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Rare loss of function variants in the hepatokine
gene INHBE protect from abdominal obesity
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Identifying genetic variants associated with lower waist-to-hip ratio can reveal new ther-

apeutic targets for abdominal obesity. We use exome sequences from 362,679 individuals to

identify genes associated with waist-to-hip ratio adjusted for BMI (WHRadjBMI), a surrogate

for abdominal fat that is causally linked to type 2 diabetes and coronary heart disease.

Predicted loss of function (pLOF) variants in INHBE associate with lower WHRadjBMI and this

association replicates in data from AMP-T2D-GENES. INHBE encodes a secreted protein, the

hepatokine activin E. In vitro characterization of the most common INHBE pLOF variant in our

study, indicates an in-frame deletion resulting in a 90% reduction in secreted protein levels.

We detect associations with lower WHRadjBMI for variants in ACVR1C, encoding an activin

receptor, further highlighting the involvement of activins in regulating fat distribution. These

findings highlight activin E as a potential therapeutic target for abdominal obesity, a phe-

notype linked to cardiometabolic disease.
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The distribution of adipose tissue plays a role in metabolic
health and cardiovascular disease risk that is independent
of overall adiposity as assessed by body mass index (BMI).

This relationship has been shown by both epidemiologic and
genetic studies examining the impact of waist-to-hip ratio
adjusted for BMI (WHRadjBMI), a surrogate for abdominal
adiposity, on cardiometabolic disease and mortality1–4. Mende-
lian randomization (MR) studies have established a causal link
between increased WHRadjBMI and risk of type 2 diabetes (T2D)
and coronary heart disease (CHD) as well as glycemic traits,
circulating lipids, and blood pressure1,3.

The mechanisms influencing fat distribution in humans are
not fully elucidated and few medical therapies specifically
reduce visceral fat even though it is thought to confer con-
siderable cardiometabolic risk5,6. Studying the genetic deter-
minants of WHRadjBMI may offer insights into these
mechanisms and identify potential drug targets7,8. Large GWAS
have identified many common variants with small effects on
WHRadjBMI and highlighted the impact of adipogenesis
and insulin resistance on abdominal adiposity9–12. GWAS of
imaging-derived measures of fat distribution such as visceral
and abdominal subcutaneous adipose tissue volume have yiel-
ded additional insights13. A number of studies have connected
rare genetic variation to fat distribution. An early sequencing
study performed in women reported rare variants in IKBKB
associating with waist-to-hip ratio (WHR)14. Rare variants in
PDE3B and ACVR1C have been reported to associate with
WHRadjBMI and related traits9,10,13 and an exome array
study of WHRadjBMI reported several novel rare variant
associations15. A recent study using exome-sequences from
184,246 individuals uncovered novel associations with
WHRadjBMI for loss of function in PLIN1, INSR and PLIN416.
Because the study of rare coding variation is a powerful method
for identifying potential therapeutic targets8,17–20, we used
whole-exome sequencing data from 362,679 individuals to look
for additional genes harboring variants with large effects
on WHRadjBMI that may be candidates for therapeutic
intervention.

Results
Exome-wide gene burden associations with waist-to-hip ratio
adjusted for BMI. We used whole exome-sequencing data from
the UK Biobank (UKB)21 to perform gene-based analysis of
WHRadjBMI in 362,679 European ancestry individuals. We used
three variant aggregation strategies: testing rare (MAF ≤ 1%)
predicted loss of function (pLOF) variants, predicted damaging
missense variants (missense), and the two combined (pLOF+
missense) in up to 17,961 genes for association with WHRadjBMI.
Twelve genes significantly associated with WHRadjBMI
(P ≤ 1.05 × 10−6; Methods) using at least one variant aggregation
strategy, including PDE3B, ACVR1C, SLC5A3, and PLIN4 which
have been reported to associate with fat distribution9,10,16,22 and
the Mendelian disease genes PLIN1, PYGM, and INSR which have
been highlighted by other studies on WHRadjBMI16,23–26. For the
remaining genes – COL5A3, ANKRD12, KEAP1, TRIM40, and
INHBE – this study provides the first reported evidence linking
rare coding variation to abdominal adiposity (Fig. 1, Supple-
mentary Figs. 1 and 2, Table 1). Conditional analysis confirmed
that rare variant associations were likely independent of each
other (Supplementary Table 1) and independent of nearby com-
mon variant associations (Supplementary Table 2). TRIM40 was
the only gene where study-level significance was lost when we
conditioned on the top common-variant hit in the region
(P= 2.55 × 10−6 compared to P = 6.99 × 10−7; Supplementary

Table 2). Given the proximity of TRIM40 to the HLA gene cluster
and the partial dependence of the signal on common variants, we
focused further analysis on the remaining 11 genes. Of the four
genes not reported previously, only INHBE contained pLOF var-
iants associated with lower WHRadjBMI (0.22 standard deviation
(SD) decrease in WHRadjBMI; P= 4.98 × 10−8). INHBE, encod-
ing inhibin subunit βE, is nearly exclusively expressed in the liver
which lies in contrast to other WHRadjBMI-associated genes
identified in this study which are enriched for adipose expression
(P= 1.44 × 10−4; Supplementary Data 1).

We performed gene burden analysis of WHRadjBMI in the
South Asian (n= 7367), East Asian, (n= 1306) and African
ancestry (n= 6129) sub-populations of UKB for variant sets with
sufficient power. No additional significant genes were identified
when these sub-populations were meta-analyzed with the
European ancestry population and no exome-wide significant
associations were detected in the individual sub-populations.
However, eight (67%) of the variant sets with power to test in the
other sub-populations showed a consistent direction of effect
and/or nominal significance (P ≤ 0.05), including PLIN1 pLOF
and ACVR1C missense variants (Supplementary Data 2).

A sex-specific analysis ofWHRadjBMI identified associations for
variants in GIGYF1 with increased WHRadjBMI (P= 6.76 × 10−7,
Beta= 0.57 SD) and the lipodystrophy gene LIPE27 with decreased
WHRadjBMI (P= 1.21 × 10−7, Beta=−0.09 SD) in men only
(Supplementary Figs. 2, 3, Supplementary Table 3). Associations
specific to women were identified for ABCA1, encoding a
transporter mutated in Tangier disease28, and SLC35F5, encoding
a protein of unknown function (Supplementary Figs. 2, 4,
Supplementary Table 4). The effect of INHBE pLOF on
WHRadjBMI was similar between men (P= 3.87 × 10−4, Beta=
−0.21 SD) and women (P= 3.06 × 10−5, Beta=−0.22 SD; Phet=
0.87). In contrast, significantly stronger effects were seen in women
for PDE3B pLOF (Phet= 1.58 × 10−8; Beta=−0.42 SD in women
and −0.06 SD in men), PLIN4 pLOF (Phet= 1.22 × 10−5; Beta=
0.21 SD in women and 0.02 SD in men) and INSR pLOF
(Phet= 4.50 × 10−8; Beta=−0.88 SD in women and 0.05 SD in
men) (Supplementary Table 5).

