0.86 1.00

PCO2 1 mmHg 1.00 (0.99, 1.00) 0.01 0.64

The risk score from the clinician model can be calculated by taking the natural log of the odds ratios and summing over each row to get a composite 
score for each patient.

J Heart Lung Transplant. Author manuscript; available in PMC 2023 August 01.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Brahmbhatt et al. Page 22

Table 3:

Coefficients from the LASSO Model

Unit Odds Ratio

Female 0.93

Ventilator 1.02

Age 1 year 1.01

Six Minute Walk 100 ft 0.99

Medical Condition Not Hospitalized (Baseline)

Hospitalized 1.28

ICU 1.58

GFR 5 0.96

Serum Albumin 1 g/dL 0.77

Total Bilirubin 1 g/dL 1.10

Serum Creatinine 1 mg/dL 1.20

PCO2 Normal (Baseline)

Low 1.00

High 0.93

Waitlist Time 100 days 1.35

Dialysis Prior to Transplant No (Baseline)

Yes 1.00

Unknown 0.92

EBV Negative (Baseline)

Positive 0.98

Unknown 1.00

BMI Normal (Baseline)

Low 1.04

High 1.04

Obese 1.04

Steroid No (Baseline)

Yes 1.02

Unknown 1.02

Functional Status No Assistance (Baseline)

Some Assistance 1.00

Total Assistance 1.00

Unknown 1.25

The risk score from the LASSO model can be calculated by taking the natural log of the odds ratios and summing over each row to get a composite 
score for each patient.
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