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Abstract: Piperidine and pyrrolidine derivatives are important nitrogen heterocyclic structures
with a wide range of biological activities. However, reported methods for their construction often
face problems of requiring the use of expensive metal catalysts, highly toxic reaction reagents or
hazardous reaction conditions. Herein, an efficient route from halogenated amides to piperidines
and pyrrolidines was disclosed. In this method, amide activation, reduction of nitrile ions, and
intramolecular nucleophilic substitution were integrated in a one-pot reaction. The reaction conditions
were mild and no metal catalysts were used. The synthesis of a variety of N-substituted and some
C-substituted piperidines and pyrrolidines became convenient, and good yields were obtained.
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1. Introduction

Piperidine and pyrrolidine derivatives are important nitrogen heterocyclic structures
with a wide range of biological activities [1-5]. For example, the first synthetic analgesic
drug, pethidine, is a powerful analgesic still commonly used in clinical practice [6] (Figure 1,
1). Domperidone is a dopamine receptor antagonist that is used to treat digestive disor-
ders [7] (Figure 1, 2). Levobupivacaine is clinically used as a long-acting local anesthetic
that inhibits the release of y-aminobutyric acid in the brain [8] (Figure 1, 3). Bepridil is a
long-acting calcium antagonist clinically used to treat angina pectoris, arrhythmia, and
hypertension [9] (Figure 1, 4). Buflomedil is a vasoactive drug with many pharmacologi-
cal effects. It is widely used in the treatment of cerebrovascular and peripheral vascular
diseases [10] (Figure 1, 5).
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Figure 1. Drugs containing piperidine or pyrrolidine structure.
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The reported methods for the construction of piperidines and pyrrolidines are mainly
divided into two categories. The first type is the reduction method, in which expensive
metal catalysts, such as palladium and platinum, are used to catalyze the hydrogenation
reduction of pyridines or pyrroles [11-15]. Moreover, the reaction usually needs to be
conducted at a high pressure of tens to hundreds of atmospheres. The other type is the
cyclization reaction, in which cyclic amines are constructed by nucleophilic substitution
of primary amines with dihaloalkanes or diols [16,17]. However, dihaloalkanes are strong
alkylating agents with high genotoxicity, and the methods using diols also face the problem
of requiring a high reaction temperature of over 200 °C.

Amides are a class of relatively stable carbonyl compounds that do not readily undergo
reactions in contrast to acyl halides, anhydrides, and esters. However, a significant body of
research on the selective activation of amides to achieve powerful transformations under
mild conditions has emerged in recent decades [18-24]. In 2017, Huang’s group reported
an interesting method that involves the amide activation-induced dehydracoupling of
halogenated secondary amides with alkenes and NaBHjy-triggered tandem cyclization
reaction; the method is used to efficiently construct 2-allyl piperidines and pyrrolidines [25].
In 2021, our group disclosed a route from aryl ethylamide to fused indolizidines and
quinolizidines [26]. In this method, the following are integrated in a one-pot reaction:
amide activation, Bischler-Napieralski reaction (B-N reaction) [27,28], imine reduction,
and intramolecular nucleophilic substitution. We found that if the reaction is always
controlled at a lower temperature, then the B-N reaction will be inhibited. Through
this, the main product of piperidines or pyrrolidines was obtained rather than the fused
indolizidines and quinolizidines. In the present study, a one-pot route that involved the
use of halogenated amides to construct piperidine and tetrahydropyrrole derivatives was
disclosed (Scheme 1c).
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Scheme 1. Comparison of previous works and this work. (a) Huang’s work; (b) Our previous work;
(c) This work.