We performed replication analysis of the associations with
WHRadjBMI identified via the UKB using exome sequencing
data for up to 27,380 individuals from the AMP-T2D-GENES
consortium29. The most significant association in this analysis
was of INHBE pLOF with decreased WHRadjBMI
(P= 9.41 × 10−4, Beta=−1.03 SD). PLIN1 pLOF associated with
decreased WHRadjBMI with nominal significance (P= 0.05,
Beta=−0.13 SD). Associations for 9 out of 10 genes tested were
directionally consistent with those in our primary analysis
(Supplementary Table 6). Meta-analysis of the UKB and AMP-
T2D-GENES results increased the significance of 7 of these
including INHBE pLOF, PLIN1 pLOF and PLIN4 pLOF
(Supplementary Data 3). The effect of INHBE pLOF on
WHRadjBMI was significantly larger in T2D-GENES compared
to UKB (Beta=−1.03 SD vs −0.23 SD, Phet= 0.01) which may
be due to differences between a disease-centric cohort such as
T2D-GENES and a population-based cohort such as UKB, or due
to differences in the individual pLOF variants present in each
cohort (see below).

To replicate our associations in an additional independent
cohort, we examined 29,876 individuals in UKB identifying as
White who were not included in our original analysis. Testing the
genes identified in our discovery cohort, we found significant
associations (P ≤ 0.003, correcting for 11 genes tested) for variants
in three genes: PLIN1, PLIN4, and KEAP1, and a consistent
direction of effect for a total of 10 out of 11 genes including
INHBE (Supplementary Table 7).
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Identifying variants contributing to the gene burden associa-
tions. To identify variants contributing to the gene burden
associations we performed leave-one-variant-out analysis where
we excluded one variant at a time from each variant set and
examined how this affected statistical significance. This revealed
that the most common pLOF variants often drove the associa-
tions seen in the burden tests. For INHBE, the most common
pLOF variant was present in 538 out of 618 total carriers of pLOF
variants and affected a splice acceptor site (rs150777893;
NM_031479.4:c.299-1 G > C). This splice acceptor variant con-
tributed most of the signal in the burden test (P= 0.34 when
rs150777893 was excluded). However, the association was also
less significant when the next most common variant, splice donor
variant rs375342858, was excluded (P= 2.44 × 10−7 compared to
P= 4.98 × 10−8). In single variant tests, rs150777893 significantly
associated with decreased WHRadjBMI (P= 4.31 × 10−8,
Beta=−0.23 SD) (Supplementary Table 8 and Supplementary
Fig. 5). In the AMP-T2D-GENES analysis, an additional INHBE
variant, rs146517777 (p.Tyr253Ter), was identified that con-
tributes to the association of INHBE pLOF with lower
WHRadjBMI. Excluding rs146517777 from the analysis resulted
in a substantial reduction in significance (P= 0.08, Beta=

−0.77 SD compared to P= 9.41 × 10−4, Beta=−1.03 SD when
all variants were included) suggesting that this variant has a large
impact on WHRadjBMI (Supplementary Table 9). This difference
in the alleles carried by participants in AMP-T2D-GENES com-
pared to UKB may contribute to the differences in effect
size observed between the two studies. For PDE3B and PLIN1, the
most common pLOF variants (rs150090666 in PDE3B;
rs750619494 and 15:89667182:C:T in PLIN1) also drove the
burden associations. In contrast, multiple pLOF variants in
ANKRD12 and COL5A3 contributed to the gene-based associa-
tions. For ACVR1C, the missense variant rs56188432
(p.Ile195Thr) was responsible for the association, consistent with
published work9 and, for SLC5A3, a previously reported missense
variant rs35707420 (p.V370M)22 drove most, but not all, of the
signal (Supplementary Data 4 and Supplementary Fig. 5).

Relationship between WHRadjBMI genes, abdominal fat and
cardiometabolic traits. Exome-wide gene burden analysis of BMI
indicates that genes associating with WHRadjBMI are distinct
from those associating with BMI, demonstrating that
WHRadjBMI reflects fat distribution rather than overall adiposity

Fig. 1 Gene-level associations with waist-to-hip ratio adjusted for BMI. Gene-based burden analysis of WHRadjBMI in 362,679 European ancestry
individuals. Association testing was performed using a generalized linear model adjusting for the first 30 principal components of genetic ancestry. The
best variant set per gene is shown and significant genes are labeled (P≤ 1.05 × 10−6; Bonferroni correcting for the number of genes and variant masks
tested). The dashed line indicates the threshold for statistical significance.

Table 1 Associations with WHRadjBMI in the exome-wide gene burden analysis.

Gene Variant set Gene coordinates (hg38) P Beta (95% CI) in SD units of
WHRadjBMI

N (carriers|non-
carriers)

PDE3B pLOF 11:14643691-14874139 2.17 × 10−17 −0.26 (−0.32, −0.2) 1020|361659
PYGM pLOF 11:64746389-64760715 8.75 × 10−8 0.09 (0.06, 0.13) 3363|359316
INHBE pLOF+missense 12:57455291-57458013 2.01 × 10−8 −0.18 (−0.25, −0.12) 914|361765
INHBE pLOF 12:57455291-57458013 4.98 × 10−8 −0.22 (−0.30, −0.14) 618|362061
PLIN1 pLOF 15:89664365-89679417 2.12 × 10−20 −0.35 (−0.43, −0.28) 681|361998
PLIN1 pLOF+missense 15:89664365-89679417 4.82 × 10−14 −0.11 (−0.14, −0.081) 4720|357959
ANKRD12 pLOF 18:9136753-9285985 3.02 × 10−7 0.31 (0.19, 0.43) 261|362418
PLIN4 pLOF 19:4502180-4520285 1.84 × 10−9 0.13 (0.091, 0.18) 1961|360718
PLIN4 pLOF+missense 19:4502180-4520285 1.97 × 10−9 0.13 (0.086, 0.17) 2199|360480
INSR pLOF 19:7112255-7294405 1.05 × 10−7 −0.45 (−0.62, −0.29) 135|362544
COL5A3 pLOF 19:9959561-10010532 4.20 × 10−7 0.23 (0.14, 0.32) 479|362200
KEAP1 pLOF+missense 19:10486120-10503378 1.16 × 10−8 0.25 (0.16, 0.33) 520|362159
KEAP1 missense 19:10486120-10503378 2.58 × 10−8 0.25 (0.16, 0.34) 477|362202
ACVR1C missense 2:157526767-157628887 6.24 × 10−10 −0.14 (−0.19, −0.097) 1892|360787
ACVR1C pLOF+missense 2:157526767-157628887 7.10 × 10−10 −0.14 (−0.18, −0.095) 1923|360756
SLC5A3 missense 21:34073523-34106262 1.93 × 10−8 0.072 (0.047, 0.097) 6141|356538
TRIM40 pLOF+missense 6:30135998-30148773 6.99 × 10−7 0.074 (0.045, 0.10) 4443|358236

Association testing was performed in 362,679 European ancestry individuals using a generalized linear model adjusting for the first 30 principal components of genetic ancestry. Variant sets significantly
associating with WHRadjBMI are shown (P≤ 1.05 × 10−6; Bonferroni correcting for the number of genes and variant masks tested).
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(Fig. 2). This was further supported by examining the association
of our WHRadjBMI- associated genes with both unadjusted
WHR and BMI. All of these genes associated with WHR but just
two genes, PDE3B and PLIN1, associated with BMI (P < 0.0016,
adjusting for 16 variant sets and 2 phenotypes tested) although
additional genes (PLIN4, ANKRD12 and SLC5A3) reached
nominal significance for BMI (Supplementary Fig. 6 and Sup-
plementary Table 10). Consistent with an effect on fat distribu-
tion, most genes associated with WHRadjBMI (including INHBE)
showed a positive relationship between WHRadjBMI and visceral
adipose tissue and abdominal subcutaneous adipose tissue as
assessed by abdominal MRI (Supplementary Fig. 7). There is an
established causal relationship between WHRadjBMI and T2D
and CHD1,3. Assessing the effects on WHRadjBMI as a function
of disease risk revealed that most genes had estimated effects on
T2D and CHD that were proportional to the effect on
WHRadjBMI based on estimates from MR1 (Fig. 3). INSR pLOF
differed from expectations as it associates with lower
WHRadjBMI but shows a trend towards increased risk of T2D
(P= 0.08, OR= 1.70, 95% CI 0.93 to 3.10), consistent with
reports from Mendelian genetics17,18,20.

