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A new approach to broaden 
the range of eye colour identifiable 
by IrisPlex in DNA phenotyping
Ersilia Paparazzo1,7, Anzor Gozalishvili2,3,7, Vincenzo Lagani4,5, Silvana Geracitano1, 
Alessia Bauleo6, Elena Falcone6, Giuseppe Passarino1 & Alberto Montesanto1*

IrisPlex system represents the most popular model for eye colour prediction. Based on six 
polymorphisms this model provides very accurate predictions that strongly depend on the definition 
of eye colour phenotypes. The aim of the present study was to introduce a new approach to improve 
eye colour prediction using the well-validated IrisPlex system. A sample of 238 individuals from 
a Southern Italian population was collected and for each of them a high-resolution image of eye 
was obtained. By quantifying eye colour variation into CIELAB space several clustering algorithms 
were applied for eye colour classification. Predictions with the IrisPlex model were obtained using 
eye colour categories defined by both visual inspection and clustering algorithms. IrisPlex system 
predicted blue and brown eye colour with high accuracy while it was inefficient in the prediction of 
intermediate eye colour. Clustering-based eye colour resulted in a significantly increased accuracy 
of the model especially for brown eyes. Our results confirm the validity of the IrisPlex system for 
forensic purposes. Although the quantitative approach here proposed for eye colour definition slightly 
improves its prediction accuracy, further research is still required to improve the model particularly for 
the intermediate eye colour prediction.

Forensic DNA Phenotyping (FDP) is an emerging field of forensic genetics aimed at prediction of externally vis-
ible characteristics (EVC) of unknown sample donors directly from biological materials found at the crime scene. 
This approach is expected to provide clues helping investigators reduce/prioritize their list of suspects and make 
police investigations more rapid, efficient and less expensive1–3. While forensic genetic research is searching for 
additional phenotypic characteristics for predicting human appearance, those related to the pigmentations (eye, 
skin and hair colour) are today among the ones best characterized and validated4. In this context, eye colour is 
the best investigated phenotype for forensic genetic applications. In fact, a lot of genetic variants have been suc-
cessfully identified in relation with iris pigmentation5–9. Some of these variants constitute the so-called IrisPlex 
system that to date represents the most popular model for eye colour prediction10. This system is based on the 
analysis of six Single Nucleotide Polymorphisms (SNP) located in six different genes: rs12913832 (HERC2), 
rs1800407 (OCA2), rs12896399 (SLC24A4), rs16891982 (SLC45A2), rs1393350 (TYR​) and rs12203592 (IRF4). 
The IrisPlex model is based on a multinomial logistic regression model by which each individual is classified as 
being brown, blue or intermediate10,11. The parameters of such a model were initially estimated using phenotype 
and genotype data from 3804 Dutch individuals. In particular, genetic data are modelled in an additive fashion 
(number of minor alleles in the genotype) and the highest probability of all 3 categories was taken as the predicted 
iris colour of that individual. Using this model, very accurate prediction values were obtained for brown and blue 
eyes, while the prediction of intermediate colour is less precise. There have been several attempts to refine the 
IrisPlex system to improve its predictive value. These were based on both an increased number of analysed genetic 
variants and a different statistical modelling strategy12–14. However, despite these precautions, these alternative 
systems did not obtain the desired effects since recent data showed that the IrisPlex system still was the best 
performing model for eye colour prediction15. Eye colour is usually described qualitatively using subjective and 
visually defined phenotype categories. This discretization approach oversimplifies the quantitative nature of the 
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trait causing an inevitably loss of information2. For this reason, several authors proposed quantitative measure-
ments of iris colour16–19. This strategy not only allowed in the past years the identification of new genetic variants, 
but also the determination of a genetic model able to explain about 50% of quantitative eye colour variation17. 
Anyhow, the introduction of these measurements requires a methodology able to capture eye/hair colour in its 
fully continuous spectrum as accurately as possible2 since current models for eye colour prediction, such as the 
IrisPlex system, are not able to handle this kind of data.

