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Abstract: Pituitary Adenylate Cyclase-Activating Peptide (PACAP) and Vasoactive Intestinal Peptide
(VIP) are neuropeptides involved in a diverse array of physiological and pathological processes
through activating the PACAP subfamily of class B1 G protein-coupled receptors (GPCRs): VIP
receptor 1 (VPAC1R), VIP receptor 2 (VPAC2R), and PACAP type I receptor (PAC1R). VIP and
PACAP share nearly 70% amino acid sequence identity, while their receptors PAC1R, VPAC1R, and
VPAC2R share 60% homology in the transmembrane regions of the receptor. PACAP binds with high
affinity to all three receptors, while VIP binds with high affinity to VPAC1R and VPAC2R, and has a
thousand-fold lower affinity for PAC1R compared to PACAP. Due to the wide distribution of VIP and
PACAP receptors in the body, potential therapeutic applications of drugs targeting these receptors, as
well as expected undesired side effects, are numerous. Designing selective therapeutics targeting
these receptors remains challenging due to their structural similarities. This review discusses recent
discoveries on the molecular mechanisms involved in the selectivity and signaling of the PACAP
subfamily of receptors, and future considerations for therapeutic targeting.

Keywords: pituitary adenylate cyclase-activating polypeptide (PACAP); vasoactive intestinal peptide (VIP);
receptor selectivity; VIP receptor 1 (VPAC1R); VIP receptor 2 (VPAC2R); PACAP type I receptor
(PAC1R); peptide therapeutics; structure-based drug design; GPCR

1. Introduction—Physiological Roles of the PACAP and VIP Receptors

Pituitary Adenylate Cyclase-Activating Peptide (PACAP) and Vasoactive Intestinal Pep-
tide (VIP) are neuropeptides involved in a multitude of physiological and pathological pro-
cesses. VIP is a 28 amino acid peptide that is widely expressed in various cell types in
the central (CNS) and peripheral nervous systems [1]. Centrally, VIP promotes neuronal
survival [2] and regulates glycogen metabolism in astrocytes [3], while peripherally, VIP
functions as a vasodilator leading to non-adrenergic and non-cholinergic relaxation of vascu-
lar and non-vascular smooth muscle through co-transmission with nitric oxide and carbon
monoxide [4,5]. VIP is also co-transmitted with acetylcholine in exocrine glands [5–7], and
works as a secretagogue by stimulating prolactin secretion in the pituitary and catecholamine
release in the adrenal medulla [8,9]. In the immune system, VIP is an immunoregulator that
controls T-lymphocyte trafficking and inhibits interleukin-2 (IL2) production [10]. VIP also
stimulates electrolyte secretion in the jejunum [11,12], and plays a protective role against
oxidant injury [13].

Similar to VIP, PACAP is widely expressed and is involved in numerous physio-
logical processes, mediated both centrally and peripherally [14–16]. PACAP exists in
two isoforms from proteolysis of the same precursor protein in the body, PACAP38 and
PACAP27, which differ by eleven amino acid residues in the C-terminus [17,18]. Both
PACAP38 and PACAP27 are bioactive, however, PACAP38 is more than 100-fold more
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abundant than PACAP27 in neuronal tissues [14,15]. PACAP plays important roles in the
CNS as a neurotransmitter, being involved in learning and memory [19], and control of
circadian rhythms [20]. Additionally, PACAP exerts a neuroprotective effect in responses
to stress [21], including during brain injury and ischaemia [22,23]. Peripherally, PACAP
modulates control of vasodilation [24,25], and secretion of insulin [26], adrenaline and
anterior pituitary hormone [27,28].

PACAP and VIP exert their physiological effects by activating the PACAP subfamily of
G protein-coupled receptors (GPCRs) that consist of VIP receptor 1 (VPAC1R), VIP receptor
2 (VPAC2R) and the PACAP type I receptor (PAC1R). These receptors are distributed in
the central and peripheral nervous systems, endocrine system, and immune system, and
mediate the physiological effects of the peptides described above, including control of
circadian rhythm [29–31], immune regulation [32,33], and insulin secretion [34]. A summary
of the distribution and physiological or potential therapeutic roles of these receptors is
described below (Table 1).

Table 1. Distribution and physiological or therapeutic role of the PACAP subfamily of receptors.

Receptor Distribution Physiological/Therapeutic Role

VPAC1R

CNS [35] (cerebral cortex [36,37], hypothalamus [38],
hippocampus [36,39]) Control of circadian rhythm [38], learning, and memory [39]

Liver [40] Glucose metabolism [41,42]

Lung [40,43]
Asthma and COPD (relaxation of airway and vascular smooth

muscles [44], anti-inflammatory effect [45,46], and regulation of
mucus secretion [47]), chronic bronchitis [48]

Intestine [40,49] Peristalsis, ion transport and mucus secretion [11,12,50]

Breast [40] Cell proliferation in cancer [51,52]

T-lymphocytes and macrophages (constitutively
expressed) [53–56] Immune regulation [32,33]

VPAC2R

CNS [35] (thalamus [57–59], suprachiasmatic nucleus
[29,31,57,59], dentate gyrus [59], amygdala [57])

Schizophrenia [60–62], brain injury [63], control of circadian rhythm
[29–31], processing of fear-related memory [64]

Smooth muscles [65] Vasodilation (blood vessels) [66], erectile dysfunction (male
reproductive system) [67]

Pancreas [68] Insulin secretion [34]

Lungs [65,69]

Asthma and COPD (relaxation of airway and vascular smooth
muscles [44,70], anti-inflammatory effect [45,46], and regulation of

mucus secretion [47]), pulmonary arterial hypertension [71],
chronic bronchitis [48]

T-lymphocytes and macrophages (expressed upon cell
activation) [53,54,56] Immune regulation [72]

PAC1R

CNS [35] (olfactory bulb [16,73], cerebral cortex,
thalamus [73], hypothalamus [73,74], hippocampus,

amygdala [73,75], substantia nigra [73], cerebellum [73]

Astrocyte proliferation [76], appetite and feeding behaviour [77,78],
anxiety [79], stress response [80–82], control of circadian rhythm

[20], post-traumatic stress disorder [83], traumatic brain injury [84],
migraine [85], Alzheimer’s disease [86,87]

Embryonic nervous system [88,89] Neuronal differentiation of neural progenitor and embryonic stem
cells [90–92]

Eyes (corneal endothelium [93], retina [94], lacrimal
gland [95]

Maintenance of corneal endothelial barrier integrity [93]
Protection against retinopathy [94,96]

Stimulation of tear production [95]

Bone marrow (haematopoietic progenitor cells) [97] Haematopoiesis [97]

Adrenal medulla Adrenal catecholamine secretion [98]

Pancreas Insulin secretion [99]

Cardiac neurons [100] Modulates excitability—stimulatory effect on CV system [100]

Bladder Urinary bladder dysfunction [101]

Due to their extensive, yet discrete, distribution and diverse physiological roles, the
PACAP subfamily receptors are attractive targets for the development of therapeutics,
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particularly for the treatment of chronic inflammation, nociceptive pain, and neurodegener-
ation (Table 1) [33,85,86].

The PAC1R is involved in the regulation of pleiotropic neurological functions includ-
ing promotion of neural survival and synaptic plasticity, nociceptive pain, and regulating
the hypothalamic–pituitary–adrenal axial stress response, which makes it an attractive
target for nervous system disorders including migraine [85,102,103], secondary injury in
traumatic brain injury [84], and post-traumatic stress disorder [81,83]. The PAC1R is ex-
pressed in regions of the trigeminal-autonomic system that are associated with migraine,
namely the sphenopalatine autonomic ganglia neurons and spinal trigeminal nucleus [104].
PAC1R activation mediates intracranial nociceptive activation of the central trigeminal-
vascular neurons and induces neurogenic dural vasodilation contributing to migraine
pathophysiology [102,103]. PACAP/PAC1R signaling is also involved in the stress mecha-
nisms of the body [105,106]. PACAP and PAC1R are highly expressed in stress-associated
brain regions in the hypothalamic and limbic structures [14,73,82]. PAC1R signaling modu-
lates corticosterone and corticotropin-releasing hormone levels [107,108], with PACAP and
PAC1R knockout mice displaying reduced anxiety-like phenotypes and blunted corticos-
terone response [83,109]. In women, PACAP serum levels are directly correlated to PTSD
symptoms [83]. These sex-specific effects are speculated to be associated with oestrogen-
dependent regulation of PACAP systems within the bed nucleus of stria terminalis in the
extended amygdala [83].

On the other hand, VPAC receptors are attractive targets for immune and inflam-
matory conditions. VPAC1Rs are expressed constitutively, or in the case of VPAC2Rs,
following induction, in T-lymphocytes and macrophages in the immune system [53–56]. In
homeostatic states, the VPAC1 and VPAC2 receptors play an important role in preserving
the equilibrium of pro- and anti-inflammatory responses through the regulation of various
inflammatory mediators in immune cells [53,54,56]. While in pathological inflammatory
states, these receptors can promote anti-inflammatory outcomes by inhibiting the pro-
inflammatory Th1 and Th17 responses and stimulating Th2 and Treg responses [110–112].
As such, there is significant interest in targeting these receptors for the treatment of chronic
inflammatory diseases including Crohn’s [113], Sjogren’s syndrome [114], COPD [45],
autoimmune encephalitis [115], and rheumatoid arthritis [116].

2. Pharmacology of PACAP and VIP Receptors

To coordinate the diverse physiological outcomes mediated by the activation of the
PACAP subfamily receptors by their cognate peptide ligands, these receptors activate
multiple signaling pathways through the coupling of different G proteins, as well as
through the interactions with a myriad of scaffolding and accessory proteins to stimulate
additional signaling pathways.

