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Abstract: Self-healing materials and self-healing mechanisms are two topics that have attracted
huge scientific interest in recent decades. Macromolecular chemistry can provide appropriately
tailored functional polymers with desired healing properties. Herein, we report the incorporation
of glycidyl methacrylate-based (GMA) copolymers in waterborne polyurethanes (WPUs) and the
study of their potential healing ability. Two types of copolymers were synthesized, namely the
hydrophobic P(BA-co-GMAy) copolymers of GMA with n-butyl acrylate (BA) and the amphiphilic
copolymers P(PEGMA-co-GMAy) of GMA with a poly(ethylene glycol) methyl ether methacrylate
(PEGMA) macromonomer. We demonstrate that the blending of these types of copolymers with two
WPUs leads to homogenous composites. While the addition of P(BA-co-GMAy) in the WPUs leads to
amorphous materials, the addition of P(PEGMA-co-GMAy) copolymers leads to hybrid composite
systems varying from amorphous to semi-crystalline, depending on copolymer or blend composition.
The healing efficiency of these copolymers was explored upon application of two external triggers
(addition of water or heating). Promising healing results were exhibited by the final composites when
water was used as a healing trigger.

Keywords: waterborne polyurethane; glycidyl methacrylate; n-butyl acrylate; poly(ethylene glycol)
methyl ether methacrylate; free radical polymerization; self-healing; temperature trigger; water trigger

1. Introduction

Self-healing materials are materials that can partially or completely regain their origi-
nal properties after physical damage [1–6]. Two main self-healing mechanisms have been
proposed to ensure the durability of materials or coatings: (a) Extrinsic self-healing wherein
a healing agent needs to be introduced in the material during the synthetic/production
procedure. In this case, the healing agent is usually encapsulated in reservoirs like mi-
crocapsules, microfibers or vascular networks which are dispersed in the matrix (usually
polymeric). After a damage, usually a crack, these encapsulants are ruptured, releasing
the healing agent in the matrix [7,8]. (b) Intrinsic self-healing in which the materials can
heal a damage themselves, without the addition of an external healing agent. Herein,
the healing process mechanism is governed by chemical or physical interactions [9–12].
Thus, chemical interactions like Diels-Alder reactions [13], imine bonds [14], disulfide
bonds [15–17], boronic ester crosslinks [18], as well as physical interactions like hydrogen
bonding [19–21], ionic bonds [22], hydrophobic or electrostatic interactions and host-guest
interactions [23], can provide healing. Self-healing materials can also be categorized as au-
tonomous or non-autonomous materials [6,7,24]. In autonomous systems, healing happens
without external triggers while in non-autonomous systems, external trigger (usually heat,
light etc.) is necessary to initiate the healing process.

Polyurethanes (PUs) and especially waterborne polyurethanes (WPUs) are high per-
formance elastomers with interesting chemical structure and environmentally friendly
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character. However, they are quite vulnerable to damage (by mechanical, chemical, ther-
mal, or other reasons), leading to undesired scratches or notches that eventually affect
the products lifetime. This susceptibility makes the production of PUs with improved
functions, like self-healing, flexibility, elasticity, abrasion resistance, an emerging demand.
Such characteristics can be yielded in the PUs and WPUs by adding appropriate functional
groups, usually via chemical reactions [13].

Recent trends on healing of various coatings are based on blending. This way, by
simply mixing, for example, WPU dispersions with water-soluble “fillers” (polymers,
organic or inorganic particles, etc.), environmentally friendly composites with modified
mechanical and other properties (abrasion resistance, healing, processability) can be easily
manufactured, without requiring complex synthesis and chemical modification processes.
Some current studies report the fabrication of self-healable nanocomposites based on
blends of PUs and organic or inorganic nano- or micro-particles [25–28]. Other studies
have shown that the incorporation of adequately functional polymers or other compounds
(for instance, poly(dopamine methacrylamide) [29], polycaprolactone [30], tannic acid [31])
as the dispersed phase in polyurethane matrices leads to self-healable composites. In such
systems, self-healing is based on hydrogen bonding, van der Waals forces, hydrophobic
interactions, thermo-induced healing, etc.

