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Abstract

Nearly one billion people worldwide suffer from obsessive-compulsive behaviors1,2, yet 

our mechanistic understanding of these behaviors is incomplete, and effective therapeutics 

are unavailable. An emerging perspective characterizes obsessive-compulsive behaviors 

as maladaptive habit learning3,4, which may be associated with abnormal beta-gamma 

neurophysiology of the orbitofrontal-striatal circuitry during reward processing5,6. We target the 

orbitofrontal cortex with alternating current, personalized to the intrinsic beta-gamma frequency 

of the reward network, and show rapid, reversible, frequency-specific modulation of reward- but 

not punishment-guided choice behavior and learning, driven by increased exploration in the setting 

of an actor-critic architecture. Next, we demonstrate that chronic application of the procedure 

over 5 days robustly attenuates obsessive-compulsive behavior in a non-clinical population for 

3 months, with the largest benefits for individuals with more severe symptoms. Finally, we 

show that convergent mechanisms underlie modulation of reward learning and reduction of 

obsessive-compulsive symptoms. The results contribute to neurophysiological theories of reward, 

learning and obsessive-compulsive behavior, suggest a unifying functional role of rhythms in the 

beta-gamma range, and set the groundwork for the development of personalized circuit-based 

therapeutics for related disorders.
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Obsessive-compulsive behaviors are highly prevalent in the general population and cause 

significant distress to the individual1,2. Due to their presence in multiple psychiatric 

conditions, such as obsessive-compulsive disorder (OCD), these behaviors are increasingly 

identified as a core dimension for psychiatric classification7. Existing treatments for the 

heterogenous obsessive-compulsive symptoms produce disappointing outcomes and are 

accompanied by side effects that weaken compliance8,9. With non-invasive neuromodulation 

(for example, transcranial alternating current stimulation, tACS), interventions can be 

personalized according to individual neurophysiological dynamics10. Such personalized 

interventions have been proposed to improve treatment outcomes for obsessive-compulsive 

behaviors11.

Obsessive-compulsive behaviors are considered outcomes of maladaptive habit learning 

due to abnormalities in a frontostriatal network engaged in repetitive execution of 

learned behaviors3,4. Previous studies have associated these behaviors with excessive habit 

learning as a function of reward during reinforcement learning12, along with abnormal 

connectivity between the medial orbitofrontal cortex (OFC) and the ventral striatum3,4,12–14. 

Interestingly, a parallel line of work has proposed functionally relevant oscillatory activity 

in the same network during reward learning. Novel, unexpected or improbable reward, but 

not punishment, feedback elicits enhanced activity in the high beta-low gamma frequency 

range over frontal sites in human magneto- and electroencephalography (MEG/EEG, 20–35 

Hz; Fig. 1)5,6,15,16. This effect is thought to be a motivational value signal originating from 

the OFC5,6 that is transmitted to the ventral striatum to link preceding stimulus-response 

mapping to consequent rewards5,17. Modulation of these rhythms in the OFC during 

reward processing might influence the learning mechanisms facilitating transition to habitual 

behavior, thereby normalizing obsessive-compulsive behaviors.

Across two experiments, we used personalized, non-invasive, high-definition tACS (HD-

tACS) to establish the functional contribution of OFC beta-gamma rhythms in reward 

learning and examined its potential in normalizing obsessive-compulsive behaviors. First 

(experiment 1), we sought to causally demonstrate that beta-gamma neuromodulation 

selectively influences reward-but not punishment-guided learning. We determined the 

intrinsic reward-related beta-gamma frequency of participants performing a reinforcement 

learning task and used HD-tACS to modulate these rhythms in the OFC during the task. 

Additionally, given that beta and gamma rhythms are proposed to map rewards with 

preceding events5,17, they may facilitate transition to habitual behavior, which can be 

reflected in exploitative decision-making18. However, reward-related beta-gamma activity 

has also been associated with low tonic prefrontal dopamine19, which is further associated 

with exploratory decision-making20. We used reinforcement learning models to study 

these candidate computational mechanisms during beta-gamma neuromodulation. Second 

(experiment 2), we examined the impact of chronic beta-gamma OFC modulation over 

5 days on obsessive-compulsive characteristics in a non-clinical population. Similar to 

experiment 1, personalized neuromodulation frequencies were determined during a previous 

session while participants performed the reinforcement learning task. Obsessive-compulsive 

behaviors were examined over a period of 3 months. Finally, to identify common underlying 

mechanisms, we examined how neuromodulation-induced changes in reward learning and 
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in obsessive-compulsive symptoms across both experiments are associated with intrinsic 

beta-gamma dynamics.

To examine the functional role of beta-gamma rhythms in reward learning, we used 

a between-participants, double-blind, double-sham-controlled design in experiment 1 

involving a monetary reinforcement learning task21 (Fig. 2a). Sixty participants were 

randomly assigned to either the passive sham, active control (alpha, 10 Hz) or personalized 

beta-gamma (mean, 26.6 Hz ± 3.3 s.d.) modulation group. Personalized beta-gamma 

frequencies were determined through a pre-experiment EEG recording while participants 

learned to associate stimuli with monetary rewards and losses. Electrical field modeling was 

used to target the medial OFC (Fig. 2b). All participants performed a 30 min block of the 

task before, during and after modulation, and their choice behavior during each period was 

analyzed separately for reward and punishment trials.

Optimal choice behavior showed a significant interaction effect of the modulation group 

(sham, alpha, beta-gamma), valence (reward, punishment), and time (pre-modulation, 

modulation, post-modulation) (Fig. 3). Differences in choice behavior were observed 

when comparing beta-gamma with sham, and beta-gamma with alpha, but not when 

comparing alpha with sham, which suggests that beta-gamma modulation alone changed 

behavior. Comparing optimal choice behavior across groups during the modulation period, 

we found significantly impaired behavior during reward trials in the beta-gamma group. 

No differences across groups were observed for punishment trial behavior. In the beta-

gamma group, choice behavior during reward trials was significantly impaired during 

the modulation period relative to the pre-modulation period but recovered in the post-

modulation period, which suggests that the effects were acutely sensitive to concurrent 

beta-gamma HD-tACS (Fig. 3c). No differences were observed in punishment trial behavior 

over time. Control analyses in the alpha and sham groups did not show any differences 

over time in reward or punishment trials (all P > 0.468, all n = 20). The three groups 

did not differ in the pre-modulation performance for reward (all P > 0.369, all n = 40) or 

punishment trials (all P > 0.604, all n = 40); this rules out potential between-participant 

confounding effects related to performance fluctuations at baseline. Together, these results 

demonstrate that frequency-personalized, beta-gamma OFC neuromodulation can exert a 

strong, valence-specific influence on choice behavior during reward learning in a rapid and 

reversible manner.