2. Results and Discussion

Reaction conditions were optimized by using 5-chloro-N-(4-chlorolphenethyl)pentanamide
(6a) as the starting material. Considering that pyridine class Lewis base plays an impor-
tant role in the activation of amide, different kinds of base were first screened (Table 1,
Entries 1-5). 2-Fluoropyridine (2-F-Py) was the most efficient (Table 1, Entry 4). When
Lewis base was absent, the reaction still occurred, but the yield was reduced to a great
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extent (Table 1, Entry 6). Nevertheless, increasing the amount of 2-F-Py did not contribute
to the improvement of yield (Table 1, Entry 7). The reaction temperature was subsequently
investigated. When the reaction temperature was increased, the yield of the product de-
creased. (Table 1, Entries 8-9). This was due to the involving of B-N reaction at relatively
higher temperatures, resulting in the production of some polycyclic byproducts. Differ-
ent reductants, including KBH4, NaBH3CN, and NaBH(OAc)3, were then tested, but the
outcomes were inferior to when NaBH, was used (Table 1, Entries 10-12).

Table 1. Optimization of reaction conditions @.

Cl

(1) Tf,O, Base /@
(2) Reductant 7a

6a O
Entry Base Reaction T (°C) Reductant Yield (%) P
1 Pyridine (1.2 equiv.)- —78 NaBH4 28
2 3,5-dimethylpyridine (1.2 equiv.) —78 NaBHy 32
3 2-Cl-Py (1.2 equiv.) —78 NaBHy 50
4 2-F-Py (1.2 equiv.) —78 NaBHy 90
5 2-1-Py (1.2 equiv.) —78 NaBHy 40
6 - —78 NaBHy 12
7 2-F-Py (2.0 equiv.) —78 NaBHy 85
8 2-F-Py (1.2 equiv.) -30 NaBH4 73
9 2-F-Py (1.2 equiv.) 0 NaBH, 66
10 2-F-Py (1.2 equiv.) —78 KBH4 75
11 2-F-Py (1.2 equiv.) —78 NaBH3;CN 40
12 2-F-Py (1.2 equiv.) —78 NaBH(OAc); trace

@ Reaction conditions: 6a (0.5 mmol), Tf,O (1.1 equiv.), base, CH,Cl, (5 mL), Ar, reaction temp., 30 min —
reductant (2.0 equiv.), MeOH (5 mL), r.t., 2 h. b Yields were determined by 'H NMR with 1,1,2,2-tetrachloroethane
as the internal standard.

With the optimized reaction conditions defined, the scope of the reaction was investi-
gated. N-phenethyl chloropentamides were tested first (Scheme 2, 7a-7e). Substrates with
electron-donating or electron-withdrawing substitutions in the aromatic nucleus all reacted
smoothly to generate corresponding N-phenethyl piperidines. The reaction system was
then applied to N-benzyl amides (Scheme 2, 7f-7h). Various N-benzyl piperidines were
obtained at moderate-to-good yields. Aliphatic chain and cyclic amide substrates adapted
well under the established conditions and transformed into piperidine derivatives at good
yields (Scheme 2, 7i-7j). Halogenated butyramides were subsequently tested. Similar to
piperidine derivatives, tetrahydropyrrole derivatives with versatile substitutions were also
successfully synthesized (Scheme 2, 7k-7t). We also attempted to synthesize C-substituted
pyrrolidine. A 3-bromo-substituted pyrrolidine was successfully obtained in this method
(Scheme 2, 7u).

We further attempted the synthesis of three-, four-, and seven-membered ring com-
pounds. Unfortunately, none of these compounds were obtained, even if trace amounts
were detected through mass spectrometry. The main products were uncycled secondary
amines, which were confirmed by HRMS. Possibly, the ring tension made the reaction more
difficult (Scheme 2, 7v). The synthesis of N-arylpyrrolidines was also difficult. The weaker
nucleophilicity of arylamines than aliphatic amines may be the main factor that led to this
result (Scheme 2, 7w). (See Supplementary Materials)
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Scheme 2. Scope of this method ?: For each compound, the isolated yield is given as a percentage.
@ Uniform reaction conditions unless otherwise noted: Compound 6 (0.5 mmol), Tf,0 (1.1 equiv.),
2-F-Py (1.2 equiv.), CHCl, (5 mL), Ar, —78 °C, 30 min — MeOH (5 mL), NaBHj (2.0 equiv.), r.t., 2 h.