Epoxy-functional polymers are recognized as versatile polymeric materials with a
wide range of industrial applications. Poly(glycidyl methacrylate) (PGMA) is one of the
most interesting functional macromolecules with side epoxy groups. Glycidyl methacrylate
(GMA) is a low cost, non-toxic and highly reactive hydrophobic monomer, which can be
easily copolymerized with a variety of monomers, leading to advanced materials. More-
over, GMA can serve as a precursor of multifunctional polymers, since its pendant epoxy
group can react with nucleophiles (e.g., amines, carboxylic acids, thiols, etc.), creating
new polymeric architectures with additional functionalities or responsive abilities [32].
Copolymers of GMA, like poly(ethylene-co-glycidyl methacrylate), have been used as
healing thermoplastic modifiers in epoxy/amine resin [33], while the GMA monomer has
been exploited as a healing agent in GMA-loaded microcapsules in epoxy or poly(methyl
methacrylate) (PMMA) resins [34,35]. On the other hand, it has been shown that hydropho-
bic copolymers made from common monomers, like MMA and n-butyl acrylate (BA), can
repair a damage either without external intervention via weak attractive van der Waals
forces [36] or in the presence of water (water-accelerated self-healing) [37].

Among others, GMA has been combined with the soft and hydrophobic n-butyl
acrylate (BA) monomer or poly(ethylene glycol) methyl ether methacrylate (PEGMA)
macromonomers leading to materials with low glass transition temperature. Copoly-
mers of GMA and BA have been utilized as latexes or for the reinforcement of epoxy
resins [38–41], while copolymers of GMA and PEGMA can find use in bioapplications
(wound dressings [42], drug delivery systems [43], antibacterial nanocarriers [44], enzyme-
polymer conjugates [45], as solid [46,47] or gel [48] polymer electrolyte membranes or as
coatings for the preparation of modified membranes with antifouling [49] or heavy metals
and dyes separation [50] properties.

Taking advantage of the reactivity of GMA-based copolymers towards acrylic acid
units or amine groups, the preparation of coatings for potential antimicrobial or antifouling
applications is elaborated in our laboratory during the last years [51–53], while through the
combination with collagen, the preparation of hydrogels as potential biofertilizers has been
recently explored [54].

As has been previously reported, the introduction of ethylene glycol groups con-
tributes to effective water mediated [55,56] or thermally mendable [57,58] self-healing
behavior of films or coatings, mainly due to the increasing chain mobility, offered by
the triggers. For example, upon exposure to water or moisture, polyethylene glycol pro-
vides chain fluidity, filling the damage (e.g., cracks or micrometer-sized cuts), while it can
potentially be involved in healing mechanisms like hydrogen-bond formation with supple-
mentary moieties [55,56,59]. Based on these concepts, the design principle in our study was
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to synthesize functional copolymers that combine reactive groups with units that can be
activated by triggers like water or temperature changes. Thus, in the present work, a series
of random GMA-based copolymers with the hydrophobic monomer BA or a hydrophilic
PEGMA macromonomer were synthesized. Such polymeric structures combine the func-
tionality of GMA with additional properties, like the control of hydrophilic/hydrophobic
balance and modification of the thermal properties. These copolymers were used as ad-
ditives in waterborne polyurethane resins and their healing potential upon application
of external triggers, like water or heat, was explored. Both WPU/P(BA-co-GMA) and
WPU/P(PEGMA-co-GMA) composite systems exhibited promising water-mediated heal-
ing efficiency, suggesting their future use as potential healable coatings.