The aim of this present study is to introduce a new quantitative approach for eye colour prediction using the 
well-validated IrisPlex system and high-resolution digital images and genotype data from 238 individuals from 
a Southern Italian population. To this purpose, several alternative iris colour categorizations were evaluated and 
inserted within the frame of the IrisPlex model for improving its classification accuracy.

Results
Table 1 reports the minor allele frequencies for each SNP in the analysed sample together with the p-values of 
test of departure from Hardy–Weinberg equilibrium (HWE). All polymorphisms complied with HWE except 
rs12913832 located within the HERC2 gene.

Eye colour categorization.  The visual inspection produced the following eye colour distribution in the 
analysed sample: 29 blue (3 blue-grey and 26 sky-blue), 55 intermediate (34 chestnut-green and 21 green), and 
154 brown (52 light brown and 102 dark brown).

Eye colour quantification using clustering algorithms.  In order to obtain an objective eye colour 
classification, several clustering algorithms were applied on the CIELAB parameters. Table 2 reports the cluster-
ing solutions with the highest Silhouette index and four different clusters (see Supplementary Table 1 for the full 
list of explored clustering solutions).

We select the best clustering model based on a Pareto-optimal criterion; solutions that were top-ranked in 
either silhouette or adjusted rand index were deemed the optimal ones (see Fig. 1). According to this criterion, 
k-means with both original and normalized data, and SC with normalized data were chosen for subsequent 
analyses.

Alluvial plots (Fig. 2, Supplementary Figs. 1 and 2) show the distribution of the three-category classification 
of the IrisPlex model (blue, intermediate and brown) across a more detailed initial visual classification (sky-
blue, grey-blue, green, chestnut-green, light-brown and dark-brown) and the groups produced by the selected 
clustering algorithms.

We then labelled each cluster according to the prevalence of the colour flows into the cluster itself. For all 
clustering solutions, cluster 1 was labelled as blue, cluster 3 as intermediate and both cluster 0 and 2 as brown. 
In general, all clustering results allowed to distinguish between a light and a dark intermediate colour (cluster 
3 and cluster 0, respectively).

Table 1.   Minor allele frequency (MAF) for each SNP, along with Hardy–Weinberg Equilibrium (HWE) 
p-value.

SNP Alleles MAF HWE

HERC2-rs12913832 A/G 31.3 0.030

OCA2-rs1800407 G/A 4.9 1.000

SLC45A2-rs16891982 G/C 15.4 1.000

TYR-rs1393350 G/A 17.7 1.000

SLC24A4-rs12896399 G/T 26.6 0.423

IRF4-rs12203592 C/T 6.0 0.604

Table 2.   selection of solutions from the clustering analysis. For each solution,the respective clustering 
algorithm, whether the data were normalized or used in the original CIELAB values, the number of clusters, as 
well as the silhouette and adjusted Rand index value are reported. Full list in Supplementary Table 1.

Algorithm Data preprocessing Number of clusters Silhouette value Adjusted rand index

K-means Original 4 0.407 0.332

BIRCH Original 4 0.389 0.315

K-means Normalized 4 0.372 0.381

K-medoids Normalized 4 0.342 0.381

SC Normalized 4 0.309 0.396
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Contrasting IrisPlex predictions against eye‑colour labels obtained by visual inspection and 
clustering analysis.  Table 3 reports the overall accuracy obtained by the IrisPlex model on our cohort, 
according to different levels of thresholding and different eye colour definition. IrisPlex performances generally 
improve with higher threshold values. Most relevantly, it is clearly visible that the overall accuracy increases 
when the eye-colour labels defined by the k-means clustering algorithm are considered, with the original 
CIELAB values (not normalized) giving the best results.

Since the best-performing clustering solution was the k-means on the original (non-normalized) data, all 
subsequent analyses were performed based on eye-colour defined on the basis of such an algorithm.

Figure 1 shows the number of correct, incorrect, and undefined predictions at each threshold value and for 
(a) the eye-colour defined by visual inspection, (b) eye-colour defined through k-means clustering on the origi-
nal (non-normalized) CIELAB values. The histograms indicate that applying a threshold improves the overall 
performance of the model because mostly incorrect predictions are turned into inconclusive ones. In other 
words, low confidence predictions are most likely incorrect, and excluding them from the evaluation increases 
the overall model performance.