2.1. Binding Characteristics of Natural Peptides Differentiating the PACAP Subfamily of Receptors

The PACAP subfamily receptors were initially differentiated by their distinct peptide
binding affinity profiles. Early studies in tissues using 125I-labelled PACAP identified
two types of PACAP receptors. The first type, which was classified as the PACAP type I
receptor or PAC1R, had a high binding affinity for PACAP (Kd of approximately 0.5 nM)
with a lower affinity for VIP (Kd > 500 nM) [117–120]. In contrast, the second type of
PACAP receptors had a similar affinity (Kd of approximately 0.5 nM) for both VIP and
PACAP and were subsequently classified as PACAP type II receptors [14,118,119]. Later,
it was discovered that the type II PACAP receptor subclass contained two distinct types
of receptors [121,122]. One (later named VPAC1R) had a lower affinity for helodermin, an
exogenous peptide derived from the venom of the lizard Heloderma suspectum [123,124],
compared to VIP and PACAP [125], and the other (VPAC2R) had a similar affinity toward
all three peptides [59,126].
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Other peptide agonists of the VPAC receptors were later identified, including peptide
histidine isoleucine (PHI) in rodents and peptide histidine methionine (PHM) in humans,
which are derived from post-translational processing of the VIP precursor following mRNA
translation and were revealed to be biologically active [127–129]. These peptides share
almost 50% sequence homology to VIP and bind with lower affinity to the VPAC1R and
VPAC2R receptors compared to VIP [130,131]. Maxadilan, a PAC1R selective agonist that
was originally isolated from the sand-fly (Lutzomyia longipalpis) salivary gland [132], shares
no significant sequence similarity to VIP and PACAP, but can also bind and activate the
PAC1R with a similar affinity and potency to PACAP [133,134].

Selective Peptide Analogues of PAC1R, VPAC1R, and VPAC2R

Several of the natural peptides described above are able to interact with multiple mem-
bers of the PACAP receptor subfamily. However, non-selective binding may lead to unde-
sirable side effects in clinical practice, hence the development of receptor-selective ligands
may improve therapeutic utility. Before the determination of the PACAP-bound VPAC1R,
VPAC2R, and PAC1R structures through cryo-electron microscopy (cryo-EM) [135–139],
peptide analogues were designed and generated through systematic residue scanning of
the peptide sequences seeking improved receptor selectivity. These analogues were subse-
quently screened in in vitro assays for binding and receptor signaling. From this process,
several peptide analogues were identified that exhibited improved selectivity within the
PACAP subfamily of receptors (Table 2).

Table 2. VPAC1R, VPAC2R, or PAC1R selective peptide analogues.

Selective
Receptor Compound Agonist/Antagonist Peptide Modifications Relative Selectivity * Reference

VPAC1R

[Tyr9,Dip18]-VIP Agonist VIP analogue
VPAC1R ([125I]VIP Ki = 0.1 nM)
VPAC2R ([125I]VIP Ki = 53 nM)

PAC1R ([125I]PACAP27 Ki = 3 µM)
[140]

[Ala22]-VIP Agonist VIP analogue VPAC1R ([125I]VIP IC50 = 10 nM),
VPAC2R ([125I]RO 25-1553 IC50 = 1 µM) [141,142]

[Leu22]-VIP Agonist VIP analogue VPAC1R ([125I]VIP IC50 = 11 nM),
VPAC2R ([125I]RO 25-1553 IC50 = 700 nM) [143]

[Ala11,22,28]-VIP Agonist VIP analogue VPAC1R (cAMP EC50 < 1 nM)
VPAC2R (cAMP EC50 > 1 µM) [142]

[Arg16]-PACAP (1–23) Agonist C-terminal truncated
PACAP analogue

VPAC1R ([125I]VIP IC50 = 2.5 nM),
VPAC2R ([125I]RO 25-1553 IC50 = 1.2 µM) [143]

Chicken [Arg16]-secretin Agonist Secretin analogue
PAC1R ([125I]Ac-His1-PACAP27 IC50 = 30 µM)

VPAC1R ([125I]VIP IC50 = 100 nM),
VPAC2R ([125I]VIP IC50 = 10 µM) 1

[144]

[Lys15, Arg16, Leu27]-
VIP(1-7)/GRF(8-27) Agonist Chimeric VIP/GRF

analogue
VPAC1R ([125I]VIP IC50 = 1 nM),

VPAC2R ([125I]VIP IC50 > 30 µM) 2 [144]

PG 97-269 Antagonist
N-terminal modified
VIP/GRF chimeric

analogue

VPAC1R ([125I]VIP IC50 = 2 nM),
VPAC2R ([125I]VIP IC50 = 3 µM) [145]

VPAC2R

RO 25-1392 Agonist Cyclic VIP analogue VPAC1R ([125I]VIP Ki = 1 µM),
VPAC2R ([125I]VIP Ki = 9.6 nM) [146]

RO 25-1553 Agonist Cyclic VIP analogue VPAC1R ([125I]VIP IC50 = 800 nM),
VPAC2R ([125I]RO 25-1553 IC50 = 1 nM) [147]

PG 96-249 Agonist Linear RO 25-1553
analogue

VPAC1R ([125I]VIP IC50 = 3 µM),
VPAC2R ([125I]RO 25-1553 IC50 = 10 nM) [147]

BAY 55-9837 Agonist PACAP/VIP analogue
PAC1R ([125I]PACAP27 IC50 = N/A) 3

VPAC1R ([125I]PACAP27 IC50 = 8.7 µM),
VPAC2R ([125I]PACAP27 IC50 = 60 nM)

[34]

PG 99–465 Antagonist

N-terminal
myristoylated,

C-terminal elongated
VIP analogue

VPAC1R ([125I]VIP IC50 = 200 nM),
VPAC2R ([125I]RO 25-1553 IC50 = 1 nM) [147]
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Table 2. Cont.

Selective
Receptor Compound Agonist/Antagonist Peptide Modifications Relative Selectivity * Reference

PAC1R

M65 Antagonist Maxadilan analogue
PAC1R ([125I]PACAP27 Kd = 0.6 nM),

VPAC1R ([125I]VIP Kd = N/A),
VPAC2R ([125I]VIP Kd = N/A) 4

[133]

max.D.4 Antagonist Maxadilan analogue
PAC1R ([125I]PACAP27 Kd = 0.6 nM),

VPAC1R ([125I]VIP Kd = N/A),
VPAC2R ([125I]VIP Kd = N/A) 4

[148]

PACAP(6-38) Antagonist N-terminal truncated
PACAP analogue

PAC1R ([125I]Ac-His1-PACAP27 Ki = 30 nM),
VPAC1R ([125I]VIP Ki = 600 nM),

VPAC2R ([125I]Ac-His1-PACAP27 Ki = 40 nM) 5
[149,150]

* The radioligand used is specified for radioligand binding assays. 1 Human VPACRs and rat PAC1R used for the
assay. 2 Selectivity for growth hormone-releasing factor (GRF) receptor was not tested. 3 For BAY 55-9837, no
competitive binding was observed for PAC1R. 4 For max.D.4 and M65, competition of [125I]PACAP27 and [125I]VIP
binding to the VPAC receptors was not observed. 5 Also displays significant affinity for VPAC2R [149–151].

By categorizing receptor-selective analogues by their modifications to the natural pep-
tide, several patterns emerge that provide a foundation for structure-activity relationship
analysis and drug design. Firstly, deletion or modification of the N-terminal residues in
VIP and PACAP analogues can be used to generate antagonists as seen with PACAP (6-38),
PG 97-269, and PG 99–465 [145,147,149,152] (Table 3). As observed in general for endoge-
nous Class B1 GPCR peptides, the N-terminal region is essential for receptor activation.
The N-terminal truncation of multiple endogenous peptides of class B1 GPCRs, includ-
ing corticotropin-releasing factor (CRF), the CRF analogue urotensin, the glucagon-like
peptide-1 receptor (GLP-1R) agonist exendin, calcitonin, parathyroid hormone (PTH)-
related peptide (PTHrP), glucagon and secretin results in the production of antagonists to
their respective receptors [153–159].

Table 3. Deletion (grey) or modification (red) of the N-terminal residues in VIP and PACAP analogues
can be used to generate receptor-selective peptide antagonists.

N-Terminal Truncation/Modification

1 5 10 15 20 25 30 35
PACAP38 H S D G I F T D S Y S R Y R K Q M A V K K Y L A A V L G K R Y K Q R V K N K
PACAP(6–38) H S D G I F T D S Y S R Y R K Q M A V K K Y L A A V L G K R Y K Q R V K N K
VIP H S D A V F T D N Y T R L R K Q M A V K K Y L N S I L N
PG 97-269 1 H F D A V F T N S Y R K V L K R L S A R K L L Q D I L
PG 99-465 2 H S D A V F T D N Y T K L R K Q M A V K K Y L N S I K K G G T

1 The following non-canonical amino acid modifications observed in PG 97-269: Acetyl-His1 D-Phe2 [145]. 2 The
following non-canonical amino acid modifications observed in PG 97-269: Myr-His1 [147].

Secondly, at the C-terminal end, modifications to peptide length play a role in VPAC1R/
VPAC2R selectivity (Table 4). RO 25-1553 was initially developed as a long-acting, VPAC2R
selective, VIP analogue to overcome some of the deficiencies in the natural peptide for
clinical bronchodilatory action; namely the short half-life in vivo due to Thr7P-Asp8P and
Ser25P-Ile26P cleavage. The VIP analogue RO 25-1553 introduced a lactam bridge between
the amino acid residues 21 and 25, along with an elongated C-terminal tail (Asp25P-Leu26P-
Lys27P-Lys28P-Gly29P-Gly30P-Thr31P), generating a peptide with a long duration of bron-
chodilatory activity, compared with the natural peptide [160]. PG 96-249a, a RO 25-1553
analogue where the lactam bridge between positions 21 and 25 is absent, retained VPAC2R
selectivity [147], suggesting that the elongation of the C-terminus rather than the lactam
bridge was involved in VPAC2R selectivity. This improvement in VPAC2R selectivity
with C-terminal peptide length is also observed when extending the C-terminal end of a
VIP analogue from 28 to 31 residues with the equivalent PACAP38 residues [161]. On the
other hand, [Arg16]-PACAP (1–23), a C-terminally truncated analogue was selective for
VPAC1R, while the full-length [Arg16]-PACAP (1–27) was non-selective between VPAC1
and VPAC2R [143].
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Table 4. Truncation (grey) and elongation (red) peptide length contribute to VPAC1R/VPAC2R-
selective peptide analogues.