As abdominal obesity is the most prevalent manifestation of
metabolic syndrome (MetS)6, we examined the association of
WHRadjBMI-associated genes with MetS. We identified indivi-
duals with MetS traits (i.e., meeting particular thresholds for
various biomarkers; Methods)30 based on UKB baseline assess-
ment data and created a MetS score ranging from 0 to 5 of these
traits. Seven out of 11 genes examined associated with MetS score
at nominal significance in an ordinal regression including INHBE
pLOF (P= 0.02) and ACVR1C missense variants (P= 0.004).
Strong associations were seen for PLIN1 pLOF (P= 1.36 × 10−8)
and PDE3B pLOF (P= 5.81 × 10−8) variants, which is likely
driven by their large effect on triglycerides as well as
WHRadjBMI (Supplementary Table 11).

Phenotypic assessment of INHBE pLOF carriers. Genes where
pLOF associates with lower WHRadjBMI are of interest as
potential therapeutic targets for abdominal obesity and metabolic
syndrome. INHBE was one such gene identified in our analysis.
Heterozygous carriers of INHBE pLOF variants (1 in 587

Fig. 2 Comparison of associations for WHRadjBMI and BMI. Results of
gene-based association tests for WHRadjBMI and BMI in 362,679
European ancestry individuals performed using a generalized linear model.
−log10(P) is shown for the most significant variant set per gene. The red
lines indicate the threshold for statistical significance (P≤ 1.05 × 10−6;
Bonferroni correcting for the number of genes and variant masks tested)
and selected genes are labeled.

Fig. 3 Relationship between effect on WHRadjBMI and risk of CHD and
T2D. For significant genes, we plotted the estimated log odds of disease
risk as a function of the estimated effect in standard deviations (SD) on
WHRadjBMI calculated in 362,679 European ancestry participants. Effects
are shown for INHBE pLOF and, for the other genes, the most significant
variant set per gene. a Effect on WHRadjBMI (in SD) versus the log odds of
CHD (b) Effect on WHRadjBMI (in SD) versus the log odds of T2D. Grey
bars represent the 95% confidence interval. The blue dotted line represents
the estimated effect on disease predicted by a MR study of WHRadjBMI1.
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individuals, combined frequency of 0.08%) had a favorable
metabolic profile consisting of nominally significant associations
with lower triglycerides (P= 9.65 × 10−4, Beta=−0.13 SD),
higher HDL cholesterol (P= 0.01, Beta= 0.10 SD), decreased
alanine aminotransferase (P= 0.04, Beta=−0.08 SD) and lower
fasting glucose (P= 0.03, Beta=−0.17 SD). We also detected a
non-significant trend towards decreased LDL cholesterol,
decreased apolipoprotein B and decreased blood pressure in
carriers. INHBE pLOF did not associate with BMI but carriers
tended to have less visceral and abdominal subcutaneous adipose
tissue than non-carriers, supportive of a role for INHBE in reg-
ulating fat distribution. INHBE pLOF associated with decreased
WHR without BMI adjustment (P= 3.57 × 10−5, Beta=−0.12
SD) and carriers had a non-significant trend towards decreased
waist circumference (Supplementary Table 12).

MR studies have established a causal relationship between
WHRadjBMI and cardiometabolic disease risk1,3. Consistent with
this, we see fewer cases of CHD (P= 0.05, OR= 0.78, 95% CI
0.60 to 1.00) and T2D (P= 0.65, OR= 0.94, 95% CI 0.70 to 1.24)
for INHBE pLOF carriers compared to non-carriers which,
notably, are proportional to the effect on WHRadjBMI based on
estimates from MR1 (Fig. 3). There were fewer cases of T2D
among INHBE pLOF carriers in a larger meta-analysis of
~900,000 people but this also did not reach statistical significance
(rs150777893 variant; P= 0.22, OR= 0.65, 95% CI 0.33 to
1.29)31. Given the rarity of INHBE pLOF variants, we estimate
that we would need to sequence 5-7 million individuals to reliably
detect the expected associations with T2D and CHD at P ≤ 0.05
(Supplementary Table 13).

We performed an in-depth phenome-wide association study
(PheWAS) of INHBE pLOF to better understand the biological
consequences of INHBE silencing and to explore any potential
safety issues. We tested association of INHBE pLOF with 492
quantitative traits including NMR-derived metabolites, 1463
circulating proteins measured using Olink technology, 669
disease diagnoses, a set of 26 clinical measurements present only
in UKB primary care data and 72 body composition measure-
ments derived from DEXA imaging and bioelectrical impedance
(Fig. 4, Table 2, and Supplementary Data 5–9). This revealed
phenome-wide significant associations of INHBE pLOF with

increased reported birth weight (P= 8.09 × 10−7, Beta= 0.26 SD)
and increased levels of the related protein INHBC in circulation
(P= 1.19 × 10−5, Beta= 0.51 SD). We also detected suggestive
associations with decreased high light scatter reticulocyte count
and increased levels of the protein LRIG1 (Table 2). Notably, the
association of INHBE pLOF with increased circulating INHBC
levels replicated in an independent dataset where proteins were
measured using a different technology (P= 0.006, Beta= 0.52
SD) (Supplementary Table 14)32. We did not detect any
associations with body composition beyond WHR.

We examined whether there was any evidence for excess
mortality amongst INHBE pLOF carriers in a number of ways.
Firstly, we performed a survival analysis of INHBE pLOF carriers
using Cox proportional hazards regression in the UKB and found
no significant association of INHBE genotype with time to death
(P= 0.16, Hazard ratio comparing pLOF carriers to non-
carriers= 0.79, 95% CI 0.57 to 1.10) (Supplementary Fig. 8).
We also looked at INHBE pLOF carriers in the gnomAD database
(v2.2.1) which has age data for a subset of the exome-sequenced
participants. Variants that cause earlier death would be expected
to show a trend of lower ages among variant carriers. Of 85,462
exome-sequencing participants with age data available, 72 carried
pLOF variants in INHBE. Their age distribution was not
detectably different than the background (Wilcoxon P= 0.40)
(Supplementary Data 10). Lastly, we examined whether any of the
whole exome-sequenced (WES) or whole-genome sequenced
(WGS) individuals in UKB had copy number variants (CNVs)
that overlapped or otherwise impacted INHBE. Three individuals
were identified as having WES-based high-confidence CNVs (all
deletions) that either fully or partially overlapped INHBE. Two
additional individuals were identified based on the WGS data as
having the same relatively small deletion that removes most of the
second exon of INHBE (Supplementary Table 15). All five of the
individuals with INHBE-overlapping deletions are alive per the
latest UKB data release, with ages ranging from 57 to 81 years.