In order to investigate this increase in accuracy, Fig. 4 dissects the model predictions according to eye colour 
and classification threshold. The eye-colour classification obtained by the clustering analysis provided perfor-
mances in terms of accuracy higher than those obtained using eye-colour classification by visual inspection. In 
particular, the clustering analysis reclassified as brown a substantial number (29) of samples labelled as intermedi-
ate by the visual inspection, and this reclassification agrees with the IrisPlex which classifies these same samples 
as brown as well. Notably, the clustering analysis operates exclusively on the CIELAB values, while the IrisPlex 
solely analyses the genomic data, thus these two independent sources of information agree on this reclassification.

Regarding the effect of thresholding, it can be observed that increasing the threshold to 0.7 redefined as 
undefined the brown eyes that are incorrectly predicted as blue. Brown eyes became inconclusive by 3.2% (5 out 
of 154) for eye colour defined by visual inspection and 7.1% (13 out of 183) for the clustering-based approach, 
respectively. Blue eyes predicted as brown were reduced by 40% (2 out of 5) for eye colour defined by visual 

Figure 1.   clustering performances. Each point represents a clustering solution, with the x-axis reporting the 
corresponding silhouette score, the y-axis the adjusted Rand index, and the colour indicating whether the 
CIELAB values were normalized. The Pareto front is represented as a grey line connecting the Pareto-optimal 
solutions (k-means solutions as well as SC with original CIELAB values).
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inspection and 66.7% (2 out of 3) for the clustering approach. Intermediate eyes were never predicted as inter-
mediate but incorrect predictions as brown decreased by 26.9% (14 out of 52) for eye-colour defined by visual 
inspection; for eye-colour defined by clustering analysis, applying a 0.7 threshold reduces the number of incorrect 
predictions by 22.2% (8 out of 36 samples becomes undefined).

In Table 4 the classification metrics for each colour category and threshold value are reported, both for the 
eye-colour defined by visual inspection and clustering analysis. It is clearly visible that all the performance metrics 

Figure 2.   Alluvial plot showing sample distributions across different classifications. From left to right: ternary 
classification as used in the IrisPlex system, initial visual classification, and clustering groups as defined by 
k-means applied on the original CIELAB values.

Table 3.   IrisPlex accuracy obtained for different levels of thresholding (rows) and different eye colour 
definition (columns).

Threshold Visual classification K-means (not normalized) K-means (normalized) SC (normalized)

0.7 0.795 0.865 0.851 0.763

0.5 0.765 0.848 0.835 0.730

0 0.744 0.832 0.811 0.706

Table 4.   Detailed performance metrics by eye colour and threshold. Results shown both for eye-colour 
defined through visual inspection and clustering algorithms.

Colour Threshold

Visual inspection eye-colour
Clustering-based eye-colour (k-means on non-
normalized data)

ACC​ Sensitivity Specificity PPV NPV ACC​ Sensitivity Specificity PPV NPV

Blue 0 0.962 0.828 0.981 0.857 0.976 0.937 0.842 0.945 0.571 0.986

Blue 0.5 0.970 0.885 0.980 0.852 0.985 0.948 0.941 0.948 0.593 0.995

Blue 0.7 0.972 0.880 0.984 0.880 0.984 0.953 0.941 0.955 0.640 0.995

Brown 0 0.756 0.994 0.321 0.729 0.964 0.878 0.995 0.491 0.867 0.964

Brown 0.5 0.778 0.994 0.342 0.754 0.963 0.891 0.994 0.520 0.882 0.963

Brown 0.7 0.809 1.000 0.379 0.784 1.000 0.907 1.000 0.556 0.895 1.000

Intermediate 0 0.000 0.000 1.000 0.000 0.769 0.000 0.000 1.000 0.000 0.849

Intermediate 0.5 0.000 0.000 1.000 0.000 0.783 0.000 0.000 1.000 0.000 0.857

Intermediate 0.7 0.000 0.000 1.000 0.000 0.809 0.000 0.000 1.000 0.000 0.870
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were improved by applying a threshold, as shown also in Figs. 3 and 4. Using the eye classification provided by the 
clustering analysis clearly improves the specificity for the brown category, mainly due to reclassification as brown 
of several intermediate samples recognized as brown also by the IrisPlex model. We also observe a decrease in 
the specificity and PPV for the blue colour, due to the reclassification of 8 samples from blue (visual inspection) 
to intermediate and classified as blue by IrisPlex.