C-Terminal Truncation/Elongation

1 5 10 15 20 25 30 35
PACAP38 H S D G I F T D S Y S R Y R K Q M A V K K Y L A A V L G K R Y K Q R V K N K
[R16]-
PACAP(1–23)

H S D G I F T D S Y S R Y R R Q M A V K K Y L A A V L G K R Y K Q R V K N K

VIP H S D A V F T D N Y T R L R K Q M A V K K Y L N S I L N
RO 25-1553 1 H S D A V F T E N Y T K L R K Q L A A K K Y L N D L K K G G T
PG 96-249a 2 H S D A V F T E N Y T K L R K Q L A A K K Y L N D L K K G G T

1 The following non-canonical amino acid modifications observed in RO 25-1553: Ac-His1 and Nle17. Lactam
bridge formed between Lys21 and Asp23 [147]. 2 The following non-canonical amino acid modifications observed
in PG 96-249a: Ac-His1 and Nle17 [147].

Thirdly, when analyzing common residues where modifications alter receptor selectiv-
ity, position 22 on the C-terminal end of VIP appears to play a role in VPAC1R/VPAC2R
selectivity [141]. Alanine scanning revealed that the aromatic Tyr residue at position 22
was important for high-affinity VPAC2R binding, while it was not as crucial for VPAC1R
binding [141]. These empirical observations in conjunction with emerging structural data
provide guidance for future peptide and potentially small molecule drug design for VIP
and PACAP receptor selective therapeutics.

2.2. Signaling Characteristics of PAC1R, VPAC1R, and VPAC2R

Similar to other class B1 GPCRs, the PACAP family receptors predominantly couple to
Gs protein to activate the adenylate cyclase (AC) to produce cAMP (3′,5′-cyclic adenosine
monophosphate) (Figure 1). However, some members of this receptor family also couple to
Gq/11 and Gi/o proteins to induce activation of phospholipase C (PLC) and intracellular
calcium (Ca2+) mobilization [162–165]. Many class B1 GPCRs also signal through scaf-
folding proteins such as β-arrestin and A-kinase anchoring proteins (AKAPs) [166,167].
Furthermore, certain receptors in this family can associate with receptor activity-modifying
proteins (RAMPs) to modulate receptor signaling and trafficking [168–172].

2.2.1. Alternative Splicing

Some class B1 receptors, including the CRF, calcitonin, and PTH1R, undergo alter-
native splicing events resulting in receptor variants that can exhibit diverse signaling
outcomes [173]. Alternative splicing is a regulatory mechanism during the pre-mRNA
splicing process that results in the production of multiple mRNA variants from a single
gene [174]. PAC1R undergoes extensive alternative splicing resulting in a host of receptor
variants known as splice isoforms [175–179], while reports of this phenomenon occurring
in the VPAC receptors are limited [173,180]. In humans, these splice isoforms occur in the
N-terminal extracellular domain (ECD) and/or the intracellular loop 3 (ICL3) of PAC1R
with the most prevalent and common variant containing a full-length N-terminal ECD and
no ICL3 insertions (PAC1R null, a.k.a. PAC1nR) (Figure 2) [176,181].

Splice isoforms involving the N-terminal ECD including the variant with a truncation
within the ECD, PAC1R short (PAC1sR), can affect ligand-binding specificity and affinity,
while isoforms of ICL3 may alter G protein coupling and receptor trafficking, enriching
complexity in PAC1R signaling [175,178,182–185]. Splice isoforms from alternative splicing
events at ICL3 are characterized by the inclusion of one or two of the cassette exons, exons
14 (the “hip” cassette) and 15 (the “hop” cassette) of 28 amino acids each [180]. The inclusion
of the hip cassette in PAC1R leads to the splice isoform PAC1R-hip [176]. Inclusion of the
hop cassette leads to the PAC1R-hop, while the inclusion of both hip and hop cassettes leads
to PAC1R-hiphop [181,186]. While these splice variants may have distinct pharmacological
profiles, the physiological implications of these have not been studied in detail.
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of receptors can interact, in a receptor-specific manner, with receptor activity-modifying protein
(RAMP) (purple) that can alter receptor signaling or trafficking. Abbreviations used in this figure:
ARF—ADP-ribosylation factor, PLD—phospholipase D, ERK—extracellular signal-regulated kinase,
EGFR—epidermal growth factor receptor, AC—adenylate cyclase, cAMP—3′,5′-cyclic adenosine
monophosphate, PKA—protein kinase A, EPAC—exchange protein directly activated by cAMP,
Ca2+—calcium, PLC—phospholipase C, PIP2—phosphatidylinositol 4,5-bisphosphate, IP3—inositol
1,4,5-trisphosphate, DAG—diacylglycerol, ER—endoplasmic reticulum, PKC—protein kinase C.

A summary of the expression of the PAC1R splice isoforms in the nervous system is
published in Blechman et al. [180]; the spatiotemporal differences in isoform expression
during embryonic and postnatal development suggest a role of the splice isoforms in the
regulation of neurodevelopmental processes. While limited studies have characterized
PAC1R splice isoform expression in humans, studies characterizing isoform expression
in other species during development have been performed. In studies in rats, the hop,
hiphop, and short PAC1R splice isoforms were expressed in the developing brain with an
expression of the hop and short isoform increasing from embryonic days 10 to 21 and the
hiphop variant being detected from embryonic day 17 to birth [89]. Rat cortical expression
of the hip, hop and hiphop PAC1R splice variants was highest immediately after birth with
expression levels decreasing significantly one month later [187]. In the rat retina, expression
of the null and hip isoforms was the highest immediately after birth, with expression
decreasing overtime suggesting that these isoforms might be involved in early stage retinal
development, while the hop isoform expression increased at day 10–20 postnatal suggesting
a role in later-phase retinal development [188]. Interestingly in both these studies, the
expression of VPAC1R and VPAC2R increased over time with cortical expression increasing
significantly one month postnatal and retinal expression peaking at days 10–15 after birth
for VPAC1R and days 5–15 after birth for VPAC2R [187,188]. Additionally, the PAC1-hop
isoform was induced in response to stress in zebrafish [189]. An age-dependent effect
in hop isoform-deficient zebrafish was observed, where the hop isoform-deficient larvae
exhibited increased anxiety-like behavior, while the adult hop isoform-deficient zebrafish
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exhibited the opposite response to novelty stress, suggesting a role of this PAC1R isoform
in stress adaptation response development [190]. However, species differences must be
taken into account when extrapolating these findings to humans. In one study, where
isoform expression in the rat and human placenta was studied, expression of the short, the
hip or hop and the, hiphop PAC1R isoforms were detected in the rat placenta, while only
the hop isoform was detected in the human placenta [191].
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Figure 2. Schematic illustration of PAC1R splice isoforms occurring in the N-terminal extracellular
domain (ECD) and/or intracellular loop 3 (ICL3) in humans. N-terminal ECD splice variation arises
from the presence (PAC1R null a.k.a. PAC1nR) or deletion (PAC1R-short a.k.a. PAC1sR) of 21 amino
acids (residues V89 to S109) from the N-terminal ECD. ICL3 splice variation arises from the inclusion
of one or two of the cassette exons, the “hip” cassette (red) and the “hop” cassette (green) of 28 amino
acids each, between residues Y348 and L349 of the PAC1R ICL3. Inclusion of the hip cassette in
PAC1R leads to the splice isoform PAC1nR-hip or PAC1sR-hip. Inclusion of the hop cassette leads to
the PAC1nR-hop or PAC1sR-hop splice isoform, while the inclusion of both hip and hop cassettes
leads to PAC1nR-hiphop or PAC1sR-hiphop (purple).

2.2.2. Signaling via Gs Coupling

All three receptors in the PACAP subfamily couple to the Gs protein resulting in the
activation of AC and production of cAMP (Figure 1C) [146,178,192]. cAMP is a nucleotide
that acts as a second messenger in various signaling pathways. cAMP can activate numer-
ous effector proteins including protein kinase A (PKA) and exchange proteins activated by
cAMP (EPAC).

PAC1R-induced cAMP production is associated with broad roles in the nervous sys-
tem including the promotion of neuronal survival, regulation of cerebellar development,
neuritogenesis, and the enhancement of N-methyl-D-aspartate (NMDA) receptor activity
through PKA signaling [193–197]. PAC1R-induced cAMP activation of EPAC has been as-
sociated with neuronal excitability and differentiation through activation of Rap1 [198,199].
In addition, PAC1R-induced cAMP signaling is associated with neuronal differentiation
independently of PKA and EPAC activation through an effector termed the neuritogenic
cAMP sensor [200,201]. This signaling pathway involved the activation of extracellular
signal-regulated kinase (ERK) by the neuritogenic cAMP sensor [200].

For the VPAC receptors, VPAC2R signaling by cAMP/PKA promotes circadian clock
gene expression through cAMP-response element binding (CREB) phosphorylation [202],
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enhances synaptic transmission to hippocampal CA1 pyramidal cells [203], and through
activating ERK phosphorylation, regulates anterior pituitary cell secretion and prolifera-
tion [204]. In the immune system, VPAC1R inhibits TNFα production through cAMP/PKA
activation in macrophages [205], and is associated with pro-inflammatory exocytosis of
secretory vesicles and granules from monocytes through cAMP/EPAC activation [206].