INHBE encodes inhibin βE subunit which dimerizes to form
activin E, a hepatokine whose signaling is not well-characterized.
Notably, the WHRadjBMI-associated gene ACVR1C encodes the
activin receptor ALK7, further supporting a role for activin
signaling in regulating adipose distribution. PheWAS of ACVR1C
missense variants revealed phenotypic similarities to INHBE
pLOF including significant associations with birth weight
(P= 1.92 × 10−23, Beta= 0.30 SD) and unadjusted WHR
(P= 1.24 × 10−5, Beta=−0.08 SD) as well as nominally sig-
nificant associations with decreased visceral adipose tissue and
decreased blood pressure. We also detected the previously
reported association with T2D (P= 0.005; OR= 0.78) (Supple-
mentary Table 16). ACVR1C pLOF variant carriers were rare in
our data with just 31 carriers in the European ancestry sub-
population but recent analysis suggests that ACVR1C I195T,
which drives the WHRadjBMI signal, disrupts ALK7 receptor
function16 further suggesting that inhibiting activin signaling has
beneficial effects on fat distribution.

In vitro characterization of INHBE pLOF variants and INHBE
expression in obesity. The inhibin βE subunit is a pro-protein
consisting of a propeptide domain and a mature domain. Based
on what is known about activins A and B, it is likely that inhibin
βE pro-proteins associate to form dimers and that the propeptide
domain is later cleaved to form activin E33. We expressed
C-terminus FLAG-tagged inhibin βE in HEK293T cells, which do
not endogenously express INHBE, and observed the pro-protein
present in cell lysate and the mature form in the cell media. We
then used this system to characterize the most common INHBE
pLOF variants in UKB, the splice acceptor rs150777893

Fig. 4 PheWAS of INHBE pLOF. The association of INHBE pLOF with
quantitative traits (QTs), circulating proteins (Proteins), disease diagnoses
(Diagnoses), biomarkers from primary care (GP) and measures of body
composition (DEXA) was tested using either a generalized linear regression
or a mixed-effects model. The y-axis shows −log10(P) for each trait tested.
Phenome-wide significant (P≤ 1.84 × 10−5 Bonferroni correcting for the
number of phenotypes tested; grey line) and suggestive (P≤ 1 × 10−3; red
line) associations are labeled. TGs; triglycerides, Reticulocytes; high light
scatter reticulocyte count and percentage, INHBC; inhibin βC/activin C,
LRIG1; leucine-rich repeats and immunoglobulin-like domains protein 1.
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(NM_031479.4:c.299-1 G > C) and the splice donor rs375342858
(NM_031479.4:c.298+ 1 G > T), as well as rs146517777
(p.Tyr253Ter) found in the AMP-T2D-GENES analysis (Fig. 5a).
No inhibin βE protein was made from constructs expressing the
splice donor or Tyr253Ter variants, suggesting that these variants
are detrimental to protein synthesis (Figs. 5b, c). In contrast,
inhibin βE was produced by cells expressing the splice acceptor
variant and detected in cell lysate but this protein was present at
substantially reduced levels in the cell media (Fig. 5d). Quantifi-
cation of this protein showed that levels were, on average, 11%
(P= 0.0065; Fig. 5e) of those produced in cells expressing non-
variant INHBE, indicating a defect in either protein secretion or
stability caused by the splice acceptor variant. This is consistent
with a depletion of functional inhibin βE/activin E leading to a
lower WHRadjBMI. Sequencing of the mRNA produced by the
INHBE construct harboring the splice acceptor variant revealed
the use of a cryptic splice acceptor site downstream of the variant
(AG site at position 309 in NM_031479.4) and an in-frame
deletion of four amino acids (NP_113667.1 amino acids 100 to
103; Fig. 5f). These hydrophilic amino acids, Aspartate-Serine-
Threonine-Serine, are conserved across mammalian species sug-
gesting functional importance (Supplementary Fig. 9). The fact
that the Tyr253Ter variant has a more dramatic effect on inhibin
βE protein than the splice acceptor variant may partly account for
the larger effect size seen in AMP-T2D-GENES (where this var-
iant was identified) compared to UKB where the splice acceptor
variant predominates.

As reduced levels of INHBE associate with a healthier fat
distribution we asked whether, conversely, INHBE is upregulated
in conditions of obesity and insulin resistance. We examined
INHBE expression in the livers of obese monkeys with
nonalcoholic steatohepatitis and in the livers of younger lean
monkeys. INHBE expression was, on average, 3.2-fold higher in
the obese monkeys compared to the lean monkeys
(P= 1 × 10−12) (Supplementary Fig. 10). While we cannot
exclude the possibility that the differences in the age of the
monkeys contribute to expression differences, our observations
are consistent with previous reports of elevated INHBE expres-
sion in conditions of insulin resistance34,35.

Insights into other WHRadjBMI-associated genes. Our analysis
provided insights into Mendelian lipodystrophy genes and iden-
tified additional genes associated with WHRadjBMI. Of note, was
the association between PLIN1 pLOF and decreased WHRadjBMI
(P= 2.12 × 10−20, Beta=−0.35 SD). PLIN1 variants resulting in
a longer protein containing 158 aberrant amino acids (frameshift
variants rs1567075176 and rs1567075667) have been shown to
cause familial partial lipodystrophy type 4 (FPLD4), characterized
by a loss of subcutaneous adipose tissue particularly in the gluteal
region and lower limbs, hypertriglyceridemia, hypertension, and

type 2 diabetes23. The PLIN1 pLOF variants examined in this
study are different to those that cause FPLD4 and are bioinfor-
matically predicted to result in mRNA decay and therefore a
complete loss of protein36. We see a significant association of
PLIN1 pLOF with decreased triglycerides (P= 9.56 × 10−12,
Beta=−0.26 SD), a nominally significant association with
decreased blood pressure (P= 0.02 for diastolic blood pressure,
P= 0.03 for systolic blood pressure) and a lower odds ratio for
T2D (P= 0.11, OR= 0.81, 95% CI 0.62 to 1.05) opposite to the
lipodystrophy phenotype. We also observed significant associa-
tions with HDL cholesterol, hip circumference, and reticulocyte
count (Supplementary Table 17).

We specifically examined WHRadjBMI associations for 13
genes implicated in Mendelian lipodystrophies in both our sex-
combined and sex-stratified analyses. We identified significant
associations for 4 out of these 13 genes, PLIN1, LIPE, LMNA and
PPARG, (P ≤ 0.004, correcting for 13 genes tested) in at least one
analysis. Rare variants in an additional three genes, CAV1,
AGPAT2 and CAVIN1, associated with WHRadjBMI at nominal
significance (Supplementary Fig. 11 and Supplementary Data 11).

PheWAS of the other WHRadjBMI-associated genes provided
further biological insights. For example, PLIN4 pLOF
(WHRadjBMI P= 1.84 × 10−9, Beta= 0.13 SD) was associated
with a decrease in overall body fat percentage (P= 7.56 × 10−7,
Beta=−0.08 SD) suggesting a redistribution of fat to the
abdomen in carriers. We observed pleiotropic effects of
ANKRD12 pLOF which associated with a range of diverse traits
including total protein, blood cell counts, performance on
cognitive tests, and bronchitis. Finally, SLC5A3 missense variants
associated with biomarkers of kidney function and KEAP1 pLOF
+ missense associated with creatinine levels, apolipoprotein A
and eosinophil counts (Supplementary Data 12).