2. Results
2.1. Copolymer Characterization

Two functional copolymer structures have been synthesized and tested as potential
healing additives in WPUs. In the first case, GMA units were combined with hydrophobic
BA units to prepare water-insoluble P(BA-co-GMAy) copolymers, while in the second case,
GMA was copolymerized with a hydrophilic PEGMA macromonomer (Mn 950 g/mol) to
produce water-soluble amphiphilic P(PEGMA-co-GMAy) copolymers. The structure of
these two copolymer families, where y is the molar feed content in GMA units, is presented
in Scheme 1. The copolymers were synthesized through free radical copolymerization and
characterized by several techniques like 1H-NMR, SEC, ATR-FTIR and DSC.
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Scheme 1. Structure of the (a) P(BA-co-GMAy) and (b) P(PEGMA-co-GMAy) copolymers.

The chemical composition of the synthesized copolymers was determined through 1H-
NMR spectroscopy. Figure 1 shows the 1H-NMR spectra in CDCl3 of the P(BA-co-GMAy)
copolymers with y = 30, 40, 50 and 70. The presence of GMA in the final copolymers is
confirmed by the characteristic peaks at 3.85 and 4.31 ppm corresponding to the methylene
protons (c) of GMA. The peak at 3.26 ppm is attributed to the methyl proton (d) and the
peaks at 2.7 and 2.9 ppm correspond to the methylene protons (e, e’) of the epoxy ring. The
methyl protons (j, b) of BA and GMA are observed at 0.79–1.21 ppm. The peak at 1.39 ppm
corresponds to methylene protons (i), while the peak at 1.61 ppm corresponds to methylene
protons (h). Finally, the peak at 4.03 ppm is attributed to the methylene protons (g) of BA.
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Figure 1. 1H-NMR spectra of the P(BA-co-GMAy) copolymers in CDCl3. The spectra of the homopoly-
mers PGMA and poly(n-butyl acrylate), PBA, are also presented.

The molar ratio of GMA in the P(BA-co-GMAy) copolymers was calculated from the
integrals of the signals at 3.26 ppm (d, GMA unit) and 1.39 ppm (i, BA unit). As seen in
Table 1, the actual composition of the copolymers is in a rather good agreement with the
feed composition. The number-average molar mass (Mn), the weight-average molar mass
(Mw) and the polydispersity index (PDI), as obtained from SEC, are also given in Table 1.
As seen, copolymers with reasonably high molar masses are obtained (Mw is in the range
~2–5 × 104 g/mol), while PDI values are typical for free radical polymerzation products.

Table 1. Characterization results for the P(BA-co-GMAy) copolymers.

Polymers Feed Composition
(% w GMA)

Feed Composition
(% mol GMA)

1H-NMR Composition
(% mol GMA)

Mn
(g/mol)

Mw
(g/mol) PDI

P(BA-co-
GMA30) 32 30 30 14,000 28,000 2.0

P(BA-co-
GMA40) 42 40 46 23,000 55,000 2.4

P(BA-co-
GMA50) 53 50 55 24,000 52,000 2.2

P(BA-co-
GMA70) 72 70 67 21,000 45,000 2.1

The synthesized copolymers were further examined by ATR-FTIR spectroscopy, and
the spectra are shown in Figure 2. For comparison, the spectra of PBA and PGMA ho-
mopolymers are also shown. The characteristic stretching vibration of the ester group
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is observed at 1724 cm−1, which is related to the carbonyl C=O group of BA and GMA
units. Moreover, the peaks at 1247 cm−1 and in the region 1080–1190 cm−1 correspond
to the stretching vibration of the C-O bond of both BA and GMA. It is clear, especially in
the region of 1080–1190 cm−1, that the peaks of the copolymers are broader, as a result
of the superposition of the corresponding peaks of the PBA and PGMA homopolymers.
The presence of a GMA unit in the copolymers P(BA-co-GMAy) is further verified by the
characteristic bands at 845 and 906 cm−1, attributed to the vibrations of the epoxy ring.
The peak, also, at 755 cm−1 corresponds to the bending vibration of the CH group of the
epoxy ring.
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Figure 2. ATR-FTIR spectra of the P(BA-co-GMAy) copolymers. The spectra of the homopolymers
PBA and PGMA are also presented.