2.2.3. Signaling via Gq/11 and Gi/o Coupling

All three receptors of the PACAP subfamily also couple to Gq/11 resulting in the activa-
tion of PLC (Figure 1C) [178,192,207]. PLC cleaves phosphatidylinositol 4,5-bisphosphate
to form diacylglycerol (DAG) and inositol 1,4,5-trisphosphate (IP3). In turn, DAG acti-
vates phosphokinase C (PKC), while IP3 stimulates intracellular Ca2+ release from the
endoplasmic reticulum [177,180,208].

Gq/11 coupling plays an important role in PAC1R-modulated NMDA receptor activity
and neuroplasticity in the CNS. While both PAC1R-mediated Gs/cAMP/PKA signaling and
PKC signaling through Gq/11 are involved in the enhancement of NMDA receptor-mediated
activity, PLC knockout resulted in a major reduction in the PAC1R-activated NMDA
receptor-mediated excitatory postsynaptic currents despite a similar level of cAMP/PKA
activation, suggesting Gq/11/PKC signaling is the dominant signaling pathway in modula-
tion of NMDA receptors in hippocampal CA1 neurons [196,209]. PAC1R/PKC signaling can
also activate ERK pathways for adaptative neuronal responses [210,211]. Additionally, in rat
cerebral cortical slices, PAC1R stimulates PLC-IP3/DAG signaling in astrocytes [209,212].

While PAC1R activation of PLC has thus far been reported to exclusively involve
Gq/11-mediated signaling, VPAC1R and VPAC2R can interact with both Gi/o and Gq/11
proteins to elicit PLC activation [207,213]. However, this response appears to be species
and cell-type dependent. VPAC1R couples to Gi3 in rat alveolar macrophages [214], while
PLC activation is exclusively mediated through Gq/11 by human VPAC1R and VPAC2R
when overexpressed in COS-7 cells [207]. In gastric muscle cells, VPAC2R stimulates nitric
oxide synthase activity through Gi1-2 [215]. While in the pancreas, VPAC2R activates PLC
and mobilizes intracellular Ca2+ through a Gi-activated mechanism [216].

2.2.4. Non-G Protein Signaling

In addition to direct G protein-mediated signaling, the VPAC receptors and certain
variants of the PAC1R can signal via G protein-dissociated mechanisms [217–219].

ADP-Ribosylation Factor

The VPAC1R and VPAC2R stimulate phospholipase D (PLD) activation through
ADP-ribosylation factor (ARF) (Figure 1A) [217]. Moreover, the PAC1R stimulated PLD
exclusively through the PAC1nR-hop1 variant [217,218]. The physiological significance of
this pathway in the PACAP subfamily of receptors is yet to be established however, PLD
activation has been associated with physiological responses including a respiratory burst
in neutrophils, regulation of transport and endocytosis, and changes in cell morphology
and motility [220,221].

Endosomal Signaling

β-arrestins can also provide a means for G protein-dissociated signaling by acting
as scaffolds to facilitate multiple interactions between GPCRs and cytoplasmic signaling
proteins for initiation of endosomal signaling [222]. Endosomal signaling by the PAC1R can
provide distinct spatial and temporal control of cellular signaling (Figure 1B). In guinea pig
cardiac neurons, PAC1R internalization and endocytosis modulate neuronal excitability via
PKA/ERK activation [100,223–225], while PAC1R-activated endosomal ERK signaling in
the amygdala regulates nociceptive hypersensitivity responses [75]. In the hypothalamus,
PAC1R trafficking is involved in regulating feeding behavior and energy homeostasis [226].
In primary sympathetic neurons, the PAC1R splice variant, PAC1nR-hop1 can activate
endosomal PI3k/Akt signaling cascades to facilitate neuronal survival following growth
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factor withdrawal [227]. While the PAC1R has been extensively documented to undergo
additional signaling following receptor internalization, to date endosomal signaling has
not been reported for the VPACRs [228].

2.2.5. Additional Downstream Signal Transduction Pathways
Ion Channels

As described above, cytosolic Ca2+ concentrations can be altered by Ca2+ release
through transporter proteins in the endoplasmic reticulum via PLC-dependent mech-
anisms. Additionally, the PACAP receptor subfamily can modulate intracellular Ca2+

concentrations through the activation of ion channels. Downstream of G protein-mediated
PKA and PKC activation, these kinases can modulate ionic currents to control intrinsic
neuronal excitability and function following PACAP and VIP receptor activation. The
PAC1R also modulates extracellular Ca2+ influx following PKC activation via voltage-gated
Ca2+ channels [229–232], while PAC1R/PKA signaling can inhibit potassium (K+) chan-
nels, promoting neuronal survival [193,194]. In hippocampal nerve terminals, VPAC1R
inhibits voltage-gated Ca2+ channel-dependent GABA release through Gi/o-mediated PKC
activation, while VPAC2 enhances voltage-gated Ca2+ channel-dependent GABA release
through Gs-mediated PKA and PKC activation [233].

In the periphery, PAC1R-stimulated PKA signaling can activate Ca2+ channels and
inhibit voltage-gated potassium (K+) channels leading to insulin secretion in pancreatic
β-cells [234]. In addition, PAC1R/PLC signaling in PDGFRα+ interstitial cells may be
involved in mediating the inhibitory regulation of colonic contractions through small
conductance Ca2+-activated K+ channels 3 [235].

Transactivation of Epidermal Growth Factor Receptor (EGFR)

Through PKA signaling, the PAC1R also transactivates EGFR, resulting in the acti-
vation of ERK signaling that promotes cell survival and proliferation [96]. In diabetic
retinopathy, this pathway improves cell survival following hyperglycaemic injury [96],
while in growth factor-deprived human corneal endothelial cells, it promotes wound heal-
ing and improves corneal endothelial barrier integrity [93,236]. Activation of insulin-like
growth factor-1 (IGF-1) in cortical neurons transactivates PAC1R, and this mechanism was
important for its anti-apoptotic activity [236]. In cortical neurons, PAC1R transactivated
EGFR through PKA signaling, however EGFR transactivation only had a minor contribu-
tion to the anti-apoptotic actions of IGF-1 [236]. On the other hand, PAC1R-mediated EGFR
activation may promote the proliferation of certain lung cancer cells by PKC-dependent
EGFR activation [237], and VPAC1 signalling can transactivate EGFR and human epidermal
growth factor receptor 2 (HER2) through PKA and Src signalling in breast cancer cells [238].

MAPK/ERK Signal Transduction

Aside from modulating ion currents, receptor-mediated activation of the protein
kinases, PKA and PKC, can activate ERK signaling. ERK belongs to a family of ser-
ine/threonine kinases known as mitogen-activated protein kinases (MAPK) that are im-
portant effectors of GPCRs that regulate cellular growth, division, differentiation, and
apoptosis [239,240]. All three members of the PACAP receptor subfamily can activate
ERK signaling via PKA activation [200,204,241]. However, PKA and PKC-independent
ERK activation also occurs following PAC1R activation in astrocytes, promoting cell pro-
liferation [242]. Moreover, MAPK/ERK signaling can be activated through both plasma
membrane and endosomal signaling pathways resulting in greater spatiotemporal diver-
sity in cellular signalling [243]. PAC1R activation at the plasma membrane activates the
cAMP/PKA and PKC signaling cascades to engage MAP kinase/ERK for neuroplasticity
responses [219,244]. In pancreatic β-cells, PAC1R induces transient activation of ERK in
both the nuclear and cytosolic compartments via plasma membrane signaling as well as
sustained ERK activation in the cytosol, mediated through β-arrestin1 dependent receptor
trafficking as described above [219,244].
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2.2.6. Receptor Activity-Modifying Proteins (RAMPs)

RAMPs, consisting of RAMP1, 2, and 3, are a family of single transmembrane spanning
accessory proteins that associate with many GPCRs and have the potential to modulate
their function [245]. As a result of this interaction, RAMPs can act as chaperones to
enhance the expression of receptors at the cell surface, alter agonist selectivity of some
receptors, influence G protein coupling, and control the trafficking of receptor to endosomal
compartments and recycling and degradation pathways [246–248].

Using a suspension bead array assay the PAC1R was shown to associate with all
three RAMPs [249], albeit the functional consequences, if any, of these interactions are
currently unknown. VPAC1R and VPAC2R can also interact with each member of the
RAMP family, translocating all three RAMPS to the cell surface (Figure 1E) [168,250]. The
physiological relevance of VPAC receptor-RAMP oligomerization remains to be determined;
however, functional differences have been observed in VPACR signaling in recombinant
systems [164]. The interaction between VPAC1R and RAMP2 enhanced phosphoinosi-
tide turnover compared to VPAC1R alone in response to VIP with no change in cAMP
stimulation [168]. For VPAC2R, association with RAMP1 and RAMP2 enhanced basal
Gi/o coupling [250]. However, it must be noted that the VPACR RAMP association can
be influenced by cell background as VPAC2R did not promote RAMP trafficking to the
cell surface when studied in CHO cells, but was able to promote RAMP trafficking in
HEK293 cells [168]. As RAMPs are broadly, but cell specifically expressed in peripheral
tissues and in the nervous system and engage with GPCRs differentially in a cell line
background-dependent manner [248,251,252], hence investigating VPACR–RAMP com-
plexes in native tissue to observe properties of ligand specificity, G protein coupling, and
receptor desensitization and internalization is required to understand the physiological
relevance of RAMPs for modulating the function of the PACAP receptor family.

2.3. Receptor Desensitisation and Recycling

Ligand-activated receptors can induce signaling from various intracellular compart-
ments [253–255]. Endocytosis of the PACAP subfamily of receptors is initiated by the
phosphorylation of serine/threonine residues in the intracellular and C-terminal receptor
regions [256–259]. These serine/threonine residues serve as potential phosphorylation
sites for protein kinase A (PKA), PKC, and GPCR kinases (GRKs). There are seven GRKs,
of which four (GRK2, 3, 5, and 6) are ubiquitously expressed [260]. Phosphorylation by
GRKs decouples G protein interaction and thus terminates initial G protein signaling. Phos-
phorylation of the receptor increases its affinity for β-arrestin recruitment which further
facilitates uncoupling of the GPCR from G proteins and can mediate receptor endocytosis
as mentioned above [224,261].