Next, we used reinforcement learning models to identify the computational mechanisms 

affected by beta-gamma neuromodulation during reward learning. We fitted these models 

to each participant’s choice behavior during reward trials. We used four models: a standard 

Q-learning algorithm (StandardQ)22; a standard Q-learning algorithm with a free parameter 

allowing differential weighting of positive and negative outcomes (WeightedQ)23; an actor-

critic algorithm (Actor-Critic)22,23; and a hybrid model incorporating both Q-learning and 

actor-critic learning (Hybrid)23,24. The Actor-Critic model had the best fit or least amount 

of information loss, as indicated by the lowest Akaike information criterion pooled across 

participants and conditions (StandardQ, 34,435.68; WeightedQ, 32,703.25; Actor-Critic, 

28,817.58; Hybrid, 31,126.38). Repeated measures analysis of variance (ANOVA) of the 

Actor-Critic model parameters for the within-participants factor of time (pre-modulation, 
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modulation, post-modulation) and the between-participants factor of group (sham, alpha, 

beta-gamma) showed a significant interaction effect on mean temperature (β) (Extended 

Data Fig. 1). Follow-up ANOVAs showed a significant time × group interaction for 

beta-gamma compared with alpha, and for beta-gamma compared with sham, but not for 

alpha compared with sham. These interactions were driven by an increase in temperature 

during the modulation period, which rapidly recovered once neuromodulation was switched 

off, thus mirroring the effects of beta-gamma HD-tACS on reward choice behavior (Fig. 

3). No other model parameters showed significant effects. To summarize, beta-gamma 

OFC neuromodulation acutely impaired reward-guided choice behavior by increasing an 

exploratory tendency, perhaps through the addition of decision noise or indeterminacy to the 

neural computations involved in choice.

After establishing that beta-gamma OFC HD-tACS modulates reward learning, we examined 

its effects on obsessive-compulsive behaviors. In experiment 2, we used a between-

participants, double-blind, active-sham-controlled design. A non-clinical group of 64 

participants with obsessive-compulsive symptoms in the subclinical and clinical range was 

studied. For each participant, we determined the endogenous reward-sensitive beta-gamma 

peak frequency using an abbreviated version of the learning task with concurrent EEG. 

Participants were assigned to either the personalized beta-gamma group (mean 27.1 Hz ± 

3.6 s.d.) or the active control group undergoing alpha (10 Hz) modulation (that is, active 

control/alpha). HD-tACS, targeted at the medial OFC, was applied for 30 min each day 

for 5 consecutive days. We quantified obsessive-compulsive behaviors using the Obsessive-

Compulsive Inventory-Revised (OCI-R)25, the most commonly used self-report scale in 

OCD research26,27. The baseline measurement was taken prior to HD-tACS on the first day. 

Follow-up measurements were taken on the fifth day (the last day of HD-tACS), and at 1 

month, 2 months and 3 months after the last day of HD-tACS.

Beta-gamma modulation induced a robust and long-lasting improvement in obsessive-

compulsive behaviors. A significant group × time interaction was observed in the 

OCI-R total score. In the beta-gamma group (n = 32), Bonferroni-corrected pairwise 

comparisons showed significant OCI-R reductions between pre-modulation baseline and 

all post-modulation periods (Fig. 4a, left panel): on the last intervention day (P = 0.042), 

and at the post-intervention timepoints of 1 month (P = 0.013), 2 months (P = 0.002) and 

3 months (P = 0.003). On average, the OCI-R total score reduced by nearly 28% over 

3 months. No significant changes in the OCI-R score were observed in the alpha group. 

Thus, beta-gamma neuromodulation induced frequency-specific improvements in obsessive-

compulsive symptoms that could not be attributed to stimulation artifacts.

beta-gamma modulation selectively improved several OCI-R subscales related to 

compulsivity (Fig. 4a, right panels). There were significant group × time interactions for 

hoarding, ordering and obsessing behaviors. Within the beta-gamma group, main effects 

of time were observed for hoarding, checking, ordering and washing behaviors. Follow-

up Bonferroni-corrected pairwise comparisons in the beta-gamma group revealed rapid 

reductions in the OCI-R hoarding and ordering subscales by the last day of intervention. 

These reductions were sustained, to the post-intervention timepoint of 3 months. Of note, 

significant reductions were also observed in checking for up to 2 months. The alpha group 
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showed no main effects of time and no pairwise differences at any timepoint relative to 

baseline. Pearson correlations between all time intervals in the alpha group showed good to 

excellent reliability for total and subscale scores (0.526 to 0.947, respectively; all P < 0.002, 

all n = 32), consistent with previous test-retest reliability studies of OCI-R in clinical and 

subclinical OCD populations25,28.

Participants with higher OCI-R scores at baseline showed greater reductions in obsessive-

compulsive behaviors after beta-gamma modulation. We performed participant-wise 

correlations in the beta-gamma group between the total OCI-R score at baseline and 

the change in this score at each post-modulation timepoint. After correcting for multiple 

comparisons, significant correlations were found at each timepoint; this indicates that 

individuals with higher baseline ratings had the largest HD-tACS improvements (Fig. 4b). 

Conversely, individuals with relatively low OCI-R scores at baseline had no change or had 

slightly increased symptoms after repeated beta-gamma modulation. However, the number 

of low-scoring participants was a clear minority (6 of 32). The overwhelming majority 

of participants (26 of 32) had modulation-induced improvements, especially those who 

reported more severe obsessive-compulsive behaviors.

In addition to the total OCI-R score, subscale scores at baseline also predicted modulation-

induced improvements at various timepoints. Significant correlations that survived P value 

correction for multiple comparisons (P < 0.0008) and were present for at least three out of 

four post-modulation timepoints were observed for hoarding (all r32 > 0.638, all P < 8.7 

× 10−5, all n = 32), checking (all r32 > 0.628, all P < 1.2 × 10−4, all n = 32), ordering 

(all r32 > 0.590, all P < 3.8 × 10−4, all n = 32) and washing (all r32 > 0.590, all P < 3.8 

× 10−4, all n = 32). By contrast, analyses of the same relationships for total OCI-R (all 

r32 < 0.237, all P > 0.192, all n = 32) and subscales (all r32 < 0.554, all P > 0.001, all 

n = 32) in the active control/alpha group did not reach significance at the corrected alpha 

level and the large majority of correlations from the control group were not significant even 

at an alpha level of P < 0.05 (23 out of 28, all r32 < 0.336, all P > 0.06, all n = 32), 

thus confirming the improvements to be frequency specific in the beta-gamma range. The 

intervention was seen to be most effective for non-clinical individuals with more severe 

compulsivity characteristics.

Across the two experiments, we observed impairments in reward learning and reduction 

in obsessive-compulsive symptoms due to beta-gamma OFC modulation. Next, we devised 

a series of complementary analyses across both experiments to confirm that changes in 

reward learning and obsessive-compulsive behaviors were related to each other and similarly 

associated with OFC beta-gamma neurophysiology. If obsessive-compulsive behaviors arise 

from maladaptive habit learning, then individuals with more severe obsessive-compulsive 

characteristics should have higher optimal choice behavior during reward trials. To test this 

prediction, we divided participants in experiment 2 into two groups based on their baseline 

OCI-R score (low versus high), collapsed across neuromodulation groups, and analyzed their 

reward choice behavior during the abbreviated, pre-experiment reinforcement learning task. 