The ternary plots in Fig. 5 show the probabilities produced by the IrisPlex system. We highlight the IrisPlex 
model difficulties in separating the intermediate category from brown. Basically, no threshold can well separate 
brown and intermediate examples. Intermediate samples fell in both blue and brown sector almost equally when 
the eye colour was defined through clustering analysis (panel b), while they were mostly concentrated in the 
brown section in the case of the labels defined by visual inspection.

These plots also clearly underline the samples deemed as intermediate by visual inspection that become 
brown according to the clustering analysis (points switching from green to brown in the bottom left corner of 
the panel b) as well as the blue samples (visual inspection) turning into intermediate (clustering analysis) in the 
top corner of the two triangles.

Discussion
In the present study the efficacy of the IrisPlex model for eye colour prediction was analyzed in 238 individuals 
of Italian ancestry to evaluate their possible applicability as a tool of DNA intelligence in forensic investiga-
tions. Our results confirm the previous findings from several different populations showing once again that the 
IrisPlex system predicts blue and brown eye colour with high accuracy while it is inefficient in the prediction of 

Figure 3.   IrisPlex results. Each panel shows the number of correct, incorrect and undefined predictions at 
each threshold value. Particularly, panel (a) shows the results obtained with the eye-colour defined by visual 
inspection, and panel (b) with the eye-colour defined through k-means clustering on the original (non-
normalized) CIELAB values.
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intermediate eye colour20–25. Indeed, the accuracy values for blue and brown eye colour categories in our sample 
were very high and equal to 0.972 and 0.809, respectively, while no one intermediate eye colour was correctly 
predicted as previously reported in another Italian sample15.

Here, we quantified continuous eye colour variation into CIELAB colour space using high-resolution digi-
tal full-eye photographs following the procedure reported in Edwars19. Clustering algorithms applied on the 
CIELAB parameters allowed us to obtain a standardized and objective measurement of eye colour, as well as, a 
better and more precise definition of the phenotype under study. Slightly improved results were obtained when 
this clustering-based approach was used for eye colour classification. In particular, using several clustering algo-
rithms applied on quantitative measurements of iris colour, we obtained an improved classification performance 
especially for the clustering-based brown category.

The clustering-based approach here proposed, likewise other similar quantitative approaches for eye colour 
definition, may also be exploited as a standardized and objective measurement of eye colour useful also because 
it makes possible to directly compare results from different studies. In fact, one of the most important limita-
tions affecting the development of a genetic model for   eye colour prediction is the definition of the phenotype. 
Subjective interpretations of eye colour, by oversimplifying the quantitative nature of the trait and causing an 
inevitably loss of information, makes it difficult to compare and validate the results obtained in different popula-
tions and this also affects the classification performance of the adopted model.

There have been several attempts to refine the IrisPlex system to improve its predictive value mainly focused 
on the increase in the number of genetic variants12–14. This approach did not obtain the desired effects since the 
IrisPlex system still represents the best performing model for eye colour prediction. Within this context, another 
very promising approach seems to be the inclusion of epigenetic markers. In fact, several authors observed that 
the hect domain and RCC1-like domain 2 (HERC2) rs12913832 variation, the marker of the IrisPlex system with 
the highest discrimination power, is located in an enhancer element that regulates the expression of OCA2 gene7. 
In addition, it was also shown that OCA2 expression was reduced in lightly pigmented melanocytes with the 

Figure 4.   IrisPlex results dissected by eye-colour and threshold. Each panel shows blue, brown and 
intermediate eyes are classified. Panel (a) shows the results obtained with the eye-colour defined by visual 
inspection, and panel (b) with the eye-colour defined through k-means clustering on the original (non-
normalized) CIELAB values.
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rs12913832-G variant with respect to darkly pigmented melanocytes with the A allele7,26. In agreement with this 
observation, the inclusion of epigenetic markers in the IrisPlex model might be useful to improve its prediction 
accuracy and in particular for the non-blue and non-brown eye colours.