PAC1R desensitization and termination of PKC signaling are mediated by GRK3 in
human retinoblastoma cells [262], whereas in gastric smooth muscle cells VPAC2R desensi-
tization is mediated by GRK2 [215,263,264]. GRK2, 3, 5, and 6 are all recruited by VPAC1R
in HEK293 cells with overexpression of these GRKs, attenuating cAMP production [265].
VPAC1R phosphorylation induces β-arrestin recruitment, however, studies in recombinant
cells revealed that overexpression of β-arrestin induced only a minor decrease in cAMP
production, suggesting that the mechanism of VPAC1R desensitization may be β-arrestin-
independent or VPAC1R may continue to undergo cAMP signaling following β-arrestin
recruitment [265,266]. Both VPAC1R and VPAC2R are internalized rapidly following ago-
nist exposure, however, these receptors exhibit distinct trafficking profiles in recombinant
systems; VPAC2R is recycled to the cell surface within two hours of receptor internalization,
while VPAC1R is not [257,267].

GRK2/3 facilitates β-arrestin1 and β-arrestin2 recruitment to the PAC1R, with different
functional consequences. β-arrestin2 recruitment mediates PAC1R internalization and ERK
phosphorylation, while PAC1R-β-arrestin1 complexes remain localized at the plasma
membrane [268]. In that same study using cortical neuronal cells, silencing of β-arrestin1
increased PAC1R-mediated ERK phosphorylation [268]. However, β-arrestin1 was required



Int. J. Mol. Sci. 2022, 23, 8069 12 of 38

for long-lasting ERK1/2 activation by PAC1R in pancreatic islets and for ERK1/2 activation
by the PAC1R hop splice variants in HEK293T cells suggesting that the effect of β-arrestin1
on signalling of the PAC1R is cell type-dependent [219,269].

2.4. Understanding of PACAP and VIP Signaling and Regulation That Needs to Be Addressed for
Disease-Focused Therapies

As described above, the PACAP subfamily of receptors can activate diverse signaling
pathways that lead to their pleiotropic effects throughout the body. However, the link
between signaling and regulatory mechanisms and the physiological consequences of
these mechanisms remain poorly understood. These receptors remain attractive targets for
inflammatory and immune diseases, and disorders in the nervous system. However, there
are currently no drugs on the market that specifically target PACAP/VIP receptors. While
PACAP has been implicated in migraine, current efforts to antagonize PACAP-PAC1R
signaling through the development of monoclonal antibodies to PACAP38 or PAC1R for
treatment-resistant migraines [85,270–272] have not been successful. In phase II clinical
trials, the PAC1R monoclonal antibody, AMG301 failed to exhibit efficacy for migraine
treatment, despite promising results in preclinical studies [273]. While multiple factors
could contribute to this clinical outcome, such as failure to reach the target site of action
and inability to block specific signaling pathways associated with the disease, the pharma-
cological complexities described above including the existence of multiple PAC1R splice
isoforms, non-selective PACAP-VPAC receptor signaling and endosomal signaling, present
challenges for developing novel therapies. Furthermore, there is increasing evidence that, in
addition to forming hetero-oligomers with RAMPs, the PACAP subfamily of receptors can
form dimers with themselves and other receptors [172,274,275]. The higher order oligomer-
ization of these receptors may have significant effects on their function. If validated in vivo,
this could provide novel therapeutic design strategies. Overall, a lack of understanding of
the importance of these factors may impact the therapeutic outcomes of drugs targeting this
receptor family. A more detailed investigation into these complexities, including cell and
disease-specific expression of receptor splice variants and subtypes, oligomeric complexes,
and key signal transduction/regulatory proteins will likely be required for successful
clinical translation [168,207,213,214,250,276,277].

Beyond the intricacies of structural variations and potential higher order oligomeric
complexes, the ability of the PACAP subfamily to activate multiple downstream signaling
pathways enables the potential identification of “biased agonists” that selectively control
signaling and thus initiate specific cellular and physiological outcomes. Biased agonism
refers to the ability of individual ligands acting at the same receptor to produce distinct
profiles of downstream signaling [166,278]. This is of particular therapeutic interest as it
means different ligands binding to the same GPCR may preferentially activate beneficial
pathways while minimizing those that may result in unwanted side effects [279]. Biased ag-
onism has been observed at various Class B GPCRs, the most extensively studied being the
GLP-1R. Through coupling to distinct G proteins (Gs, Gq, Gi.o) and to β-arrestins, GLP-1R
is able to activate a plethora of important signaling pathways in pancreatic β-cells including
cAMP production, ERK1/2 phosphorylation, and intracellular Ca2+ mobilization [280,281].
One of the earliest reports of biased agonism was at the PAC1R, where both the PACAP27
and PACAP38 stimulated cAMP production in the PAC1nR receptor isoform, while only
PACAP38 stimulated IP3 production [178]. However, later studies have not necessarily
replicated these findings, highlighting the complexities in PACAP subfamily signaling that
may influence pharmacological outcomes and mask biased agonism [181,182].

Moreover, pharmacological probes, such as PACAP and VIP, used to study the
PACAP/VIP receptors often exhibit some degree of affinity for multiple members within
the subfamily. The heterogeneous distribution of these receptors in the body also compli-
cates the attribution of specific receptors of the subfamily to a pharmacological effect, and
consequently the physiological outcomes. For example, receptor cross-talk can mask the
presence of receptor synergism or antagonism that may potentially occur. Hence, in addi-
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tion to the therapeutic benefit of next-generation receptor-selective ligands, there is also the
potential gain from developing more specific probes for future pharmacological studies.

3. Molecular Activation of PACAP and VIP Receptors

A better molecular understanding of the mechanisms behind ligand recognition and
receptor activation of the PACAP receptor subfamily can guide the development of more
effective clinical candidates and probes. GPCRs share the structural composition of an
N-terminal extracellular domain (ECD), seven transmembrane (TM) helices embedded in
the lipid bilayer membrane, three extracellular and three intracellular loops connecting the
TM helices, and a C-terminal intracellular domain. The class B1 GPCR subfamily, including
the VPAC1R, VPAC2R, and PAC1R, are characterized by an N-terminal ECD consisting of
approximately 120 amino acid residues and three conserved disulphide bonds that form
the core of the ECD structure [282]. The ECD is important for peptide recognition and
binding to position the peptide optimally for interaction with the TM core, and subsequent
receptor activation [135].

The recent advances in structural biology, particularly the emergence of cryo-electron
microscopy (cryo-EM) for GPCR structure determination, have improved our molecular
understanding of ligand-occupied GPCRs coupled with their canonical G protein trans-
ducer [282]. Breakthroughs in protein complex stabilization strategies, including the use
of nanobodies, single-chain fragment antibodies and G protein modifications, such as
dominant-negative mutation (DN), mini Gα proteins, and nanoBiT tethering have facili-
tated the formation and purification of receptor-G protein complexes suitable for structure
determination [136,283–286]. This has been complemented by significant improvements
in cryo-EM grid preparation, microscopy, and detector hardware, imaging strategies, and
data processing for the three-dimensional visualization of GPCR complexes [282,287–291]
and non-GPCRs [292,293].

Before the determination of the full-length PACAP38-bound PAC1R–Gs structure
by cryo-EM, there had been some uncertainty on the binding mode of peptides to the
N-terminal ECD of the PACAP subfamily of receptors [135]. The crystal structures of the
isolated ECD of PAC1sR (PDB: 3N94) and VPAC2R (PDB: 2X57) (Table 5) demonstrated
a similar ECD configuration to the crystal structures of other class B1 GPCRs, including
the glucose-dependent insulinotropic polypeptide receptor (GIPR) PDB: 2QKH [294] and
GLP-1R PDB: 3C5T [295]).

Table 5. List of structures of the ECD region of the PACAP subfamily of receptors determined through
X-ray crystallography and NMR.

Receptor Region Agonist PDB Resolution Method

VPAC2R [296] 1 ECD – 2X57 2.1 Å X-ray diffraction
PAC1sR [297] ECD – 3N94 1.8 Å X-ray diffraction
PAC1sR [298] ECD PACAP (6–38) 2JOD – Solution NMR

1 Structure deposited and released on the RCSB protein databank (PDB) with no corresponding publication.

In these structures, three conserved disulphide bonds facilitate folding of the ECD
in a sandwich-like configuration consisting of an N-terminal α-helix, two antiparallel β-
sheets (β1–β2) and (β3–β4), and a C-terminal α-helix. The first disulphide bond links
the N-terminal α-helix and β1–β2 sheet, the second the two β-sheets while the final bond
between C77ECD and C113ECD connects the β3–β4 sheet to the C-terminal helix. The
peptide-binding clefts in these ECD structures resides between the two central anti-parallel
β-sheets, consistent with other class B1 GPCRs ECD structures [297]. In contrast, the NMR
structure of PACAP(6–38) complexed to PAC1sR (PDB: 2JOD) exhibited differences to the
crystal structure in the topology of the area between β3 and β4 and a distinct peptide-
binding mode compared to other class B1 GPCRs [298]. While the first full-length active
cryo-EM structure of the PACAP receptor subfamily, the PACAP38-bound PAC1R complex
(PDB: 6P9Y), had limited resolution in the ECD, this structure, and subsequently structures
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of VPAC1R and VPAC2R, confirmed that the peptide binding mode of the PACAP/VIP
receptors is similar to other class B1 GPCRs (Figure 3), and the binding mode observed in
the crystal structure of the PAC1R ECD [135].