The group with high OCI-R scores had significantly higher behavioral accuracy (mean ± 

s.e.m., 0.91 ± 0.02, n = 34) than the low OCI-R group (0.83 ± 0.02, n = 30; F1,62 = 6.759, 

P = 0.012, ηp2 = 0.098, n = 64). Participant-wise regression analysis revealed that individuals 
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with high reward choice behavior were also those with high OCI-R scores (r64 = 0.494, P = 

3.4 × 10−5, n = 64). Thus, high symptom severity was associated with better learning from 

rewards, consistent with previous work linking compulsivity and excessive reward-based 

habit learning12.

Next, we examined the relationship between reward choice behavior and the change in 

the intrinsic beta-gamma power in response to rewarding feedback relative to punishing 

feedback. We computed the beta-gamma effect during the pre-experiment EEG in 

experiment 1 and correlated it with the choice behavior during the pre-modulation periods. 

A significant participant-wise negative correlation (r60 = −0.467, P = 1.7 × 10−4, n = 60) 

was observed, which suggests that individuals who exhibited a smaller beta-gamma effect in 

response to rewarding feedback consistently made better choices during reward trials.

Optimal reward choice behavior was associated with a smaller beta-gamma effect (in 

experiment 1) and higher obsessive-compulsive symptom severity (in experiment 2). This 

implies that individuals with higher OCI-R scores should show a smaller beta-gamma effect 

in their pre-experiment EEG. We compared the beta-gamma effect between individuals with 

high and low OCI-R total scores at baseline. An ANOVA using the within-participants 

factor of valence (reward versus punishment) and the between-participants factor of OCI-R 

score (high versus low) indicated a significant valence × OCI-R interaction (F1,62 = 9.462, 

P = 0.003, ηp2 = 0.132, n = 64). By parsing the interaction, we observed that the high I 

OCI-R group exhibited no beta-gamma effect, in agreement with our prediction, given that 

power values relative to baseline on reward trials (mean ± s.e.m., 0.013 ± 0.010 dB) and on 

punishment trials (0.0003 ± 0.008 dB) did not significantly differ (F1,33 = 0.954, P = 0.336, 

ηp2 = 0.028, n = 34). By contrast, individuals who scored relatively low on the OCI-R scale 

showed a significant beta-gamma I effect (F1,29 = 20.712, P = 8.8 × 10−5, ηp2 = 0.417, n 

= 30) due to a large increase in beta-gamma power on reward trials (0.074 I ± 0.011 dB) 

relative to punishment trials (0.008 ± 0.013 dB). Critically, these observations suggest that 

both obsessive-compulsive behaviors and reward-guided choice behavior during learning are 

similarly associated with rhythms in the beta-gamma range.

As previously discussed, modulation gains were stronger for individuals with more 

severe obsessive-compulsive characteristics (Fig. 4b). Given that obsessive-compulsive 

characteristics were associated with better choice performance in reward trials, individuals 

with more optimal reward choice behavior at baseline should experience stronger 

impairments during beta-gamma neuromodulation. Indeed, a significant negative correlation 

was observed between reward choice behavior during the pre-modulation and modulation 

periods across participants in the beta-gamma group in experiment 1 (r20 = −0.578, P 
= 0.008, n = 20). Together, these results establish parallel effects of neuromodulation 

in both experiments and suggest that convergent mechanisms underlie the regulation of 

reward-guided choice behavior and obsessive-compulsive behaviors through beta-gamma 

neuromodulation.

Activity in the beta-gamma range is considered a key mechanism for coupling frontostriatal 

areas during reward learning5. These rhythms are thought to transmit motivational value 
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signals within the reward network to assist learning (Fig. 1)5,17. In light of these theories, 

it might seem surprising that modulation of these rhythms in the OFC in the current study 

caused impairments, and not enhancements, in optimal choice behavior. A facilitatory role 

of beta-gamma rhythms in learning may still emerge if both OFC and ventral striatum 

are simultaneously modulated. For synchronized circuits, neuromodulation of a single 

node in the circuit may not be sufficient to provide additional benefits10. Development of 

temporal interference-based subcortical neuromodulation29 for human studies, paired with 

OFC modulation using HD-tACS may be key to empirically test this possibility. Another 

possibility is that neuromodulation may have saturated the intrinsic beta-gamma activity 

in the OFC, which would leave little room for reward-induced modulations for behavioral 

adaptation. Although more work is needed to test these hypotheses, our observations of 

impaired choice behavior align with another perspective that takes into account the role of 

dopamine circuitry in the prefrontal cortex. Specifically, reward-related beta-gamma activity 

is stronger in individuals with reduced tonic prefrontal dopamine19. Furthermore, reduction 

in OFC dopamine levels is associated with increased exploratory behavior20. Examination 

of choice behavior through reinforcement learning models supports this perspective. Using 

the actor-critic framework, an increase was detected in exploration during decision-making 

while participants underwent beta-gamma neuromodulation. It is possible that beta-gamma 

neuromodulation increased local beta-gamma activity and reduced dopamine levels in the 

OFC to increase exploratory behavior. These modulations may be accompanied by changes 

in the frontostriatal connectivity and striatal dopamine levels20. The increase in exploration 

could also be due to added noise in maintaining or transmitting the identity information 

of the rewarding stimuli30, or due to downstream effects in a broader network that 

controls exploratory behavior such as the locus coeruleus31,32 or the motor cortex33. Future 

neuromodulation studies carried out concurrently with electrophysiology and neuroimaging 

will be needed to examine these neural processes that are potentially influenced by beta-

gamma modulation during reward-guided choice behavior.

Compulsive behaviors are characterized as outcomes of dysfunctional habit learning4,12. In 

support of these theories, we observed greater severity of compulsive behaviors associated 

with more exploitative reward choice behavior. Chronic administration of HD-tACS over 

the medial OFC personalized to the intrinsic beta-gamma frequencies of the reward network 

decreased compulsive behaviors for at least 3 months. Together with prior evidence of 

an association of obsessive-compulsive behavior with habit learning4,12, these observations 

suggest that OFC neuromodulation may have improved obsessive-compulsive symptoms 

by promoting exploratory behavior. Indeed, reduced exploration during reward choice 

behavior has been observed in some pathologies of compulsivity such as alcohol use 

disorder34, and in animal models of compulsive behavior35. It is plausible that chronic 

OFC neuromodulation recovered the dysfunctional frontostriatal connectivity associated 

with compulsivity characteristics4, and may have affected the striatum, which also exhibits 

beta frequency activity during habitual behavior36. These predictions can be better examined 

through concurrent neuromodulation and neuroimaging. At present, our results provide 

causal evidence for the involvement of the OFC in obsessive-compulsive behaviors in 

humans, and the frequency-specific effects of neuromodulation provide a mechanistic 

insight into the neurophysiology that can be targeted for symptom improvement. The 
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personalized neuromodulation design leverages the neuroplastic properties of the brain to 

produce long-lasting effects via chronic HD-tACS administration37. Although we examined 

a subclinical population in the present study, the benefits observed provide motivation 

for further investigation of personalized neuromodulation as an experimental medicine 

for clinical obsessive-compulsive spectrum disorders and other conditions of frontostriatal 

dysfunction.