The characterization of the P(PEGMA-co-GMAy) copolymers by 1H-NMR is shown in
Figure 3. The spectra of the homopolymers PGMA and poly(poly(ethylene glycol) methyl
ether methacrylate), P(PEGMA), are also presented. The signals at 0.8–1.2 ppm and 1.2–2
ppm are attributed to the protons of the methylene groups –CH3 (b, b’) and the –CH2– (a, a’)
groups of the main chain, respectively. The protons of the –CH2– group of the epoxide ring
of GMA (e) can be detected at 2.7 and 2.9 ppm, while the proton of the –CH– group (d) is
seen at 3.26 ppm. Moreover, the signal at 4.31 ppm corresponds to the methylene protons
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–O-CH2– (c) adjacent to the epoxy groups of GMA. The signals at 3.38 ppm and 3.6 ppm
are assigned to the protons of the methylene group –CH3 of PEGMA (g) and the protons
of the CH2-CH2-O (f) groups of PEGMA units, respectively. The monomer molar ratio of
the polymers was determined comparing the signals at 3.38 ppm (PEGMA unit) and at
3.26 ppm (GMA unit). The calculations for both families of copolymers are presented in
detail in Figure S1, Tables S1 and S2.
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Figure 3. 1H-NMR spectra of the P(PEGMA-co-GMAy) copolymers in CDCl3. The spectra of the
homopolymers P(PEGMA) and PGMA are also presented.

The characterization results from 1H NMR along with the SEC characterization (Mn,
Mw, PDI) are presented in Table 2. As seen, the resulting composition of the copolymers
is in a rather good agreement with the feed composition. For this series of copolymers,
products with quite high molar masses are obtained (Mw is in the range ~1–5 × 105 g/mol).
These high values are understandable, since the copolymers bear high contents of PEGMA
units with a molar mass around 1000 g/mol.

Table 2. Characterization results for the P(PEGMA-co-GMAy) copolymers.

Polymers Feed Composition
(% w GMA)

Feed Composition
(% mol GMA)

1H-NMR
Composition

(% mol GMA)

Mn
(g/mol)

Mw
(g/mol)

PDI
(Mw/Mn)

P(PEGMA-co-
GMA40) 9 40 45 60,000 105,000 1.7

P(PEGMA-co-
GMA50) 13 50 54 235,000 470,000 2.0

P(PEGMA-co-
GMA60) 18 60 67 80,000 220,000 2.7

P(PEGMA-co-
GMA70) 26 70 74 110,000 340,000 3.1
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The ATR-FTIR characterization of the P(PEGMA-co-GMAy) copolymers is presented
in Figure 4. The characteristic peak at 1724 cm−1 corresponds to the stretching vibrations of
the ester groups (C=O) of both GMA and PEGMA and was utilized for the normalization
of the spectra. The peak at 1100 cm−1 is attributed to the characteristic stretching vibration
of the ether bonds (C-O-C) of PEGMA. It can be observed that the ratio of the intensities
of these two peaks decreases with increasing the GMA content, implying the existence of
both PEGMA and GMA units in the copolymers, according to the feed composition. The
band around 1460 cm−1 is attributed to C-H stretching and bending modes of methylene
groups of PEGMA and GMA. The peaks at 755 and 906 cm−1 are attributed to the epoxide
groups of GMA. These peaks are not detected in the spectrum of P(PEGMA) while they
are present in the spectra of the P(PEGMA-co-GMAy) copolymers. The same counts for
the peak of the twisting mode of the methylene groups of the side chain of PEGMA at
~1300 cm−1; it is not detected in the spectrum of PGMA, while it is present in the spectra of
the P(PEGMA-co-GMAy) copolymers.
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The thermal behavior of the resulting P(BA-co-GMAy) copolymers is shown in Figure 5.
All products in this copolymer series are amorphous and just the glass transition temper-
ature, Tg, is detected. The Tg of PBA is known to be very low, −53 ◦C [60], while the
Tg of PGMA is found at 70 ◦C, close to the Tg values reported in literature [61,62]. It is
seen that the Tg of the copolymers takes values between the Tg of the two homopolymers.
As a general trend (Figure S2), the Tg values of the copolymers increase regularly with
increasing the actual mole fraction of GMA, indicating a good compatibility between the
two structural units. Interestingly, when the actual composition of the copolymers is close
to molar stoichiometry (copolymers with y = 40 and 50, containing 46 and 55 %mol GMA),
the Tg value is around −3 ◦C/−2 ◦C, namely about 20 ◦C lower than the expected one
(following the Tg trend shown in Figure S2). Though this observation should be further
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verified and systematically studied, it might be an indication that, when the copolymer com-
position is close to molar stoichiometry, the macromolecular chains adapt conformations
allowing higher free volumes in bulk.
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Figure 5. DSC curves of first heating cycle for the P(BA-co-GMAy) copolymers.