3.1. Structural Characteristics of the PACAP Subfamily of Receptors

Structures of PAC1, VPAC1, and VPAC2 receptors determined by cryo-EM are consis-
tent with the proposed class B1 GPCR two-domain activation model, where the C-terminal
portion of the peptide agonist binds to the peptide-binding cleft within the ECD [135,299],
while the N-terminal helix of the peptide interacts with the receptor core. The N-terminal
ECD of the receptor forms a horseshoe-like configuration around the peptide, extending
towards the receptor core to form interactions with the top of ECL1 [135–137,300–309].
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Figure 3. Comparisons of the binding mode of representative peptides bound to Class B1 GPCRs
reveal a shared peptide binding mode where the N-terminus of the peptide interacts with the trans-
membrane (TM) core and the C-terminus of the peptide interacts with the N-terminal extracellular
domain (ECD) and extracellular loops (ECLs) of the receptor [135–137,300–309]. The highest vari-
ability of the structures is in the extracellular domains and peptide C-termini (as displayed in the
structure overlay in the first panel. Structures were aligned by receptor chains and displayed as
ribbons (licorice style) using Chimera X 1.3 [310,311]. G protein subunits are not displayed for clarity.
The following models lack extracellular domains due to low resolution: PDB 6VN7, 6P9Y, 7D68,
and 6P9X.
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Due to the greater flexibility and mobility of the ECD regions, ICLs and ECLs, these
regions remain relatively less well-resolved compared to the TM domains. Details of the
agonist, global resolution, and receptor and G protein modifications of each of the structures
of the PACAP subfamily of receptors determined by cryo-EM are listed below (Table 6). In
addition to the differing resolutions achieved in the structures, some of the domains/loops
are missing in the PDB models due to the limited EM-map resolution in these regions.
Namely, for the PACAP27-bound VPAC2R (PDB: 6VN7) and PACAP38-bound PAC1nR
(PDB: 6P9Y) complexed with DNGαs structures, the N-terminal ECD, ECL1, and ICL3
are not modeled in the final deposited PDB file. While for the PACAP38-bound PAC1nR
complexed with mini-Gαs structure (PDB: 6LPB), ICL1, ECL1 and ICL3 are absent. For the
PACAP38- (PDB: 6M1I) and maxadilan-bound (PDB: 6M1H) PAC1sR and PAC27-bound
VPAC2R (7VQX) structures, ICL3 is not modeled in the PDB files.

Table 6. Cryo-EM structures of active, peptide-bound, Gs protein-coupled, PAC1R, VPAC1R, and
VPAC2R as of June 2022. The PAC1R isoforms solved include PAC1R-null (PAC1nR) with the
full-length ECD and PAC1R-short (PAC1sR) with the truncated N-terminal ECD.

Receptor Agonist G Protein 1 PDB Resolution

PAC1nR [135] PACAP38 DNGαs, Gβ1, Gγ2 6P9Y 3.0 Å
PAC1nR [139] PACAP38 Mini-Gαs, Gβ1, Gγ2 6LPB 3.9 Å
PAC1sR [138] PACAP38 DNGαs, Gβ1, Gγ2 6M1I 3.5 Å
PAC1sR [138] Maxadilan DNGαs, Gβ1, Gγ2 6M1H 3.6 Å

VPAC1R-LgBiT 2 [136] PACAP27 DNGαs, Gβ1-HiBiT, Gγ2 6VN7 3.2 Å
VPAC2R-LgBiT 2 [137] PACAP27 DNGαs, Gβ1-HiBiT, Gγ2 7VQX 3 2.7 Å

1 Gαs modifications to aid complex stability include the use of a dominant negative (DN)Gαs and a mini-Gαs
[284,286]. 2 The VPAC receptors utilized NanoBiT tethering technology to aid complex stability where the
receptor is tagged with a large BiT (LgBiT) component and the Gβ1 subunit is tagged with an engineered
small BiT (HiBiT) component [136]. 3 In Xu et al., 2022 [137], two PACAP27-bound VPAC2R structures were
determined. One with the N-terminal modifications, VPAC2R(24-438) (PDB: 7WBJ), and one with no N-terminal
modifications, VPAC2R(1–438) (PDB: 7VQX). As the construct with the N-terminal modifications displayed an
altered pharmacology profile, the construct with no N-terminal modifications (PDB: 7VQX) is the construct
discussed in this review.

Thus far, the published cryo-EM structures have been solved with either PACAP
isoforms or maxadilan. Hence the binding characteristics of these are described below.

3.2. Characteristics of the PACAP-Bound VPAC1R, VPAC2R, and PAC1R Structures

Of the six structures determined by cryo-EM to date, five were PACAP-bound. The
three PACAP-PAC1R structures (PDB: 6P9Y, 6LPB, and 6M1I) share an agreement on the
PACAP binding mode (Figure 4A,B). Of these structures, two are of the receptor splice
variant with the full-length ECD, PAC1nR [131,135], while the other is of PAC1sR, missing
twenty residues (Val89ECD–Ser109ECD) in the N-terminal ECD [134]. While this region of
the ECD is critical for the binding affinity of VIP, with an almost hundred-fold improvement
in binding affinity observed for PAC1sR compared to PAC1nR, the two receptor variants
share similar PACAP binding affinities [175]. The additional residues in the ECD that
are present in the PAC1nR splice variant have not been resolved in any of the cryo-EM
structures to date, most likely due to high flexibility.

Comparison between the PACAP-bound PAC1R, VPAC1R, and VPAC2R structures
indicates that the N-terminus of the peptide is inserted into the receptor core at a similar
orientation and angle for each receptor. By contrast, greater differences are observed in the
C-terminal half of PACAP interacting with the ECL1, the extracellular tip of TM1, and the
ECD (Figure 4A,B).

While the PAC1R structures were determined bound to PACAP38, the VPAC1R and
VPAC2R were bound to PACAP27. However, due to the high mobility of the PACAP
C-terminus in PACAP38-bound structures, only the first 27 residues were modeled. When
comparing these structures, the interactions of the first three residues of the relevant PACAP
with the receptor core of the VPAC1R, VPAC2R, and PAC1R (Figure 5A–C), from studies of
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alanine substituted peptides, the N-terminal His1P (superscript is the residue number of
the peptide) and Asp3P residues are crucial for binding affinity and biological activity of
the peptide for all three receptor subtypes [142,312,313]. This is reflected in the extensive,
conserved, hydrophobic contacts between His1P and the receptor TM3 and TM5 and the
conserved salt bridge between Asp3P and Arg2.60 (the superscript number refers to the
Wootten et al. [314], class B numbering system) that is conserved across all receptors of
the PACAP subfamily (Figure 5). At the N-terminal end of PACAP, His1P forms extensive
hydrophobic interactions in the TM bundle with TM3 (Val3.40, Val3.13) and TM5 (Trp5.36) of
all three receptors. However, subtle differences in interactions are observed where His1P

also forms a hydrogen bond with Gln3.37 of TM3 in VPAC2R, while no hydrogen bond
was observed for the equivalent His3.37 residue in PAC1R (Figure 5B). Asp3P forms a salt
bridge with Arg2.60 and hydrophobic contacts with TM7 (Leu7.43) that are shared in all three
receptors (Figure 5C). The residues at position 1 and position 3 in PACAP, His1P, and Asp3P,
respectively are highly conserved in class B1 GPCR peptides. On the other hand, at position
2, Ser2P of PACAP forms a hydrogen bond with Tyr3.44 lower down (from the extracellular
face of the receptor) on PAC1R TM3 resulting in a deeper insertion of the peptide into
the PAC1R core than observed with the VPACRs (Figure 5B). For VPAC2R, Ser2P forms a
hydrogen bond with TM7 (Glu7.42) that is not observed in VPAC1R nor PAC1R (Figure 5B).
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Figure 4. Comparison of peptide binding mode to receptors of the PACAP subfamily. (A) Side
views and (B) Top view of the superimposed structures of PACAP bound to VPAC1R, VPAC2R,
and PAC1R. Only the transmembrane (TM) helices of the receptor chain of PAC1nR (PDB: 6P9Y)
are shown for reference/clarity. (C) Side views and (D) Top view of the superimposed structures
of maxadilan and PACAP bound to PAC1R reveals TM1, 6, and 7 shifted outward to accommodate
maxadilan (PDB: 6M1H) when compared to the PACAP38-bound PAC1nR (PDB: 6P9Y). Movement
of the TMs indicated by red arrows. Only the TM helices of the receptor chain of the PACAP38-bound
PAC1nR (PDB: 6P9Y) and the TM helices of the receptor chain for the maxadilan-bound PAC1sR
(PDB: 6M1H) are shown for reference/clarity. (E) Helix 1 of maxadilan forms hydrogen bonds with
TM1 in the peptide binding pocket while the loop of maxadilan and helix 2 forms hydrogen bonds
with ECL2 and TM3. Structure is shown as a side view with a focus on the receptor core. Hydrogen
bonds calculated with ChimeraX 1.3. Structures were aligned by receptor chains and displayed as
ribbons, with residues involved in hydrogen bonds (dotted lines) shown as sticks using ChimeraX
1.3 [310,311]. Colors for the peptides and receptors are shown in the figure. Peptide residues are
denoted with superscript P, extracellular loop residues are denoted as ECL. Receptor transmembrane
residues are denoted using the Wootten numbering system.
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Figure 5. Comparison of PACAP in the binding pocket of VPAC1R (blue; PDB: 6VN7), VPAC2R
(green; PDB: 7VQX) and PAC1nR (pink; PDB: 6P9Y). Structures were aligned by receptor chains and
displayed as ribbons, with residues involved in hydrogen bonds (dotted lines) and hydrophobic
interactions shown as a stick; calculated with ChimeraX 1.3 [310,311]. Extracellular domain (ECD)
residues of the receptor were removed for clarity. Peptide residues are denoted with superscript P,
extracellular loop residues are denoted as ECL. Receptor transmembrane (TM) residues are denoted
using the Wootten numbering system. (A) Overview of comparison highlighting the regions of higher
magnification displayed in panels (B–E) with matching colored dashed rectangles. (B,C) Close-up
view of the hydrogen bonds formed between the first three residues of PACAP and the binding
pocket of VPAC1R (blue), VPAC2R (green), and PAC1nR (pink). (D) Close-up view (front and back
side view) of PACAP residues 4 to 6 that interact with conserved hydrophobic side chains in TM1
(Y1.36), TM5 (W5.36) and TM7 (M/I/L7.39) of the peptide binding pocket of VPAC1R (blue), VPAC2R
(green) and PAC1nR (pink). (E) Close-up view of hydrogen bonds formed between PACAP from
residue 7 to 13 and the binding pocket of VPAC1R (blue), VPAC2R (green), and PAC1nR (pink).
(F) Close-up view of the C-terminal end of PACAP peptide that is shifted 4.6 Å towards the receptor
core in VPAC2R compared to VPAC1R, while the C-terminal end of PACAP peptide is shifted 3.1 Å
towards ECL3 in PAC1R compared to VPAC2R. Distance between the α-carbon of Leu27P in PACAP
peptide between the three structures calculated with ChimeraX 1.3. (G) The N-terminal α-helix of
the VPAC2R ECD (green; PDB: 7VQX) adopts a unique conformation that deeply inserts into a cleft
between PACAP27 and the predicted position of ECL1 in the model compared to the modeled ECD
in the PACAP38-bound PAC1sR (yellow; PDB: 6M1I). Due to limited resolution in the N-terminal
ECD and ECL1, these regions are not modeled in the PACAP27-bound VPAC1R structure (blue;
PDB: 6VN7).
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The PACAP residues Gly4P, Ile5P, and Phe6P make extensive interactions with the
hydrophobic pocket residues of TM1 and TM7 (Figure 5D). Many of these interactions
are conserved between the three receptors. Specifically, Ile5P makes hydrophobic con-
tacts with the equivalent residue at 7.39 in all three receptors, while the aromatic residue
of Phe6P interacts with Tyr1.36, Val1.39 and Tyr1.43 residues in TM1 and Leu7.43 in TM7
(Figure 5D). Phe6P of PACAP is crucial for binding affinity and biological activity at all
three PACAP receptor subtypes as reflected by the loss of biological activity with alanine
substitution [142,312,313,315]. However, the replacement of Phe6P with bulky hydropho-
bic groups modulates the specificity of PACAP analogues for different receptors to some
extent [312,313,316–318]. For example, the substitution of Phe6P in PACAP with an amino
acid with two aromatic rings in the case of [4,4′-biphenylalanine6]-PACAP27 resulted in an
approximately 10-fold reduction in VPAC1R -mediated Ca2+ mobilization potency com-
pared to PACAP27, whilst retaining similar potency at the PAC1R [312]. On the other hand,
substitution with the two aromatic ring amino acids, 1-naphthylalanine6P resulted in a
3-fold reduction in potency in Ca2+ mobilization at the PAC1R and VPAC1R, and a 10-fold
reduction in potency at the VPAC2R, compared with PACAP27 [312]. Gly4P is in closer
proximity to Trp5.36 of TM5 in PAC1R compared to the VPACRs (Figure 5D). In VIP, the
equivalent residue at position 4 is an alanine and at position 5 is a valine. Due to steric
hindrance, the additional methyl group in alanine and the different steric profile of the
branched alkyl side of valine compared with glycine and isoleucine, respectively, may
restrict the binding of VIP to PAC1R, which may contribute to the selectivity of VIP for the
VPAC receptors [318,319]. The substitution of PACAP residues Gly4P and Ile5P with Ala4P