Online content

Any methods, additional references, Nature Research reporting summaries, source data, 

extended data, supplementary information, acknowledgements, peer review information; 

details of author contributions and competing interests; and statements of data and code 

availability are available at https://doi.org/10.1038/s41591–020-01173-w.

Methods

Participants.

A total of 128 participants (60 in experiment 1, 68 in experiment 2) signed informed consent 

forms, approved by the Boston University Institutional Review Board, and were paid. For 

experiment 1, data on all 60 participants recruited were analyzed (sham, n = 20, mean age, 

26.6 years ± 5.8 s.d., 10 female, all right-handed; alpha, n = 20, mean age, 25.8 years ± 5.6 

s.d., 10 female, all right-handed; beta-gamma, n = 20, mean age, 25.1 years ± 6.2 s.d., 11 

female, all right-handed; two-tailed independent samples t-tests showed no between-group 

age differences, all t38 < 0.790, all P > 0.435, all n = 40). For experiment 2, we sought a 

sample that reflected a wide range of scores on the OCI-R for correlational analysis and 

to determine the impact of the beta-gamma intervention on people with varying levels of 

obsessive-compulsive behavior severity. This approach was motivated by conceptualizations 

in dimensional psychiatry that emerged as Research Domain Criteria (RDoC)40 and align 

with transdiagnostic perspectives of obsessive-compulsive spectrum disorders7. To this end, 

we sought a relatively equal distribution of low and high OCI-R scores across the spectrum, 

similar to previous research methods41. Thirty-four participants with relatively low OCI-R 

scores (0–17) and another 34 participants with relatively high OCI-R scores (≥18) were 

recruited. Four participants were lost to attrition due to multiple testing sessions. The final 

group of 64 participants consisted of 30 people with low scores (active control/alpha, n = 

15, mean age 23.9 years ± 4.0 s.d., 8 female, all right-handed; beta-gamma, n = 15, 25.3 

years ± 3.8 s.d., 8 female, all right-handed; two-tailed independent samples t-test for age, t28 

= 1.026, P = 0.314, n = 30), and 34 people with high scores (active control/alpha, n = 17, 

23.4 years ± 4.0 s.d., 9 female, all right-handed; beta-gamma, n = 17, 23.0 years ± 3.7 s.d., 

9 female, all right-handed; two-tailed independent samples t-test on age, t32 = 0.327, P = 

0.745, n = 34). Independent samples two-tailed t-tests showed no significant age differences 

between active control and beta-gamma modulation groups (t62 = 0.491, P = 0.625, n = 64). 

Of the 34 participants with high scores, 28 (active control/alpha, n = 14; beta-gamma, n = 

14) scored higher than 20, which indicates the likely presence of OCD25.

All participants reported no metal implants in head, no implanted electronic devices, no 

history of neurological problems or head injury, no skin sensitivity, no claustrophobia, not 
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being pregnant, no history of an Axis I psychiatric disorder, no current use of psychoactive 

medication, no substance abuse or dependence in the past 6 months, normal color vision, 

normal or corrected-to-normal visual acuity, and not being enrolled in any other research or 

treatment study for the duration of their study participation.

Stimuli and procedures.

Overview.—Experiment 1 was a randomized, between-participants, double-blind study 

using passive and active control procedures and pre-post within-participants measurements. 

Sixty participants were randomly assigned to either the passive sham, the active control 

(alpha, 10 Hz) or the personalized beta-gamma (mean, 26.6 Hz ± 3.3 s.d.) experimental 

group (20 participants each), with the use of a covariate adaptive randomization method to 

produce equal-sized groups balanced by sex and age42. All procedures for each experimental 

group were identical, with the exception of the HD-tACS protocol (passive sham, active 

control/alpha or personalized beta-gamma; Fig. 2). In addition to a passive sham control (the 

gold standard in the field of non-invasive neuromodulation) we instituted an active control 

procedure using alpha-rate HD-tACS to minimize potential confounding effects related to 

peripheral co-stimulation and to test for frequency specificity of HD-tACS effects10,43. 

For each experimental group, the duration of task performance was 90 min, and this 

consisted of three consecutive periods (pre-modulation, modulation, post-modulation; 30 

min each) during which participants performed a classic monetary reinforcement learning 

task (Fig. 2a). The additional pre-post, within-participants measurements increased the rigor 

and reproducibility of the study. The pre-modulation period offered an additional baseline 

period from which to compare the effects of each intervention within groups, and provided 

the opportunity to evaluate the stability of the baseline data collected across groups. The 

post-modulation period enabled pre-post comparisons, evaluation of practice effects, and the 

duration of modulation effects to be examined. Behavioral data were analyzed before, during 

and after the 30 min application of HD-tACS in each experimental group (sham, alpha, 

beta-gamma).

Experiment 2 was a randomized, between-participants, double-blind study using an active 

control procedure (alpha-rate HD-tACS) and pre-post, within-participants measurements. 

Sixty-four participants were randomly assigned to either the active control (alpha, 10 Hz) or 

personalized beta-gamma (mean, 27.1 Hz ± 3.6 s.d.) experimental group (32 participants 

each) using a covariate adaptive randomization method to produce equal-sized groups 

balanced by sex, age and OCI-R score42. The procedures across experimental groups 

were identical, with the exception of modulation frequency (10 Hz versus personalized 

~27 Hz; Fig. 2). In addition to the use of electrical field modeling and HD-tACS to 

help to focalize the stimulated area and minimize unwanted peripheral co-stimulation44–46, 

we also instituted an active control procedure that matched the personalized beta-gamma 

intervention in terms of estimated effects on extra-cranial tissue, shunting and peripheral co-

stimulation10,43. All participants completed a baseline pre-modulation OCI-R assessment, 

followed by 5 consecutive days of alpha or beta-gamma HD-tACS (30 min each day). 

On the fifth day, after neuromodulation, participants completed a post-modulation OCI-R 

assessment, followed by three longer-term post-modulation OCI-R assessments at 1 month, 

2 months and 3 months after the last day (that is, day 5) of the intervention. OCI-R scores 
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were analyzed for all five data collection timepoints (baseline, day 5, 1 month, 2 months and 

3 months).

Experimental task.—In experiment 1, participants performed three consecutive blocks 

(pre-modulation, modulation, post-modulation) of a well-validated monetary reinforcement 

learning task (Fig. 2a), coded in Psychtoolbox47, based on methods from ref. 21. Each block 

was approximately 30 min and consisted of three runs, with new pairs of stimuli in each run. 