A plausible mechanism is illustrated in Scheme 3, with compound 7a as an example.
Amide substrate (Scheme 3, 6a) was firstly activated by Tf20 to obtain a nitrilium ion [29,30]
(Scheme 3, 8), which was reduced by sodium borohydride to obtain the imide ion (Scheme 3,
9). The imide ion 9 was further reduced by sodium borohydride to obtain the halogenated
secondary amine [31], and this was followed by intramolecular nucleophilic substitution to
obtain piperidine product (Scheme 3, 7a). In our previous work [26], the nitrilium ion 8 was
readily attacked by electrons on the benzene ring and underwent the B-N reaction to form
the imine ion (Scheme 3, 11) under 40 °C. Imine ion 11 was then subjected to reduction
of the C=N bond (Scheme 3, 12) followed by intramolecular nucleophilic substitution
to obtain a fused indolizidine product (Scheme 3, 13). However, in this work, it was
difficult for the electrons on the benzene ring to attack imine ion 11 at a low temperature,

so the B-N reaction was inhibited. As a result, a piperidine was obtained other than a
fused indolizidine.
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Scheme 3. The proposed mechanism.

3. Materials and Methods
3.1. General Informations

All solvents were distilled from appropriate drying agents prior to use. CH,Cl,
was distilled over calcium hydride under a nitrogen atmosphere and stored over 4A MS.
Tf,0 was distilled over phosphorous pentoxide (P,Os) and was stored for no more than
a week before redistilling. Flash column chromatography was performed using silica gel
(300-400 mesh). 'H NMR and 3C NMR (400 and 101 MHz, respectively) spectra were
recorded on a Bruker 400 MHz NMR spectrometer in CDCl3. 'H NMR chemical shifts
were reported in ppm () relative to tetramethylsilane (TMS) with the solvent resonance
employed as the internal standard (CDCl;, 7.26 ppm). 3C NMR chemical shifts were
reported in ppm from TMS with the solvent resonance as the internal standard (CDCls,
77.16 ppm). HRMS data were recorded on a SCIEX X500R QTOF HRMS apparatus.

3.2. General Procedure A for the Synthesis of Piperidines and Pyrrolidines

Into a dry 25 mL round-bottom flask equipped with a magnetic stirring bar, the
following were added successively: a secondary amide (compound 6, 0.5 mmol, 1.0 equiv.),
10 mL of anhydrous CH,Cl, and 2-F-Py (0.6 mmol, 1.2 equiv.) under an argon atmosphere.
After being cooled to —78 °C, Tf,O (0.55 mmol, 1.1 equiv.) was added dropwise via a
syringe, and the reaction was stirred for 30 min. Then, NaBH, (1.0 mmol, 2 equiv.) and
CH;3O0H (5 mL) were added under r.t. and stirred for additional 2 h. The reaction was
quenched with a saturated aqueous solution of NaHCO3 (10 mL), and the mixture was
extracted with dichloromethane (3 x 8 mL). The combined organic phase was dried over
anhydrous NaySOy, filtered and concentrated under reduced pressure. The residue was
purified by flash chromatography on silica gel to give the corresponding compound.

4. Conclusions

In summary, we proposed a facile tandem protocol to construct piperidines and
pyrrolidines. This method integrated amide activation, reduction of nitrile ions, and
intramolecular nucleophilic substitution in a one-pot reaction. This method had mild
reaction conditions and produced a variety of N-substituted and some C-substituted
piperidines and pyrrolidines at good yields.

Supplementary Materials: The following supporting information can be downloaded at: https:
/ /www.mdpi.com /article/10.3390 /molecules27154698 /s1, "H NMR data and spectrum, HMRS data,
character for compound 7a-7u; 1*C NMR data and spectrum for compound 7u; structures of the
amide substrates. References [32—48] are cited in the Supplementary Materials.
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