and Val5P of VIP reduced PACAP affinity for PAC1R when tested in guinea pigs and the
rat brain [320,321], suggesting these residues are important for receptor selectivity.

In the cryo-EM structures, high-resolution features are observed for the TM regions,
suggesting the peptide bound-TM core is relatively stable, hence side-chain rotamers
could be accurately modeled [135–139]. In contrast, the ECLs and ECD are relatively
mobile, hence these regions are not as well resolved in the cryo-EM maps, limiting the
accuracy of the modeling for side chain rotamers in these regions. Nonetheless, ECL2 is
better resolved than ECL1 and ECL3 in many of these structures. Ser11P contributes to
polar interactions with ECL2 (with Asp287ECL2, Asp273ECL2, and Asp298ECL2 of VPAC1R,
VPAC2R, and PAC1R, respectively) for all three receptors (Figure 5E). In contrast, the
interaction between Asp8P of PACAP with the ECL2 residues Ile289ECL2 and Asn275ECL2

of VPAC1R is not observed in PAC1R. On the other hand, Lys2.67 in VPAC2R forms a
hydrogen bond with Thr7P in VPAC2R, while this interaction is not observed in PAC1R
and VPAC1R (Figure 5E) [135–137].

The C-terminal end of the peptide of the VPAC2-bound PACAP27 was shifted by
4.6Å toward the TMD core compared to VPAC1R-bound PACAP27 when comparing
the α-carbon atom of Leu27P (Figure 5F). In comparison, the C terminus of PACAP27-
bound VPAC2R moved towards ECL1 by 3.1 Å when compared with residue Leu27P of
the PACAP38-bound PAC1nR (PDB: 6P9Y) (Figure 5G) [135–137]. The PACAP38-bound
VPAC1R (PDB: 6VN7) and PACAP38-bound PAC1nR (PDB: 6P9Y) structures did not
include modeling of ECL1 and the ECD due to limited resolution in these regions, however,
Xu, et al., 2022 reported that the N-terminal α-helix of the VPAC2R ECD adopts a unique
conformation, relative to other class B1 GPCRs, and compared to the modeled ECD in
the PACAP38-bound PAC1sR (PDB: 6M1I). In VPAC2R, the N-terminal α-helix inserts
deeply into a cleft between PACAP27 and the predicted, more open, position of ECL1 in
the model, stabilizing the peptide-receptor interface (Figure 5G) [137]. Nonetheless, the
limited resolution in the N-terminal ECD and ECLs and the accuracy of modeling rotamers
in this region must be taken into consideration when interpreting interactions between the
peptide and the receptor ECD and ECL1.
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3.3. Characteristics of the Maxadilan-Bound PAC1R Structure

The PAC1R-selective agonist maxadilan is a 61-amino acid peptide that consists of
two α-helices (helix 1 and helix 2) that form a v-shaped conformation held together by a
disulphide bond between Cys14P–Cys51P [133,138,322,323]. Maxadilan binds to the same
binding pocket as PACAP on PAC1R (Figure 4C). However, to accommodate the larger 3D
conformation of maxadilan, TM1, 6 and 7 of PAC1R are shifted outward compared to the
PACAP38-bound structures (Figure 4C,D) [138]. Helix 1 of maxadilan interacts with TM1
of PAC1sR on one side of the receptor, with the residues Ser21P and Gln25P of helix 1 of
maxadilan forming hydrogen bonds with Asp1471.33 and Tyr1501.36 of TM1. On the other
side of the receptor binding pocket, the loop of maxadilan and helix 2 forms hydrogen
bonds with TM3 (Ser33P with Tyr2413.44) and ECL2 (Thr39P-Asp301ECL2) (Figure 4E). At
the receptor core, the loop of maxadilan is reported to form hydrophobic interactions with
TM6 (Phe34P with Phe3696.56 and Ala3706.57) and TM7 (Ala32P with Leu3867.43) [138].

Truncated forms of maxadilan, max.D.4 (missing amino acids 24–42) and M65 (missing
amino acids 25–41) act as PAC1R-specific antagonists [133,148,324]. Both max.D.4 and M65
have residues in helix 1 and the loop of maxadilan removed. These regions of maxadilan
interact with the binding site in the maxadilan-bound PAC1sR structure, suggesting their
importance for agonist activity. Namely, the hydrogen bonds formed between helix 1 of
maxadilan and TM1 (Gln25P-Tyr1501.36) and between the loop of maxadilan and ECL2
(Ser33P-Tyr2413.44 and Thr39P-Asp301ECL2) as well as hydrophobic contacts between Ala32P

and Leu3867.43 of TM7 and the amide-Pi stack interactions between Phe34P and TM6
(Phe3696.56 and Ala3706.57) would be predicted to be lost for the antagonist maxadilan
analogues [138].

3.4. Activation Characteristics of the PACAP Subfamily of Receptors

While the PACAP receptors can potentially couple to Gq/11 and Gi/o proteins and
recruit β-arrestins for the activation of downstream signaling [214,215,268], currently all
active structures of the PACAP receptor subfamily are in complex with Gs. Hence, the eluci-
dation of structures of these receptors with non-Gs transducer proteins will be important in
understanding the molecular mechanisms behind the diversity in transducer signaling. The
Gs-coupled, active structures of the PACAP receptor subfamily members display similar
characteristics to other active class B1 GPCRs [135,282,299,325]. As there are currently no
inactive state structures of PACAP subfamily receptors, activation mechanisms are inferred
using the inactive structures of other class B GPCRs and are generally limited to global
activation mechanisms observed for class B1 GPCRs.

Deep engagement of peptide agonists with the TM bundle of class B1 GPCRs above
a central polar network is proposed to promote receptor activation, with two additional
layers of conserved polar networks within the TM bundle involved in this process. For
the PACAP family receptors, the central conserved polar network (top layer) is formed
by Arg2.60, Asn3.43, His6.52 and Gln7.49 [282,314,325–327], the middle being the HETx polar
network consisting of residues His2.50, Glu3.50, Thr6.42 and Tyr7.57 [282,325], and the bottom
at the cytoplasmic face, consisting of the TM2-6-7-8 network formed by Arg2.46, Arg6.37,
Asn7.61, Glu8.41 [282,325] (Figure 6).