During a run, participants performed 80 trials (40 reward, 40 punishment). Each trial began 

with fixation (500 ms), followed by the presentation of two novel visual stimuli (letters from 

the Agathodaimon font; 2,500 ms) to the left and right of fixation (relative stimulus position 

counterbalanced across trials). Participants were instructed to choose between stimuli to 

maximize payoffs. Upon making a selection using a button press from a handheld gamepad, 

a red circle appeared around the chosen stimulus (500 ms). Following a jittered interstimulus 

interval (500–1,500 ms), feedback was presented (2,500 ms). Each pair of stimuli was 

related to a pair of outcomes (in the reward trials, the two outcomes were +US$10 or US$0, 

and in the punishment trials they were −US$10 or US$0), with the two stimuli in each 

trial each having reciprocal probabilities of the two outcomes (80%/20% and 20%/80%, 

respectively). Reward and punishment trials were randomly interleaved within a run. To 

maximize payoffs, participants needed to learn stimulus-outcome contingencies via trial and 

error. Participants were told that their wins from a randomly selected run of trials would be 

their compensation for participation, but in actuality all participants left with the same fixed 

amount.

Clinical instrument.—In experiment 2, participants’ obsessive-compulsive characteristics 

were evaluated using the OCI-R25. The OCI-R is one of the most commonly used 

self-report assessments in obsessive-compulsive behavior research, worldwide26,27. It has 

been used to quantify obsessive-compulsive symptoms in various disorders, including 

OCD25. It is an 18-item unipolar self-report questionnaire of DSM-IV obsessive-compulsive 

symptoms that includes six subscales: washing, checking, neutralizing, obsessing, ordering 

and hoarding, and these subscales have been validated in clinical48, non-clinical49, and 

combined samples25. Each response is scored on a five-point scale from ‘not at all’ (coded 

as 0) to ‘extremely’ (coded as 4). The total score is the sum of the scores on all 18 

items. People with OCD typically have a score of 21 or higher25. The OCI-R has good to 

excellent convergent and discriminant validity, test-retest reliability, and internal consistency 

in clinical and non-clinical samples25,48,49.

HD-tACS.—The alternating current stimulation was delivered non-invasively using a nine-

channel high-definition transcranial electrical-current stimulator (Soterix Medical). The 

HD-tACS procedure used eight sintered 12-mm-diameter Ag-AgCl electrodes, attached 

to custom high-definition plastic holders, filled with conductive gel, and embedded in 

a BrainCap (Brain Vision). Electrical field modeling using HD-Explore and HD-Targets 

(Soterix Medical) guided decision-making about where to place electrodes, with the goal 

of delivering focalized current to medial regions of the bilateral OFC. Figure 2b shows the 

modulation parameters, including the number of electrodes, electrode location and current 

intensity values (Fp1, −0.3 mA; Fp2, −0.3mA; Cz, 0.6 mA; C5, 0.3 mA; C6, 0.3 mA; Ex17, 
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−0.6 mA; Ex18, −0.6 mA; lz, 0.6 mA). A bipolar sinusoidal alternating current was applied 

at either a participant-defined beta-gamma frequency (that is, personalized beta-gamma) 

or at 10 Hz (that is, active control/alpha). Modulation intensity (peak to peak) was set to 

1.8 mA. Modulation was done for 30 min while participants performed the reinforcement 

learning task (experiment 1) or were seated at rest with eyes open, not engaged in any task 

(experiment 2). All participants confirmed that the modulation procedure was acceptable and 

did not induce painful skin sensations or phosphenes.

Control procedures.—We implemented numerous procedures, in accordance with 

previously established methods10,50–52, to ensure that information about the experiments 

would not bias results. First, both experiments were between-participant in design 

to minimize learning and the transfer of effects across conditions. Second, for both 

experiments, within-participant, pre- and post-modulation assessment periods were 

implemented for each modulation group to reduce random noise such as confounding effects 

related to participant differences. In addition to comparisons afforded by the between-

participant design, the addition of pre-post assessment periods allowed us to: (1) examine 

the effects of each type of modulation through time in the same group of participants; (2) 

evaluate the stability of baseline task performance across the different groups of participants; 

and (3) determine how long the modulation effects lasted.

Third, the experiments were sham-controlled. Experiment 1 used the standard passive sham 

control. The passive sham procedure followed the same procedure as the active beta-gamma 

modulation, but lasted only 30 s, and ramped up and down at the beginning and end of the 

30 min period, to simulate the tingling sensation that participants commonly experience and 

then quickly adjust to during active modulation51. Additionally, experiments 1 and 2 utilized 

an active control10.

The parameters of the active control procedure were identical to that of beta-gamma 

modulation, except that alternating current was applied at a neighboring frequency band 

(alpha, 10 Hz). This was an especially rigorous control procedure because unlike the passive 

sham, HD-tACS during active control was applied to the same cortical target (OFC), at 

the full 1.8 mA intensity, for the full 30 min duration. The active control effectively 

minimizes unwanted effects associated with changes in extra-cranial tissue, shunting and 

peripheral co-stimulation, such as transretinal or transcutaneous stimulation43. The improved 

neuromodulation technology (HD-tACS) and electrical field modeling that we used have 

also been shown to minimize the effects of peripheral co-stimulation because these methods 

enhance anatomical targeting precision and produce more focal current distributions44,53.

Fourth, we used a double-blind procedure, in which a second experimenter set the 

mode (for example, active or sham) on the stimulator, but otherwise did not interact 

with the participant or with the experimenter who performed data collection. Fifth, we 

conducted recordings in a sound-attenuated, electrically shielded chamber to avoid line noise 

interference and reduce the possibility of participant-experimenter interaction during testing, 

which could have at least implicitly biased the participants.
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Last, we confirmed that participants remained blind to the type of modulation that they 

received. After the experiment had ended (experiment 1) or each modulation test day had 

ended (experiment 2), we administered a safety questionnaire54 and visual analog scale55, 

which included questions regarding attention, concentration, mood, vision, headache, fatigue 

and skin sensations under electrodes. Scores on these ratings were not significantly different 

across modulation groups (experiment 1, all F1,38 < 0.307, all P > 0.583, all n = 40; 

experiment 2, all F1,62 < 1.229, all P > 0.272, all n = 64). In addition, all participants 

were asked at the end of the experiments whether they could guess which modulation group 

they had been randomly assigned to. Participants’ guesses were near chance (experiment 1, 

31.67% hit rate; experiment 2, 53.13% hit rate).

Data analysis.

Pre-experiment EEG frequency tuning.—Dynamic systems theory predicts that 

systems with intrinsic periodic dynamics have preferred modulation frequencies and that 

neuronal modulation should be most effective when the external modulation frequency of 

weak periodic perturbations is closest to the brain network’s preferred frequency56. To 

design a personalized HD-tACS intervention, we determined the peak frequency of each 

participant’s endogenous positive feedback beta-gamma effect. Each participant completed a 

brief pre-study EEG recording while they performed 30 min of the reinforcement learning 

task. EEG was recorded using our standard procedures10. The EEG signal was collected 

from 64 electrodes arrayed according to the international 10–20 system using an ActiChamp 

active channel amplifier sampling at 1,000 Hz (Brain Vision). The right mastoid electrode 

served as the online reference. Horizontal eye position was monitored by recording the 

electro-oculogram from bipolar electrodes placed at the outer canthus of each eye, and 

vertical eye position and blinks were monitored with bipolar electrodes placed above and 

below the left orbit.