The aim of this work was to test the predictive capabilities of the IrisPlex system, using eye colour definitions 
based both on visual inspection and on quantitative approach (clustering). Consequently, we based our attention 
to the clustering solutions in which three or more groups were identified, discarding clustering solutions identify-
ing only two eye colours, since testing the IrisPlex predictions on these solutions would have been problematic. 
However, an interesting study carried out by Meyer et al. clearly showed that the perception of intermediate eye 
colour varies greatly among individuals, and this represents the main reason why using only two categories of eye 
colour (blue and brown) provides better results than a three-category system (blue, intermediate, and brown)23. In 
line with these results, the Section of Forensic Genetics in Denmark recently began offering eye colour prediction 
to the police using two categories of eye colour (blue and brown) through the analysis of rs12913832 variability. 
All these lines of evidence, together with our results, suggest that the current definition of eye colour based on 
visual inspection should either be re-defined on the basis of more quantitative criteria or should be dropped all 
together in favour or a two-colour definition.Although the quantitative approach here proposed for eye colour 
definition improves the prediction accuracy of IrisPlex system, further research is still required to improve the 
model performance particularly for the non-blue and non-brown eye colour prediction.

Figure 5.   Ternary plots representing, for all samples (dots), the probabilities provided by the IrisPlex system. 
Panel (a) shows the results obtained with the eye-colour defined by visual inspection, and panel (b) with the 
eye-colour defined through k-means clustering on the original (non-normalized) CIELAB values.
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Methods
Sample.  The present study was carried out at the Department Biology, Ecology and Earth Sciences of the 
University of Calabria within a recruitment campaign focused on students and staff of the University between 
November 2018 and October 2019. 238 individuals (72 men and 166 women) were recruited. Trained staff 
members administered a brief and standardized questionnaire in order to obtain information regarding the 
socio-demographic data. During the interview, eye images using a professional camera were obtained and buccal 
swabs were collected as source of DNA. Written informed consent was obtained from all recruited individuals. 
The study was approved by the Ethics Committee of University of Calabria (Prot. NP-5942018) and met the 
criteria of the Helsinki declaration.

Digital photographs.  Photographs were taken at a distance of approximately 10 cm of each individual’s 
left iris under similar light conditions with a Nikon P300 with 100 mm f/1.8 NIKKOR Optical Zoom Lens, ISO 
800. A coaxial biometric illuminator was used to deliver a constant and uniform source of light to each iris at 
5,500 K (D55 illuminant).

Classification of eye colour by visual inspection of digital photographs.  Iris colour was classified 
qualitatively by human visual identification as already described in other studies15,20,21,25. Briefly, each eye image 
was graded independently by 2 different observers who classified eye colours into four categories: blue (includ-
ing blue-grey and sky-blue), green (including green, and green with brown iris ring), chestnut-green (including 
peripheral green central brown, brown with some peripheral green) and brown (including light brown and dark 
brown). In order to keep the three-category classification of the IrisPlex model and to ensure consistency across 
studies, we mapped green and chestnut-green categories to intermediate category. Note that these two categories 
correspond to light intermediate and dark intermediate classes described in other studies15,22,25. A third observer 
was consulted to resolve inconsistencies through majority-voting and to assess the final eye colour of each vol-
unteer. Overall, 91% (217/238) of the classifications showed complete agreement between the 2 observers. Of the 
21 remaining discrepancies, 18 were between light brown and chestnut-green, finally classified 17 as light brown, 
one as chestnut-green; the remaining discrepancy was between sky-blue and green, finally classified as green.