Discussion
Our exome-wide analysis of WHRadjBMI, a surrogate for
abdominal fat, highlights loss of function in INHBE as a genetic
factor contributing to a healthier fat distribution. INHBE is dis-
tinct from many of the other WHRadjBMI-associated genes as it
is predominately liver-expressed and encodes a secreted protein
which likely exerts its effects in other tissues such as adipose.
Characterization of the most common (MAF= 0.08%) INHBE
pLOF variant showed that the resulting protein was present
intracellularly but that levels of secreted protein were reduced
by nearly 90%, likely severely compromising its ability to signal to
other tissues. INHBE encodes inhibin βE subunit, an activin/
inhibin component which belongs to the TGF-beta superfamily
but whose signaling has not been characterized33. Based on other
family members33, we hypothesize that the inhibin βE subunit
dimerizes to form activin E. Although receptors for activin E have
not been identified, the past observations that variants in

Table 2 PheWAS of INHBE pLOF.

Title Variant set P Beta in SD (95% CI) N carrier measured

WHRadjBMI INHBE pLOF 4.98 × 10−8 −0.22 (−0.30, −0.14) 618
Birth weight INHBE pLOF 8.09 × 10−7 0.26 (0.16, 0.37) 345
WHR INHBE pLOF 3.57 × 10−5 −0.12 (−0.18, −0.07) 619
High light scatter reticulocyte percentage INHBE pLOF 6.74 × 10−4 −0.14 (−0.22, −0.06) 591
High light scatter reticulocyte count INHBE pLOF 7.92 × 10−4 −0.14 (−0.22, −0.06) 591
Triglycerides INHBE pLOF 9.65 × 10−4 −0.13 (−0.21, −0.05) 594
INHBC protein INHBE pLOF 1.19 × 10−5 0.51 (0.28, 0.74) 72
LRIG1 protein INHBE pLOF 5.07 × 10−4 0.40 (0.17, 0.63) 72

INHBE pLOF was tested for association with 492 quantitative traits, 1463 circulating proteins, 669 disease diagnoses, 26 biomarkers from primary care and 72 measures of body composition. Phenome-
wide significant (P≤ 1.84 × 10−5; Bonferroni correcting for the number of phenotypes tested) and suggestive (P≤ 1 × 10−3) associations are shown. Full PheWAS results are given in Supplementary
Data 5–9.
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ACVR1C, encoding the activin receptor ALK7, associate with
WHRadjBMI9 which were replicated in this study lead us propose
ALK7 as a candidate for an activin E receptor.

Further analysis of INHBE pLOF carriers revealed a favorable
metabolic profile which included decreased triglycerides,
increased HDL cholesterol, and decreased fasting glucose. An

extensive PheWAS of INHBE pLOF did not reveal any associa-
tions suggesting adverse effects of INHBE pLOF and carriers of
these variants did not show evidence of excess mortality. Of note,
was the association of INHBE pLOF with increased circulating
levels of INHBC protein. INHBC dimerizes to form activin C
which has recently been shown to signal through the ALK7
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receptor in mature adipocytes37. Whether INHBC is upregulated
to compensate for a reduction in INHBE or some other
mechanism is at play remains to be investigated.

Notably, several non-genetic studies implicate INHBE in
metabolic dysfunction. Two studies report a correlation between
increased expression of INHBE and insulin resistance in both
humans and mice34,35. Here, we observed higher expression of
INHBE in the livers of obese monkeys compared to lean monkeys
providing further support for this. Hepatic knockdown of Inhbe
in db/db diabetic mice was found to reduce body fat consistent
with our findings from human genetics35. However, a different
study showed that overexpression of Inhbe increased energy
expenditure and improved insulin resistance in high fat diet fed
mice38. These discrepancies may simply reflect the differences
between mouse models, which are an imperfect system for
studying human adiposity, or may suggest that precise levels of
activin E are important for regulating energy metabolism and fat
deposition.

Our analysis of rare genetic variation influencing WHRadjBMI
identified additional genes with a role in regulating fat distribu-
tion and metabolic function including the known Mendelian
disease genes, PYGM, INSR, PLIN1, LIPE and ABCA1. With the
exception of PLIN1, all genes identified have phenotypic asso-
ciations reminiscent of the corresponding Mendelian diseases.
For example, biallelic loss of function in PYGM causes glycogen
storage disease which can lead to muscle atrophy and an increase
in adipose tissue24,39. Recessive mutations in INSR cause Dono-
hue syndrome, a feature of which is a lack of adipose tissue40.
INSR variants are also known to cause insulin resistance and
diabetes17,18,20. Consistent with this, and in contrast to other
genes associated with lower WHRadjBMi, we see a trend towards
increased T2D risk in INSR pLOF carriers. Of note, is our finding
that PLIN1 pLOF associates with lower WHRadjBMI and lower
triglyceride levels, which is consistent with previous studies16,41.
This suggests that therapeutic silencing of PLIN1 may have
beneficial metabolic outcomes which are different to the effects of
the mutant perilipin 1 protein seen in FPLD4, an autosomal
dominant disorder characterized by loss of adipose tissue in the
lower body, T2D, and hypertriglyceridemia23.

We also identified WHRadjBMI associations for several genes
with known links to adipose biology or insulin resistance
including COL5A3 and PLIN4. Col5a3−/− mice have previously
been shown to be glucose intolerant, insulin-resistant and have
sex-specific decreases in dermal fat42. PLIN4 encodes perilipin 4
which coats newly synthesized lipid droplets to form a stable
protein layer43,44. Another identified gene, KEAP1, is a negative
regulator of NRF2 which plays a role in adipocyte differentiation
while GIGYF1 pLOF, which associated with higher WHRadjBMI
in men only, has known T2D associations45.

Loss of function in ANKRD12, encoding a putative transcrip-
tional repressor, had pleiotropic effects which ranged from
increased WHRadjBMI to worse performance in several cognitive
tests. This may suggest a multi-organ syndrome in pLOF carriers

and, consistent with this, ANKRD12 is expressed in a broad range
of tissues46. Several of the genes with rare variant associations,
namely COL5A3, PLIN4, and SLC35F5 also have reported com-
mon variant associations for WHR11,22. However, no previous
genetic studies have implicated INHBE in the control of adipose
distribution in humans.

Our findings from exome-sequencing of over 360,000 indivi-
duals highlight INHBE as a novel therapeutic target to treat
abdominal obesity and cardiometabolic disease. The causal rela-
tionship between WHRadjBMI and cardiometabolic disease is
well established1,3. Consistent with this, carriers of INHBE pLOF
variants have a more favorable metabolic profile and estimated
lower odds of CHD and T2D than non-carriers. Importantly, by
reducing abdominal fat, drugs targeting INHBE would have a
distinct biological mechanism to existing drugs for CHD and
T2D and may complement current therapies.

Methods
Ethics statement. The UK Biobank study was approved by the National Health
Service National Research Ethics Service and all participants provided written
informed consent to participate in the study. The UK Biobank resource is an
approved Research Tissue Bank and is registered with the Human Tissue
Authority, which means that researchers who wish to use it do not need to seek
separate ethics approval (unless re-contact of participants is required). Information
about ethics oversight in the UK Biobank can be found at https://www.ukbiobank.
ac.uk/ethics/. This research has been conducted using the UK Biobank resource,
applications 26041 and 65851. All individuals in the AMP-T2D-GENES study
provided informed consent and all samples were approved for use at the respective
institution.

Ethical approval for animal experiments was obtained from the Charles River
Laboratory Institutional Animal Care and Use Committee (IACUC) and the
Kunming Biomed International IACUC.