Offline, data were re-referenced to the average of the left and right mastoids. Broad 

segments were cut from −1,000 ms before to 2,000 ms after feedback onset to eliminate 

edge artifacts induced by wavelet convolution from the critical middle of this window. 

Visual inspection was used to remove large muscle artifacts, followed by independent 

component analysis to remove blink and noise artifacts57. The data were converted to 

current source density (CSD)58 to improve topographical localization59. Total power was 

calculated by convolving the CSD-EEG time series in each segment with a set of complex 

Morlet wavelets, defined with a Gaussian envelope using a constant ratio (σf = f/7) and a 

wavelet duration (6σt), in which f is the center frequency and σt = 1/(2πσf). Frequencies 

ranged from 1 to 60 in 0.5 Hz steps. Following single-trial EEG spectral decomposition, 

the magnitude (that is, length) of the complex number vectors was extracted, squared and 

averaged, yielding a measure of intertrial total power for a given frequency, timepoint and 

electrode. Power was decibel normalized, in which for each electrode and frequency, the 

average power during an interval of −100 to 0 ms before feedback onset served as the 

baseline activity. Analysis focused on the beta-gamma band frequencies (20–35 Hz) at 

electrode Fz during a conservatively broad temporal window (200–500 ms after feedback 

onset), consistent with the spectral, spatial and temporal locus of the positive feedback beta-

gamma effect5,15,16. Within the beta-gamma band, the frequency with maximum difference 
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in mean total power between reward and punishment trials was extracted on an individual 

participant basis and used as the target modulation frequency. Individually frequency-tuned 

modulation was applied with a resolution of 0.5 Hz, consistent with prior work10. All EEG 

processing and analysis were conducted using MATLAB calls on the FieldTrip toolbox60.

Primary dependent measures.—In experiment 1, participants’ choices for each trial 

were averaged across the three runs in each block, resulting in a learning curve composed 

of 40 choice scores for each participant, for each reward and punishment trial type, and for 

each pre-modulation, modulation and post-modulation time period. In experiment 2, OCI-R 

total score and subscales were generated by adding the item scores based on a five-point 

Likert scale. For both experiments, we examined participants’ beta-gamma effect, that is, 

the difference in the beta-gamma power (20–35 Hz) following reward feedback relative 

to punishment feedback (200–500 ms after feedback onset) at electrode Fz, during the 

pre-experiment period, and its relationship with reward optimal choice behavior and OCI-R 

total score.

Computational modeling.

Four models are used; that is, two variants of a standard Q-learning model (StandardQ 

and WeightedQ)22,23, an Actor-Critic model22,23, and a Hybrid model incorporating both 

Q-learning and actor-critic elements23,24 to best match the pattern of choice behavior in the 

reinforcement learning task.

Q-learning models.—For every participant, the Q-learning algorithm22 calculates the 

expected reward value (Q) for an action (a) based on their choice and feedback history. If the 

expected reward value for an action a in trial t is Q(a,t), then the expected reward value for 

the same action in trial t + 1 is computed as per the following rule:

Q(a, t + 1) = Q(a, t) + a0 × δ(t),

where ɑo represents the learning rate and quantifies the degree to which feedback in trial t 
leads to adjustments in the expected value during trial t + 1. The value of ɑo ranges between 

0 and 1, with 0 indicating no influence and 1 indicating maximum influence. δ(t) represents 

the prediction error computed as the difference between the actual outcome following the 

action a in trial t and the expected reward value as follows:

δ(t) =  outcome (t) − Q(a, t) .

We used two variants of the Q-learning algorithm. In the StandardQ variant, the outcome(t) 
variable was set to 1 for positive feedback, 0 for neutral feedback, and −1 for negative 

feedback. In the WeightedQ variant, we allowed positive and negative feedback to be 

weighted differently using an additional free parameter, d23. The outcome(t) value was set to 

1 − d for positive feedback, 0 for neutral feedback, and −d for negative feedback, allowing 

exclusive weighting for positive and negative outcomes when d = 0 and d = 1, respectively, 

and equal weighting of positive and negative outcomes when d = 0.5. In both variants, the 

expected values (Q) were set to 0 at the beginning of every run.
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When choosing between two actions, a1 and a2, in a given trial t, both models computed the 

expected reward value for each action, Q(a1,t) and Q(a2,t), using the choice and feedback 

history as described above. Using these expected values, the probability of choosing the 

action a1 in that trial was computed using the following softmax rule:

P a1, t = exp Q a1, t /β / exp Q a1, t /β + exp Q a2, t /β .

Here, the parameter β represents the noise or the temperature during the choice process. 

Higher β values suggest greater randomness in the choice process and lesser sensitivity to 

expected reward values. Lower β values suggest higher propensity to choose the stimulus 

with larger expected rewards.

Actor-Critic model.—In the Actor-Critic model, every pair of stimuli is represented as a 

state s, and the expected value associated with that state in a given trial t is represented as 

V(s,t). The value functions are updated using a prediction error, ε(t), as follows:

V (s, t + 1) = V (s, t) + aC × ε(t),

ε(t) =  outcome (t) − V (s, t),

where ɑC represents the learning rate of the critic module, which determines the degree to 

which state values are updated according to the prediction error, calculated as the difference 

between the expected value for the current state, V(s,t), and the actual outcome, outcome(t). 
Similar to the WeightedQ model, outcome(t) was set to 1 − d for positive feedback, 0 for 

neutral feedback, and −d for negative feedback.

The actor module selects from among multiple actions, a, within a state, s, on a trial, t, 
according to their weights, w(s,a,t). The weight of the selected action is adjusted using the 

prediction error from the critic module, ε(t), using the following rule:

w(s, a, t + 1) = w(s, a, t) + aA × ε(t),

where ɑA is the learning rate for the actor module, which is used to determine the degree 

of influence of the prediction error on the action weight. Following ref. 23, we normalized 

the actor weights using the sum of their absolute values to avoid unbounded growth, and 

the weights were initialized at 0.01. For example, given two possible actions, a1 and a2, 

which reflect selection of stimulus 1 or stimulus 2, respectively, actor weight for action 1 

was normalized as follows:

w s, a1, t w s, a1, t / w s, a1, t + w s, a2, t .

Using these weights, the probability of choosing the action a1 in a trial t, P a1, t , was 

determined using the following softmax rule:
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P a1, t = exp w s, a1, t /β / exp w s, a1, t /β + exp w s, a2, t /β ,

where the β parameter reflects the temperature or the degree of exploration during the 

choice.

Hybrid actor-critic Q-learning model.—We used a Hybrid model23,24, which 

incorporates the expected value of each action from the WeightedQ model with the action 

weights determined from the Actor-Critic model, therefore this reflects an interaction 

between model-based and model-free learning mechanisms. The expected values of each 

action in the WeightedQ model were combined with the weights of each action in the 

Actor-Critic model using a mixing parameter, c, the value of which reflects the independent 

contributions of each model as per the following rule:

H(s, a, t) = [(1 − c) × w(s, a, t) + c × Q(a, t)] .