Quantitative eye colour.  Image processing was based on the procedure reported in Edwards and col-
leagues using the dedicated webtool19. In brief, after the scleral, pupillary and collarette boundaries are defined, 
the application automatically extracts a measurement of average eye colour starting from a 60° angle wedge 
taken from the left side of the iris. The web application also isolates the portion of the wedge that represents the 
ciliary zone and the portion of the wedge that represents the pupillary zone. At the end of this procedure, for 
each iris image, the average RGB value of the entire wedge, the ciliary and the pupillary zones are obtained. The 
obtained RGB values are then converted into in CIE 1976 L*a*b* (CIELAB) colour space. In this colour space, 
the L* coordinate represents the lightness dimension and ranges from 0 to 100, with 0 being black and 100 being 
white. The red/green colours are represented along the a* coordinate, with green at negative a* values and red 
at positive a* values. The yellow/blue colours are represented along the b* coordinate, with blue at negative b* 
values and yellow at positive b* values.

Although several automated methods have been developed to facilitate the isolation of the iris from pho-
tographs of the eye17,18,25, the method here adopted as reported in Edwards et al19, appears to be superior as it 
allows to manually define the boundaries of the iris and to separate the eye into different regions. Since the left 
quadrant of the iris was least likely to be obstructed by eyelashes and eyelids, it would bias the colour of the iris 
towards the pupillary region, we selected a wedge to represent iris colour instead of the entire iris.

Classification of eye colour using an unsupervised machine learning approach.  In order to 
make eye colour categorization process more objective, a cluster analysis approach based on the coordinates 
in CIELAB space was carried out. To this purpose, several clustering algorithms were experimented, including 
Affinity Propagation (AP)27, Balanced Iterative Reducing and Clustering using Hierarchies (BIRCH)28, Density-
Based Spatial Clustering of Applications with Noise (DBSCAN)29, hierarchical clustering (hclust)30, k-means31, 
k-medoids32, k-modes33, mean-shift34, Ordering Points To Identify the Clustering Structure (OPTICS)35, and 
Spectral Clustering (SC)36. The settings adopted for each of the algorithms is indicated in Supplementary Table 1. 
Each clustering algorithm was applied on the original CIELAB values as well as on normalized values. The 
Euclidean distance was used in conjunction with all the methods requiring a distance metric. Preliminary anal-
yses with a distance metric specifically designed for the CIELAB space, namely the CIEDE200037, produced 
results comparable with the ones obtained with the Euclidian distance. Thus, we decided to only use the latter, 
simpler metric rather than CIEDE2000. The optimal clustering solution was chosen according to the silhou-
ette criterion38, while the agreement of each clustering solution with the categorization obtained through visual 
inspection was assessed through the adjusted rand index39. It should be noticed that among the clustering solu-
tions identified by cluster analysis, since the IrisPlex model was developed for the prediction of three eye colour 
categories, we evaluated only the solutions providing at least three groups. In particular, solutions with four 
groups were taken into account only because we condensed two clusters in a single intermediate category.

Genetic markers.  Genetic profiling was carried out on the DNA extracted from buccal swab samples by 
analysing the genetic polymorphisms included in the IrisPlex10. Genotyping was performed using TaqMan 
genotyping assays following manufacture’s instruction and 10 ng of DNA mixed with the TaqMan Genotyping 
Master Mix (Thermo Fisher Scientific).
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The IrisPlex model.  From a statistical point of view the IrisPlex system exploits a multinomial logistic 
regression model by which each individual is classified as being brown, blue or intermediate based on the three 
obtained prediction probabilities10. The parameters of such a model were estimated using phenotype and geno-
type data modeled in an additive fashion (number of minor alleles in the genotype). Prediction with the Iris-
Plex model were obtained using the dedicated webtool (https://​hiris​plex.​erasm​usmc.​nl/). As suggested by the 
authors, the predicted colour was the one with a probability higher than the threshold of 0.7. Individuals with 
all the colour probabilities under 0.7 were marked as “undefined”. Additionally, we also applied a threshold of 
0.5. When no threshold was applied, the predictions were assigned to the colour with the absolute highest prob-
ability. In this last case, individuals that obtained equal probabilities for multiple (two or three) colour categories 
were classified as intermediate.

Data availability
The dataset generated during and/or analysed during the current study are not publicly available due to ethical 
concerns but is available from the corresponding author on reasonable request.
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