The DSC thermograms for P(PEGMA-co-GMAy) copolymers, along with the thermo-
grams of PGMA and P(PEGMA) homopolymers as reference are depicted in Figure 6. The
thermal characteristic values obtained by DSC are tabulated in Table 3. As a consequence of
the very high PEGMA weight content of these copolymer series, the thermal behavior seems
to be governed by the presence of PEGMA. Thus, all P(PEGMA-co-GMAy) copolymers
exhibited a single Tg between −43 and −55 ◦C (Figure S3), namely somewhat higher than
the Tg of P(PEGMA), −70 ◦C. Similar findings have been reported by Borodinov et al. [63].
As can be seen, the Tg values of the copolymers are closer to that of pure P(PEGMA),
because of the high weight fraction of the PEGMA macromonomer segments. In addition,
all P(PEGMA-co-GMAy) copolymers exhibit crystallinity, attributed to the side PEGMA
chains. The melting temperature, Tm, values of the copolymers are lower than the Tm
of pure P(PEGMA), indicating that the introduction of GMA units destroys the packing
regularity of PEGMA chains, leading to the melting point decrease. It is evident that the
Tm values as well as the enthalpies of melting are strongly influenced by the composition
of the copolymer. For PEGMA content 30 and 40 mol%, the copolymers exhibit an obvious
crystallization peak and a melting peak during heating. These copolymers are considered
as semicrystalline with the possibility of thermal-induced crystallization at a crystallization
temperature, Tc. For PEGMA compositions 50 and 60 mol%, the resulted copolymers are
crystalline exhibiting only a melting temperature but not crystallization temperature. The
degree of crystallinity, XC%, of the copolymers is calculated from the thermographs using
the equation:

XC% =
∆Hm − ∆Hc

∆Ho
m

∗ 100 (1)

where ∆Hm is the enthalpy of melting and ∆Hc is the enthalpy of crystallization, both deter-
mined by DSC. ∆Hm is the enthalpy of melting of a completely crystalline material. In our
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case we used the value ∆Hm = 197 J/g, corresponding to poly(ethylene glycol), considered
as the more similar structure to PEGMA [64,65]. From Equation (1), the crystallinity of
the whole copolymer is determined. Since the only crystallizable unit is PEGMA, %X’C
reports the “corrected” crystallinity, when only the actual content of PEGMA units in the
copolymers is considered. As a general tendency, the percentage of crystallinity of the
copolymers decreases with the increase of the GMA content due to irregularities in PEGMA
molecular packing. In combination with the very low Tg, this effect is considered as a main
advantage on the use of these copolymers as self-healing agents, in case they are embedded
in a coating matrix, since they can easily be mobilized when a scratch is formed.
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Table 3. DSC results for the P(PEGMA-co-GMAy) copolymers.