As c ranges from 0 to 1, the model transitions from a purely Actor-Critic model to the 

WeightedQ model. Action a1 is then selected in a given trial t with a probability P a1, t
using a softmax function:

P a1, t = exp H s, a1, t /β / exp H s, a1, t /β + exp H s, a2, t /β ,

where the β parameter reflects the temperature or the degree of exploration during the 

choice.

Parameter estimation.—Using maximum likelihood estimation with the MATLAB 

function fmincon, we optimized two parameters in the StandardQ model (a, β), three 

parameters in the WeightedQ model a0, β, d , four parameters in the Actor-Critic model 

aC, aA, β, d , and six parameters in the Hybrid model a0, aC, aA, β, d, c . The parameters were 

estimated such that the probability of actual choices was maximized for reward trials. These 

estimations were performed for each run in every block (pre-modulation, modulation, post-

modulation) for participants in every group (sham, alpha, beta-gamma). We also performed 

model fits after combining reward and punishment trials and the pattern of results remained 

similar.

Statistics.

In experiment 1, we carried out repeated measures ANOVA using the within-participants 

factors of time (pre-modulation versus modulation versus post-modulation) and valence 

(reward versus punishment), and the between-participants factor of modulation group 

(passive sham versus active control/alpha versus personalized beta-gamma) to assess optimal 

choice performance. The analysis of temperature used the within-participants factor of time 

(pre-modulation versus modulation versus post-modulation) and the between-participants 

factor of modulation group (passive sham versus active control/alpha versus personalized 

beta-gamma). When appropriate, follow-up ANOVAs were conducted to test specific 
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preplanned hypotheses. To examine the relationship between reward-guided optimal choice 

behavior and the reward feedback beta-gamma effect, we conducted a participant-wise two-

tailed Pearson correlation between the mean EEG beta-gamma power in the pre-experiment 

reward feedback (20–35 Hz, 200–500 ms after feedback onset) and optimal choice accuracy 

on reward trials during the pre-modulation period, collapsed across modulation groups 

(passive sham, active control/alpha, personalized beta-gamma). Participant-wise two-tailed 

Pearson correlation was used to examine the association between reward optimal choice 

behavior during the pre-modulation and the modulation periods for the beta-gamma group.

In experiment 2, we carried out repeated measures ANOVA for the OCI-R total and 

subscale scores using the within-participants factor of time (pre-modulation versus day 5 

versus 1 month versus 2 months versus 3 months) and the between-participants factor of 

modulation group (active control/alpha versus personalized beta-gamma). Interactions were 

parsed with Bonferroni-corrected pairwise comparisons. Participant-wise two-tailed Pearson 

correlations, using an adjusted P value (P = 0.0008) to control for multiple comparisons, 

were conducted to examine relationships between participants’ pre-modulation baseline 

OCI-R scores and each post-modulation OCI-R score. To examine the relationship between 

baseline OCI-R total scores and pre-experiment reward choice behavior, the data were 

collapsed across modulation groups (active control/alpha, personalized beta-gamma) and 

an ANOVA was run on pre-experiment optimal choice behavior from reward trials using 

the between-participants factor of OCI-R score (low versus high). Participant-wise Pearson 

correlations (two-tailed) were conducted to examine the association between individual 

participant pre-experiment reward choice behavior and baseline OCI-R total score. To 

compare the EEG beta-gamma effect (20–35 Hz, 200–500 ms after feedback onset) 

between individuals with high and low baseline OCI-R total scores, we conducted an 

ANOVA using the within-participants factor of valence (reward versus punishment) and 

the between-participants factor of OCI-R score (low versus high). For both experiments, 

ANOVA P values were adjusted using the Greenhouse-Geisser epsilon correction for non-

sphericity when this assumption was violated. The experiments of this study were not 

repeated independently. However, partial eta squared effect sizes were estimated to facilitate 

comparison between studies and promote replication. All tests were two-tailed with the 

exception of F-tests, which by definition are one-tailed. Statistical parameters, including the 

definitions and exact value of n (that is, total number of participants), P values, and the type 

of statistical tests, are reported primarily in the figure legends.

Reporting Summary.

Further information on research design is available in the Nature Research Reporting 

Summary linked to this article.
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Extended Data

Extended Data Fig. 1 |. Neuromodulation effects on temperature.
Mean temperature shown across pre-modulation, modulation, and post-modulation periods 

for each group (passive sham, green; active control/alpha, blue; personalized beta-gamma, 

red). A significant time × group interaction was observed (F4,114 = 3.066, P = 0.027, ηp2

= 0.097, n = 60). There were significant time × group interactions for the beta-gamma 

and alpha groups (F2,76 = 4.942, P = 0.012, ηp2 = 0.115, n = 40) and the beta-gamma and 

sham groups (F2,76 = 4.119, P = 0.027, ηp2 = 0.098, n = 40), but not for the alpha and 

sham groups (F2,76 = 0.282, P = 0.686, ηp2 = 0.007, n = 40). A significant enhancement in 

temperature was evident only during beta-gamma HD-tACS relative to sham (F1,38 = 6.409, 

P = 0.016, ηp2 = 0.144, n = 40) or to alpha (F1,38 = 6.311, P = 0.016, ηp2 = 0.142, n = 40). 

The effect was rapidly extinguished upon switching off HD-tACS, given that no differences 

were observed between the alpha and beta-gamma (F1,38 = 0.056, P = 0.814, ηp2 = 0.001, n 

= 40) or the sham and beta-gamma groups (F1,38 = 0.762, P = 0.388, ηp2 = 0.02, n = 40) in 

the post-modulation period. Of note, baseline temperature values were relatively stable and 

did not significantly differ between groups during the pre-modulation period (alpha versus 

beta-gamma, F1,38 = 1.528, P = 0.224, ηp2 = 0.039, n = 40; alpha versus sham, F1,38 = 

0.072, P = 0.790, ηp2 = 0.002, n = 40; sham versus beta-gamma, F1,38 = 1.421, P = 0.241, 

ηp2 = 0.036, n = 40). No other parameters showed significant effects. Mixed ANOVAs used 

the within-participants factor of time (pre-modulation, modulation, post-modulation) and 

the between-participants factor of group (sham, alpha, beta-gamma). Follow-up univariate 

ANOVAs within individual modulation periods used the between-participants factor of 

group (alpha, beta-gamma; alpha, sham; or beta-gamma, sham). Error bars show ±1 s.e.m. 

*P < 0.05. NS, not significant.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1 |. Model integrating beta-gamma activity with reward learning circuitry.
Arrows show anatomical relationships between components of the reward and learning 

circuitry. Dashed black arrows show the loop of activity between the hippocampus (Hipp), 

nucleus accumbens (NAcc) and ventral tegmental area (VTA) put forward by Axmacher 

et al.38, with solid black arrows showing other major connections involved in learning 

and motivation39. The positive reward feedback beta-gamma effect shown to the right 

is theorized to derive from generators in the orbitofrontal cortex (OFC) or ventromedial 

prefrontal cortex (vmPFC)5,6, to be modulated by the substantia nigra (SN) and VTA (short 

red arrow), and to synchronize with beta-gamma rhythms in the ventral striatum (VS), 

providing a key mechanism by which the communication between frontostriatal regions can 

result in the transmission of a motivational value signal to the reward circuit in learning 

or decision-making contexts (long red arrow)5. Amy, amygdala; dACC, dorsal anterior 

cingulate cortex; Th, thalamus; VP, ventral pallidum.
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Fig. 2 |. Monetary reinforcement learning task and orbitofrontal neuromodulation protocol.
a, Participants chose one of two abstract visual stimuli and later observed the outcome. 