The UK Biobank resource. The UK Biobank (UKBB) recruited ~500,000 parti-
cipants in England, Wales, and Scotland between 2006 and 201047. Phenotypic data
available includes anthropometric traits, biomarker data and self-reported diseases
collected at the time of baseline assessment as well as disease diagnoses from
inpatient hospital stays, the cancer registry and death records obtained through the
NHS. Approximately half of the participants also have diagnoses from primary care
available and a subset of participants have undergone abdominal imaging. Array
genotypes are available for nearly all participants and exome sequencing data is
available for 454,756 participants.

Exome sequencing, population definition and PC calculation. DNA was
extracted from whole blood and sequenced by Regeneron Genetics Center as
described elsewhere48. Briefly, the xGen exome capture was used and reads were
sequenced using the Illumina NovaSeq 6000 platform. Reads were aligned to the
GRCh38 reference genome using BWA-mem49. Duplicate reads were identified
and excluded using the Picard MarkDuplicates tool (Broad Institute). Variant
calling of SNVs and indels was done using the WeCall variant caller (Genomics
Plc.) to produce a GVCF for each subject. GVCFs were combined to using the
GLnexus joint calling tool50. Post-variant calling filtering was applied using the
Goldilocks pipeline48. Variants were annotated using the Ensembl Variant Effect
Predictor (VEP) v9551 which includes a LOFTEE plug-in to identify high con-
fidence pLOF variants36. Combined Annotation Dependent Depletion (CADD)
scores52 were generated using the Whole Genome Sequence Annotator (WGSA)
AMI version 0.8. Positions are based on the hg38 genome build.

Subject quality control and determination of genetic relationships between
participants were performed by Regeneron Genetics Center (RGC) and removed
subjects with evidence of contamination, unresolved duplications, sex discrepancies

Fig. 5 In vitro characterization of INHBE pLOF variants. a Design of INHBE expression constructs containing the splice acceptor variant, the splice donor
variant and stop gain variant Tyr253Ter which were transfected into HEK293T cells. CDS; coding sequence (b) Western blot analysis of FLAG-tagged
inhibin βE protein from cell lysate. The expected size of the FLAG-tagged inhibin βE pro-protein is 39–42 kDa. β-actin was used as a loading control.
c Quantification of inhibin βE in cell lysate from 3 independent biological replicates, error bars represent the standard error of the mean (SEM). d Western
blot analysis of secreted FLAG-tagged inhibin βE protein harvested from the media. Ponceau S protein stain was used as a loading control. The arrow
represents the expected size of the FLAG-tagged inhibin βE mature domain (14–16 kDa). e Quantification of inhibin βE in cell media from 3 independent
biological replicates. Values are normalized to non-variant INHBE (CDS+ intron). Error bars represent SEM, **P= 0.0065 using a two-sided unpaired
t-test. f Sequencing of the mRNA produced by cells expressing non-variant INHBE (CDS+ intron) and cells expressing the splice acceptor variant. Amino
acid residues are numbered, and red boxes indicate splice sites. Set 1, 2 and 3 refer to independent biological replicates. Panels (a) and (f) were created
with BioRender.com.
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and discordance between exome sequencing and genotyping data. Genetic
relationships between participants were determined by RGC using the PRIMUS
program53. Our analysis of WHRadjBMI was performed in the unrelated subset
from which all first- and second-degree relatives and some third-degree relatives
had been excluded.

Sub-populations were defined through a combination of self-reported ethnicity
(Field 21000) and genetic principal components (PCs). PCs were calculated using
methodology outlined elsewhere45. Briefly, we ran an initial principal component
analysis on high quality variants (missingness <2%, MAF > 0.1%, HWE P ≥ 10−12,
pruned to independent markers) using eigenstrat54. We then removed all
individuals +/− 3 standard deviations from the mean of PCs 1–6. A final PC
estimation was then performed using unrelated subjects. We then projected related
individuals onto the PCs. For sensitivity analysis in the White outgroup, we
selected individuals reporting a White ethnic background (Field 21000) but who
were not included in the European ancestry sub-population used in our discovery
analysis. In this sensitivity analysis, we adjusted for genetic ancestry using 30 PCs
from a set supplied by UKB (Field 22009).

Calculation of WHRadjBMI and definition of other traits. We calculated
WHRadjBMI for UKB participants using manual measurements for waist cir-
cumference (Field 48), hip circumference (Field 49), and BMI (Field 21001) taken
at baseline assessment. A linear model was built modeling waist-to-hip (WHR) and
adjusting for age at recruitment, sex, and BMI. WHRadjBMI was defined using the
residuals from this model similar to previous studies11 and values were inverse
rank normalized using the RNOmni R package55 prior to association testing. For
sex-specific analyses, WHRadjBMI was calculated separately for men and women
(defined based on Fields 31 and 22001) excluding sex from the linear model.
Inverse rank normalization of WHRadjBMI values was performed separately for
men and women.

Imaging-derived measures quantification of visceral adipose tissue and
abdominal subcutaneous adipose tissue volume were obtained from UKB (Fields
22407 and 22408), adjusted for BMI as previously described13, and inverse rank
normal transformed for association testing. Liver proton density fat fraction
measurements were obtained from UKB (returned dataset 2343)56 and inverse rank
normal transformed for association testing.

For phenome-wide analyses of the WHRadjBMI associated genes, a selection of
~290 quantitative traits was obtained from other fields, encompassing
anthropometric measurements, cognitive tests, blood counts, as well as blood and
urine biochemistry. For measurements of LDL cholesterol, we also constructed a
phenotype that was adjusted for use of cholesterol lowering medication as
previously described57. All quantitative traits were inverse rank normalized using
the RNOmni R package55 prior to association testing. Disease diagnoses were
extracted from inpatient hospital diagnoses, the death and cancer registries,
primary care, and self-report. Phecodes were constructed from ICD10 coded-
diagnoses58. CHD was defined as “phecode 411 ischemic heart disease” and T2D as
“phecode 250.2 type 2 diabetes”. Diseases with >1000 cases were tested in PheWAS.

For INHBE pLOF additional phenotypes were examined. These included an
expanded set of quantitative traits (N= 492) including NMR metabolites (category
220), circulating proteins quantified using Olink technology (N= 1463) as well as
body composition measured by impedance (category 100009) and DEXA-imaging
(category 124) (N= 72). All quantitative traits were inverse rank normalized prior
to association testing using the RNOmni R package55. In addition, we tested for
association with all disease diagnoses with >500 cases (N= 669). We also curated a
set of clinical measurements which were absent from the UKB baseline assessment
data but had > 20,000 individuals with measurements in primary care data (GP
clinical events, field 42040) (N= 26). These measurements were mapped to the
OMOP common data model. For each measurement, values were extracted, and
outliers were removed (+/−4 SD from the mean). Values were then inverse rank
normalized and adjusted for age at measurement using a linear model. For each
participant, the mean of the computed residuals was calculated to give a single
value per person. All phenotypes tested are listed in Supplementary Data 5–9.

Individuals with metabolic syndrome traits at baseline assessment were
identified as follows; waist circumference >89 cm for women and >102 cm for men,
triglycerides >1.7 mmol/L, HDL cholesterol <1.30 mmol/L in women and
<1.04 mmol/L in men, blood pressure >130/85 mm Hg, and HbA1c > 5.7%. This is
consistent with clinical criteria for defining metabolic syndrome30, although we
substituted HbA1c for fasting glucose as those measurements were not available for
all participants. Participants were given a metabolic syndrome score between 0 and
5 reflecting the number of metabolic syndrome traits present.