The binding of peptide agonists leads to reorganization of the ECLs and outward
movement of the TM6/ECL3/TM7 and inward movement of TM1 (Figure 6A) [282,325,
328–331]. The peptide and G protein binding pockets are allosterically connected, hence
both facilitate the process of receptor activation [332]. Interactions in the central polar
network are reorganized by peptide and G protein engagement, inducing the unraveling of
TM6 around the Pro6.47xxGly6.50 motif, resulting in TM6 undergoing an approximate 90◦

kink [325,333]. Gln7.49 from the central polar network reorganizes to interact with Tyr6.53,
and Asn5.50 forms hydrogen bonds with Leu3.47, while residues Phe5.54, Ile5.57 and Ile5.58

form extensive hydrophobic contacts with the main chains of TM3 and TM6 that stabilize
the active conformation [136,282,334]. The activated conformation(s) is further stabilized
through coordinated water networks across the TM domain [300,335,336].
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Figure 6. The active receptor conformation is similar between members of the PACAP subfamily of
receptors. Active, Gs-coupled PACAP-bound receptors are displayed: VPAC1R (blue; PDB: 6VN7),
VPAC2R (green; PDB: 7VQX), and PAC1nR (pink; PDB: 6P9Y) and compared to the inactive crystal
structure of full length human GLP1 receptor (GLP1-R) in complex with Fab fragment (Fab7F38)
(yellow; PDB: 6LN2). Structures were aligned by receptor chains and displayed as ribbons as side
views, with important residues shown as sticks using ChimeraX 1.3 [310,311]. Gαs-α5 helix colored
in darker colors corresponding to the respective receptor chains (B, left panel). The Fab fragment in
inactive GLP1-R was omitted for clarity. (A) Comparison between active structures of the PACAP
subfamily of receptors and the full-length inactive structure of GLP1-R indicate inward movement of
TM1 and outward movement of TM6 and 7 upon receptor activation with TM6 undergoing a kink at
the Pro6.47xxGly6.50 motif. Movement of TMs indicated by red arrows. The G protein was omitted for
clarity. (B) Comparison between conserved residues in the central polar network (pink shading-top),
HETx motif (blue shading-middle) and TM2-6-7-8 network (yellow shading-bottom) between the
active PACAP subfamily of receptor structures (left panel) and the inactive GLP1-R structure (right
panel) indicate rearrangement of the conserved polar networks for TM6 to kink at the Pro6.47xxGly6.50

motif and accommodate the α5 helix of Gαs at the cytoplasmic face.
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The outward movement of the intracellular half of TM6 and a bend of the extracel-
lular portion of TM7 towards TM6 results in rearrangement in the lower polar networks
(Figure 6B) [282,325]. The destabilization of the HETx motif (His2.50, Glu3.50, Thr6.42 and
Tyr7.57) breaks ground state interactions between Thr6.42 and Tyr7.57, and the Arg6.40–Glu8.41

interaction is lost [282]. Intracellular hydrogen bonds in the TM2-6-7-helix 8 polar net-
work that are present in inactive state class B1 GPCR structures are broken in the peptide
and G protein bound PAC1R, VPAC1R and VPA2R structures, enabling the insertion of
the C-terminal α5-helix of the Gαs subunit into the core of the receptors, where the α5
helix of Gs forms conserved interactions with TM2, TM3, and ICL2 enabling G protein
activation [282,325].

3.5. Allosteric Modulation

Due to the high degree of conservation in the TM bundle of different PACAP subfamily
receptors where the peptide agonist activation domains bind, the identification of allosteric
ligands may be an additional strategy that could be used for developing more selective
therapeutics [337]. Allosteric ligands bind to a spatially distinct binding site than the
endogenous agonists and therefore have the potential to modulate the receptor response to
these agonists. Since allosteric sites are likely to be less evolutionarily conserved compared
to the natural orthosteric sites, targeting an allosteric site could engender receptor selectivity
or alter the signaling/regulatory profile of peptide-bound receptors [338].

Allosteric ligands resulting in positive effects on the affinity and/or efficacy of the
orthosteric ligand response are known as positive allosteric modulators (PAMs), while
allosteric ligands resulting in negative effects on the orthosteric ligands are known as
negative allosteric modulators (NAMs) [338]. Only limited studies have attempted to
discover allosteric ligands within the PACAP subfamily of receptors, however, this may be
an avenue to explore for future drug design.

From in silico screening of the ZINC15 drug library, ticagrelor was proposed as
a potential allosteric modulator for the PACAP subfamily of receptors. Ticagrelor, an
approved antiplatelet medicine, was proposed as a NAM for inhibiting VIP-induced
calcium mobilization in CHO cells expressing either VPAC1R or VPAC2R, with weak
selectivity towards the VPAC2R [339]. Using molecular dynamics simulations with an
inactive homology model of VPAC1R that was generated based on the GLP1-R crystal
structure (PDB: 5VEW) [340,341], the allosteric ticagrelor binding site was predicted to
be located in the intracellular region of the TM bundle, in a pocket formed by Arg6.37,
Arg6.40, Arg2.46 and Asn8.47, and therefore proposed to prevent conformational changes
in the region of the tyrosine Thr6.42-Tyr7.57 toggle switch required for VPAC1 and VPAC2
receptor activation [339]. The TM helical bundle of class B1 GPCRs is a region that has
attracted much attention in allosteric drug design as modulation of the TMs, in particular
TM6, could be targeted to stabilize or restrict an active conformational receptor state [337].
NNC0640 and MK-0893 are NAMs that bind to TM6 in the inactive glucagon receptor
(GCGR) crystal structures (PDB: 5XEZ and 5EE7 respectively), restricting the outward
movement of the TM6 intracellular domain [329,342].

Positive allosteric modulators of the PAC1R have also been reported with doxycycline
and minocycline proposed to enhance PACAP binding to PAC1R by binding to a site in the
N-terminal ECD [343]. Doxycycline and minocycline belong to the antimicrobial class of
tetracyclines and promote the expression of the plasminogen activators: tissue plasminogen
activator (tPA) and urokinase plasminogen activator (uPA) via PAC1R activation in RT4
Schwann cells and augment PACAP27-induced cAMP stimulation in CHO cells overex-
pressing PAC1R [344]. While the 3D configuration of the N-terminal ECD is conserved
across class B1 GPCRs and within the PACAP receptor subfamily, the amino acid composi-
tion is relatively diverse [337]. Hence, targeting regions of the ECD provides opportunities
for the development of subtype-selective PACAP receptor allosteric modulators. This may
be particularly true for VPAC2R, where the PACAP27-bound VPAC2R Gs structure (PDB:
7VQX) demonstrated that the N-terminal α-helix of the ECD adopts a unique conformation



Int. J. Mol. Sci. 2022, 23, 8069 22 of 38

by inserting into a cleft between the peptide and ECL1 to stabilize the peptide-receptor
interface [137].

4. Concluding Remarks

Historically, the predominant strategy for the discovery of clinical candidates for the
PACAP receptor subfamily has been based on structural modifications to endogenous
peptides. Over the last decade, there has been considerable progress in the determination
of the three-dimensional structures of these receptors using cryo-EM, in complex with
agonists and G proteins, for the identification of key regions for peptide recognition and
selectivity, which complements earlier X-ray crystallography on receptor subdomains.
These recent structures advance our understanding of previously reported peptide and
receptor structural-activity relationships from empirical drug development and provide
insight into key regions of the peptide binding site to enable strategies for rational, structure-
guided peptide design.

While the ECD, where the peptide C-terminus initially recognizes class B1 GPCRs,
remains less well-resolved than other regions, the resolution of structures determined
through cryo-EM has drastically improved over the past five years through advances in
sample preparation, data collection, and data processing, and is predicted to continue
improving with sub-2.5 Å cryo-EM structure determination being increasingly routine for
class B1 GPCR–G protein complexes [288]. Moreover, direct information on 3D confor-
mational dynamics captured during vitrification can increasingly be extracted through
sophisticated analytical methods [304,345] and such dynamics play critical roles in peptide
recognition and modes of receptor activation that may not be apparent from high-resolution
consensus reconstructions [304,332,346,347]. This information can be integrated with other
methods for interrogating GPCR dynamics, including hydrogen deuterium exchange mass
spectrometry (HDX-MS) [348], single-molecule FRET studies [349] and electron param-
agnetic resonance (EPR) [350,351] and holds promise for further enhancing peptide drug
design [348,352]. This emerging knowledge on the different conformational states and
structural features responsible for activation transition from inactive and apo-state GPCRs
could be utilized in guiding the design of peptides of distinct pharmacology and selectivity
for different receptors within the PACAP subfamily as well as identifying allosteric binding
sites for new compounds [348,353].

The next question is: how do we use this information to develop better peptide
drugs and selectively target signaling pathways activated by PACAP receptors for specific
physiological outcomes? As described above, the PACAP subfamily of receptors can
activate diverse signaling pathways leading to their pleiotropic effects throughout the
body and are attractive targets for inflammatory and immune diseases, and disorders in
the nervous system. To coordinate the diverse physiological outcomes mediated by the
activation of the PACAP subfamily of receptors, these receptors activate multiple signaling
pathways through the coupling of different G proteins (e.g., Gs, Gq/11, and Gi/o proteins)
as well as through associating with β-arrestin and RAMPs to modulate receptor signaling
and trafficking [168,178,192,207,250,268]. Additionally, splice variants within the PAC1R,
as well as the potential for biased agonism through these receptor variants, may contribute
to differential transducer coupling and downstream signaling, encoding for functional
selectivity [178,180].

Biased peptide agonists, which have been broadly observed across class B1 GPCRs,
have therapeutic potential through coupling distinct profiles of transducers that produce
beneficial clinical effects, while reducing undesirable side effects [166,280,354]. All PACAP
subfamily receptor structures determined to date have been Gαs protein-coupled with mod-
ifications that stabilize the receptor G protein complex. Hence future structural studies with
non-Gs transducers will determine whether signaling bias can be structurally explained
for the rational design of biased peptides for PACAP receptor subtypes. Furthermore,
short half-lives, lack of oral bioavailability, and difficulty in penetrating the blood–brain
barrier are challenges observed with many peptides. As many of the therapeutic targets
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of the PACAP receptor subfamily are located in the CNS, the engineering of peptides that
can selectively bind to the PACAP receptors and cross the blood–brain barrier remains a
major challenge.
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