Following a jittered interstimulus interval (ISI), the outcome depending on the trial type 

was shown. In reward trials, one stimulus was associated with an 80% probability of 

winning US$10 and a 20% probability of winning nothing, and the other stimulus had 

the opposite probability structure. In punishment trials, one stimulus was associated with 

an 80% probability of losing US$10 and a 20% probability of losing nothing, and 

the other stimulus had the opposite probability structure. b, Personalized orbitofrontal 

Grover et al. Page 23

Nat Med. Author manuscript; available in PMC 2022 July 28.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



neuromodulation protocol and current-flow models on three-dimensional reconstructions of 

the cortical surface. The location and current intensity value of each electrode are shown.
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Fig. 3 |. Results of experiment 1, the monetary reinforcement learning task.
a–c, Observed optimal behavioral choices for reward (blue) and punishment (gold) during 

the pre-modulation (Pre, dotted), modulation (Mod, solid), and post-modulation (Post, 

dashed) blocks for the passive sham (a), active control/alpha (b) and personalized beta-

gamma (c) groups. A significant modulation group × valence × time interaction was 

observed (F4,114 = 4.337, P = 0.003, ηp2 = 0.132, n = 60). The interaction effect was present 

when comparing beta-gamma with sham (F2,76 = 3.643, P = 0.036, ηp2 = 0.087, n = 40) 

and beta-gamma with alpha (F2,76 = 7.162, P = 0.001, ηp2 = 0.159, n = 40), but not when 

comparing alpha with sham (F2,76 = 1.286, P = 0.282, n =I 40). During the modulation 

period, a significant group effect was observed for reward trials (F2,57 = 17.735, P = 1 × 

10−6, ηp2 = 0.384, n = 60), with beta-gamma modulation driving the effect (sham versus beta-
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gamma, F1,38 = 16.170, P = 2.65 × 10−4, ηp2 = 0.299, n = 40; alpha versus beta-gamma, F1,38 

= 35.997, P = 5.69 × 10−7, ηp2 = 0.486, n = 40; sham versus alpha, F1,38 = 0.805, P = 0.375, 

n = 40), but no differences were observed for punishment trials across groups (all F < 0.291, 

all P > 0.593, all n = 40). In the beta-gamma group (c, right panel), there was a significant 

effect of time on reward trials (F2,38 = 20.159, P = 2 × 10−6, ηp2 = 0.515, n = 20), with 

the modulation period showing significant differences compared with both pre-modulation 

(F1,19 = 29.533, P = 3 × 10−5, ηp2 = 0.609, n = 20) and with post-modulation (F1,19 = 

23.012, P = 1.25 × 10−4, ηp2 = 0.548, n = 20) periods. No differences were observed between 

pre-modulation and post-modulation periods in reward trials (F1,19 = 0.822, P = 0.376, n = 

20). Beta-gamma modulation did not affect choice behavior in punishment trials over time 

(all F < 0.370, all P > 0.550, ns = 20). Mixed ANOVAs used the within-participants factors 

of valence (reward, punishment) and time (pre-modulation, modulation, post-modulation), 

and the between-participants factor of group (sham, alpha, beta-gamma). Error bars and 

shaded error bands, ±1 s.e.m. ***P < 0.001. NS, not significant.
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Fig. 4 |. Results of experiment 2, change in obsessive-compulsive symptoms after HD-tACS.
a, Mean OCI-R total score (left panel) and mean OCI-R subscale scores (right panels) with 

95% confidence intervals (with mean at center of error bars) shown for each modulation 

group and timepoint. The shaded region shows the 5 day intervention period. For total 

OCI-R (left panel), there was a significant group × time interaction (F4,248 = 6.748, P 

= 2.43 × 10−4, ηp2 = 0.098, n = 64). There was a main effect of time on OCI-R in the 

beta-gamma group (F4,124 = 10.278, P = 5.5 × 10−5, ηp2 = 0.249, n = 32), and no effect 

for the control/alpha group (F4,124 = 0.307, P = 0.80, n = 32). See main text for statistics 

of pairwise comparisons. For subscales, significant I group × time effects were evident for 

hoarding (F4,248 = 2.886, P = 0.030, ηp2 = 0.044, n = 64), ordering (F4,248 = 4.234, P = 0.004, 

ηp2 = 0.064, n = 64) and obsessing (F4,248 = 2.817, P = 0.032, ηp2 = 0.043, n = 64). The 

beta-gamma modulation group showed significant main effects of time for hoarding (F4,124 
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= 8.169, P = 1.16 × 10−4, ηp2 = 0.209, n = 32), checking (F4,124 = 4.827, P = 0.008, ηp2 = 

0.135, n = 32), ordering (F4,124 = 9.8, P = 3.9 × 10−5, ηp2 = 0.24, n = 32) and washing (F4,124 

= 3.029, P =I 0.043, ηp2 = 0.089, n = 32). Mixed ANOVAs used the within-participants factor 

of time and the between-participants factor of group (control/alpha, beta-gamma). Follow-up 

Bonferroni-corrected pairwise comparisons (right panels) in the beta-gamma group (In = 32) 

revealed a rapid reduction in hoarding (P = 0.02) and ordering (P = 0.012) by the last day 

of intervention, relative to baseline. These reduced scores remained reduced or continued 

to drop at 1 month (hoarding, P = 0.009; ordering, P = 0.01), 2 months (hoarding, P = 

0.039; ordering, P = 0.002) and 3 months (hoarding, P = 1.9 × 10−5; ordering, P = 0.003). 

Of note, relative to baseline, there were significant reductions in checking on day 5 (P = 

0.035), at 1 month (P = 0.008) and at 2 months (P = 0.015) after intervention. The alpha 

group (n = 32) showed no main effects of time (all F < 1.359, all P > 0.257) and no 

pairwise differences at any timepoint relative to baseline (all P > 0.228). b, Scatter plots 

with 95% confidence intervals of individual participant total OCI-R scores obtained before 

the intervention (pre-modulation) shown against the modulation-induced change in OCI-R 

(that is, baseline minus post-modulation measurement) for each post-intervention timepoint 

and for each modulation group. The beta-gamma group (n = 32) showed significant Pearson 

correlations (two-tailed, corrected for multiple comparisons) on day 5 (r32 = 0.624, P = 1.35 

× 10−4), 1 month (r32 = 0.602, P = 2.71 × 10−4), 2 months (r32 = 0.712, P = 5 × 10−6) and 3 

months (r32 = 0.651, P = 5.6 × 10−5). *P < 0.05; **P < 0.01; ***P < 0.001.
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