Association testing in UKB. For gene-based tests, variant masks included auto-
somal variants only and were defined as follows: pLOF variants were predicted
protein truncating variants (stop gain, frameshift, splice acceptor, splice donor)
called as high confidence by LOFTEE, predicted damaging missense variants were
missense variants with a CADD PHRED-scaled score ≥25. All included variants
had MAF ≤ 1%, missingness across individuals ≤2%, and HWE P ≥ 10−10. For
exome-wide gene burden analysis of WHRadjBMI we employed a p-value
threshold Bonferroni corrected for the number of genes and variant masks tested
(P ≤ 1.05 × 10−6).

For quantitative traits, burden testing was performed in unrelated individuals
using a generalized linear model implemented in R according to a gaussian model.
Genotype was coded according to a dominant model; 0 (no variant) or 1 (any
number of variants). When testing associations with WHRadjBMI we adjusted for
the first 30 PCs of genetic ancestry in the regression as values had previously been
adjusted for age and sex. For other quantitative traits we adjusted for age at
recruitment, sex and 30 PCs. For quantitative traits, we required at least 10 rare
variant carriers per gene to have measurements in our primary analysis. Case-
control analyses were performed using a mixed-effects model implemented in
REGENIE v2.2.459 and included related individuals. We adjusted for age, sex, the
availability of primary care data, country of recruitment and 30 PCs in the
regression. For case-control analyses we only tested variant sets where there were at
least 5 cases amongst rare variant carriers. For the sensitivity analysis of
WHRadjBMI in the White outgroup we tested significant variant sets where we had
≥5 rare variant carriers per gene.

For traits where the effect in clinical units is shown, to convert effect sizes from
normalized values back to measured units, the estimates from the regression were
multiplied by the standard deviation of these traits in the entire cohort.

Meta-analysis was performed using an inverse-variance weighted method
implemented in METAL (version release date 2011-03-25) and heterogeneity was
tested using Cochran’s Q test60.

Single variant associations with WHRadjBMI were tested using an additive
model in PLINK61 adjusting for the first 30 PCs of genetic ancestry.

For MetS score, proportional odds logistic regression was performed using
“polr” (MASS package) in R. The effect in terms of number of MetS traits was then
calculated by running a linear regression.

Conditional analysis was performed by including the relevant genotype as a
covariate in the regression. Common variant associations with WHRadjBMI were
identified using genotypes from array typing and imputation62 via PLINK61

adjusting for genetic ancestry via 30PCs. We adjusted our gene burden associations
for the lead common SNP in a 250 kb window with p ≤ 1.05 × 10−6.

Replication analysis in AMP-T2D-GENES dataset. The AMP-T2D-GENES
dataset29, comprised of exome sequencing data from 20,791 T2D cases and 24,440
controls, was used for replication analysis of variant sets with significant associa-
tions in our primary sex-combined analysis. All signals were tested in up to 27,380
unrelated individuals with reported WHR and BMI values. WHR ratio was
adjusted for age, sex, and BMI using a linear model and the calculated residuals for
each trait were inverse-normal transformed to derive WHRadjBMI. As previously
reported63, transformations were performed separately within each cohort of the
AMP-T2D-GENES dataset. Individuals with reported WHRadjBMI data spanned
five genetic ancestries: African American (N= 1411), East Asian (N= 5935),
European (N= 6412), Hispanic (N= 9253), and South Asian (N= 4369). Ances-
tries were confirmed by visual inspection of the first two PCs based on a multi-
ancestry analysis of common variants. Variants were annotated using the VEP
software package v8751 using the LOFTEE plugin36 to identify high confidence
pLOF variants and CADD PHRED score52. Transcripts were chosen using the
“–flag-pick-allele” option implemented in VEP. Variant masks corresponded to
those used in our primary analysis pLOF, missense, and pLOF+ missense with all
MAF ≤ 1%. Variant masks with fewer than 5 carriers (i.e., ANKRD12 pLOF) and
TRIM40 pLOF+ missense (due to proximity to HLA gene cluster) were excluded
from the replication analysis. Genomic positions are based on the GRCh37/hg19
genome build.

EPACTS software package version 3.2.4 (genome.sph.umich.edu/wiki/EPACTS)
was used to perform a burden test with linear regression. As previously done29,
testing was performed as a single “mega-analysis” across all samples. In this
method, we used a set of unrelated samples (all pairs IBD < 0.25) and added 10
ancestry PCs, sample cohort subgroup, and sequencing technology as covariates.
The variant filtering was performed at the sample subgroup level by setting
genotypes for an entire subgroup as missing during association testing as
previously described29.

Estimation of effects based on MR and power calculations. MR studies have
estimated that for every 1 SD increase in WHRadjBMI the odds ratio of CHD is
1.46 and the odds ratio of T2D is 1.771. We natural log transformed these odds
ratios and calculated expected effects over a range of WHRadjBMI effect sizes. We
fit a linear model, ln(odds of disease) ~ WHRadjBMI effect in SD, to plot how
disease risk is estimated to change for WHRadjBMI-associated variant sets. For
INHBE pLOF, WHRadjBMI is 0.22 SD lower and the MR-estimated odds ratio is
0.92 for CHD and is 0.88 for T2D. We used the genpwr package in R to calculate
the cohort size needed to detect these effects at P ≤ 0.05, assuming an additive
model and a combined MAF of 0.08%.

Survival analysis of INHBE pLOF carriers and assessment of their age dis-
tribution in gnomAD. The association between the INHBE pLOF genotype and
time to death (category 100093) was tested in UKB using Cox proportional hazards
regression starting at date of enrollment and controlling for age at enrollment, sex,
and genetic ancestry via 30 principal components and implemented using the
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“survival” package in R. Kaplan-Meier curves were used to visualize survival by
INHBE genotype.

To examine the age distribution of INHBE pLOF carriers in gnomAD v2.1.1,
the vcf file for exome data from chromosome 12 was obtained from the gnomAD
website (https://gnomad.broadinstitute.org/downloads). Variants were filtered to
pass QC among the exome calls and to be pLOF in INHBE using the LOFTEE filter
as implemented in gnomAD. Variant frequency by age (provided in 12 age bins)
was extracted from the VCF and summed across variants. The overall age
distribution was obtained from the gnomAD variant view page. A Wilcoxon test
was performed in R on the variant carriers’ ages (encoded as ordinal age bins) vs.
non-carriers’ ages.

Identification of CNVs overlapping INHBE in UKB WES and WGS data. We
examined whether any of the 454,756 WES samples had CNVs that overlapped or
otherwise impacted INHBE. We focused on CNVs with a maximum size of 100 Kb,
as larger CNVs would impact a large quantity of genes beyond INHBE and thus be
less informative with respect to potential consequences of INHBE copy number
variation. CNV calls were made by the Regeneron Genetics Center by applying the
CLAMMS pipeline64 (version 1.3) to the WES data. The CNV call set included
449,872 ‘inlier’ samples (those individuals remaining after removing samples
defined as ‘outliers’ based on having >40 CNVs or >40,000 exons called as a CNV).
Among these samples, three individuals were identified as having WES-based high-
confidence CNVs (all deletions) that either fully or partially overlapped INHBE.
High-confidence CNVs were defined as CNVs with a QC score of 2 or 3 given a
score range of 0–3, with QC score determined based on a combination of CNV
call-level metrics (Q_nondip and Q_exact), SNP information (for deletions, het-
erozygosity/homozygosity ratio was considered), and performance of the locus
across the cohort. In addition to the WES dataset, 150,119 UK Biobank samples
have undergone whole genome sequencing (WGS) and deCODE genetics has
employed a pipeline involving MANTA65 (version 1.6) and GraphTyper66 (version
2.6) to identify CNVs based on these WGS data67. Of the three samples with high-
confidence deletions overlapping INHBE based on WES data, two samples were
included amongst the 150,119 WGS samples. The WES-identified deletions for
these two samples were also identified based on the WGS data, with slightly dif-
ferent breakpoints as shown in Supplementary Table 15. Furthermore, two addi-
tional samples were identified based on the WGS data as having the same high-
quality (alternate allele score [AAscore]= 0.978, genotype quality >20 and read
depth >10), relatively small (~2 Kb) deletion that partially overlaps INHBE
(deleting most of the 2nd exon); these samples were present amongst the ‘inlier’
samples of the WES CNV call set, but these deletions were not identified by the
WES CLAMMS pipeline.

Tissue expression enrichment of WHRadjBMI-associated genes. For a set of
15,947 protein-coding genes for which RNA expression was available in GTEx v846,
the mean expression across individuals for each of the 54 tissues was obtained, and
the tissue with the highest expression was delineated for each gene. For each tissue, a
one-sided Fisher’s exact test was performed for enrichment among the genes for
which that tissue had the highest expression for the genes associated with
WHRadjBMI (defined as N= 11 genes with WHRadjBMI p < 1 × 10−6 or N= 73
genes with WHRadjBMI p < 1 × 10−3.) In addition to the 54 GTEx tissues, nine
additional groups of tissues (adipose, artery, brain, cervix, colon, esophagus, heart,
kidney, skin) with multiple GTEx tissues were aggregated and also tested.

In vitro characterization of INHBE variants. Human INHBE sequences were
obtained from NCBI synthesized in pCMV6-AC-3DDK (Origene) containing a
linker sequence and 3× FLAG at C-terminus by BlueHeron Biotech (Bothwell,
WA). The following plasmids were generated: CDS contained the coding region of
INHBE, CDS+ Intron contained the coding region of INHBE with the intron,
INHBE CDS with rs146517777 mutation (Tyr253Ter), INHBE CDS+ Intron with
rs150777893 (splice acceptor variant), and INHBE CDS+ Intron with rs375342858
(splice donor variant). For sequence analysis, the relevant region of the plasmid was
amplified using PrimeSTAR Max DNA polymerase master mix (TakaraBio,
Kusatsu, Shiga, Japan). The PCR product was purified using QIAquick PCR Pur-
ification Kit (Qiagen, Hilden, Germany), followed by Sanger sequencing (Genewiz,
Cambridge, MA). All sequence analyses were formed using Geneious Prime
2021.2.2 (Biomatters Ltd, Auckland, New Zealand).

HEK293T cells (CRL-3216 ATCC; Manassas, VA) were grown in Dulbecco’s
Modified Eagle Medium (DMEM) with 10% Fetal Bovine Serum (FBS; Gibco,
Carlsbad, CA) at 37 °C and 5% CO2. All transfections were performed using
Lipofectamine™ 3000 (Invitrogen, Carlsbad, CA) and Opti-MEM (Gibco, Grand
Island, NY) according to the manufacturer’s specifications. 10 ug of each plasmid
were transfected into 100 mm tissue culture plates. 24 hrs post-transfection, media
was changed to serum-free. Cells and media were collected 48 h post-transfection.
Briefly, 10 mL of media was collected from each condition and spun at 1000 × g for
10 mins, the supernatant was collected followed by another spin. Halt protease and
phosphatase inhibitor cocktail was added to the resulting supernatant, followed by
~40-fold concentration of the media using Pierce™ Protein Concentrator PES with
a molecular weight cutoff of 3 kDa (ThermoFisher Scientific, Waltham, MA).

Following media removal, the transfected plates were washed in 1× PBS followed
by brief trypsinization and resuspension in DMEM. Cells were pelleted at 300 × g
for 5 mins and the supernatant was discarded. Cell pellets were immediately frozen
on dry ice.

Transfected cell pellets were lysed on ice in 1× RIPA buffer containing Halt
Protease and Phosphatase inhibitor. Lysis was performed with intermittent
vortexing for 30 mins, followed by sonication at power setting 3 (Microson
Ultrasonic Cell Disruptor XL (Misonix, Farmingdale, NY). Sonication was
performed on ice for 3 cycles of 10 s, with a 30 s cool-off. The resulting lysate was
spun at 14,000 g for 15 mins at 4 °C. The supernatant was collected and used for
western blot analysis. Total protein quantification was performed using the Pierce™
BCA Protein Assay Kit (ThermoFisher Scientific, Waltham, MA). 18 ug of the total
lysate was loaded on to a Novex 4–20% Tris-Glycine gel. For secreted media
analysis, a standard volume of 20 ul was loaded. Gels were transferred on to PVDF
membranes using iBlot™ 2 Transfer Stacks (ThermoFisher Scientific, Waltham,
MA), followed by blocking in 5% nonfat dry milk (NFDM) in 1×TBS with 0.05%
Tween. Anti-FLAG antibody (1:6000, MilliporeSigma, Burlington, MA) was added
for overnight incubation with rotation at 4 °C, followed by incubation with IRDye®

680RD Goat anti-Mouse IgG Secondary Antibody (LI-COR, Lincoln, NE) at
1:10,000 in 5% NFDM with 1xTBST for 1 h at room temperature. Anti-βactin
(1:8000, MilliporeSigma, Burlington, MA) was used as loading control. The blots
were imaged using Chemidoc MP (Biorad, Hercules, CA) and Odyssey (LI-COR
Lincoln, NE), followed by densitometry analysis using ImageStudio (LI-COR
Lincoln, NE). For secreted media blots, protein loading was assessed by Ponceau S
(MilliporeSigma, Burlington, MA). Images were prepared for publication using
BioRender (biorender.com, Toronto, Ontario). Three independent biological
replicates were performed.

Expression analysis of INHBE in lean and obese cynomolgus monkeys. Liver
biopsies were taken from 24 lean cynomolgus monkeys (age 2–4 years, weight
1.9–6.0 kg, male and female) and 13 aged obese monkeys on a high fat diet dis-
playing features of non-alcoholic steatohepatitis (age >8 years, weight >7.0 kg,
male). RNA was extracted from liver tissue by TRIzol-chloroform extraction and
purified with Qiagen RNeasy 96 Universal Tissue Kit. cDNA was generated using
Applied Biosystems High-Capacity cDNA Reverse Transcription Kit. Taqman
probe-based qPCR was used to quantify INHBE mRNA (Mf02820386_g1, Ther-
moFisher) which was normalized to the geometric mean of two housekeeping
genes, ARL6IP4 (Mf02792752_g1, ThermoFisher) and RPS9 (Mf04389309_m1,
ThermoFisher).

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
For the primary analysis in UKB, phenotypic data, exome sequencing and whole genome
sequencing data are accessible through application to UKB with the exception of
proteomics data which is scheduled for release in October 2022. For replication analysis
in AMP-T2D-GENES, details on how to access results from the individual studies can be
found in the original publications29,68–71 and a list of dbGAP/EGA accession numbers is
provided in Supplementary Data 13. Additional data is publicly available through the
T2D Knowledge Portal at https://t2d.hugeamp.org/dinspector.html?dataset=ExSeq_
52kQT. gnOMAD data is available for download at https://gnomad.broadinstitute.org/
downloads. Source data are provided with this paper.
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