Polymers Tg (◦C) Tc (◦C) ∆Hc (J/g) Tm (◦C) ∆Hm
(J/g) %Xc %X’c

P(PEGMA) −70 - - 42 120.0 61.0 61.0
PGMA 70 - - - - - -

P(PEGMA-co-GMA40) −43 - - 37 84.0 42.6 47.3
P(PEGMA-co-GMA50) −45 - - 31 99.2 50.3 59.2
P(PEGMA-co-GMA60) −55 −24 39.6 25 77.7 19.3 25.1
P(PEGMA-co-GMA70) −50 −23 33.8 31 73.2 20.0 28.6

2.2. Investigation of WPU/Copolymer Films

For the preparation of the WPU/copolymer composites, WPU dispersions were mixed
with solutions of the as synthesized copolymers, spread on glass petri dishes or Teflon sheet,
and left to stand at ambient temperature until full evaporation of solvent and formation
of films. Two laboratory-made WPUs, coded WPU1 and WPU2, were tested. Two mixing
contents, namely 10% w/w and 20% w/w on dry basis, were studied. The nomenclature
used for these composites is WPUi/xcopolymer, where i = 1 or 2 and x is the weight content,
10 or 20 (in % w/w). The aim was to use as little additive as possible in the WPUs, in order to
minimize the influence in the final properties (e.g., transparency, homogeneity, mechanical
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properties, etc.) of the polyurethane film. The formed films seem to be homogeneous, quite
transparent and non-brittle.

ATR-FTIR and DSC were employed to verify the chemical composition and explore
the thermal properties of the WPU/GMA-based copolymer composites. In Figure 7, the
ATR-FTIR spectra of WPU/P(PEGMA-co-GMA50) films are shown, as example. For rea-
sons of comparison, the ATR-FTIR spectra of films consisting only of the corresponding
polyurethane film and P(PEGMA-co-GMA50) are also given. In the spectra of pure WPUs,
characteristic absorption peaks of polyurethanes can be detected [66,67] Indeed, the broad
absorption band at 3340 cm−1 corresponds to the stretching vibration of the N-H groups
(Amide I) of polyurethane. The absorption peaks located at ~2940 and 2860 cm−1 are
attributed to the asymmetric and symmetric stretching CH2 vibrations of alkanes. The peak
of non-hydrogen bonded carbonyl urethane group C=O is seen at 1740 cm−1. The absorp-
tion band at 1530 cm−1 is attributed to the bending vibration of N-H of urethane (Amide II),
while the peaks in the range of 1100–1350 cm−1 indicate stretching vibration of O-C=O and
C-N groups of urethanes. In the spectra of the WPU/P(PEGMA-co-GMA50) composites, the
abovementioned characteristic peaks of the WPUs, as well as of the P(PEGMA-co-GMA50)
copolymer, can be identified. It can be observed that as the copolymer P(PEGMA-co-
GMA50) content increases in the WPU/P(PEGMA-co-GMA50) composites, some absorp-
tion bands, which are characteristic for the P(PEGMA-co-GMA50) copolymer (1460 cm−1,
955 cm−1 and especially the peak at 1100 cm−1), are enhanced in the ATR-FTIR spectra
of WPU1/P(PEGMA-co-GMA50) and WPU2/P(PEGMA-co-GMA50). Therefore, it can be
confirmed that the copolymer P(PEGMA-co-GMA50) has been successfully incorporated
into the polyurethane films.
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Figure 7. ATR-FTIR spectra of (a) WPU1/P(PEGMA-co-GMA50) and (b) WPU2/P(PEGMA-co-
GMA50) films containing P(PEGMA-co-GMA50) in two weight ratios (10 and 20% w/w). The spectra
of P(PEGMA-co-GMA50) copolymer and the films of pure WPU1 and WPU2 are also presented.

The thermal behavior of the WPU/copolymer films was studied by DSC. A summary
of all DSC results for P(PEGMA-co-GMA) and P(BA-co-GMA) copolymers, as well as of
WPUs and WPU/copolymer films are presented in Table 4. In Figure 8, the thermograms of
pure WPU1 and WPU2, the copolymer P(PEGMA-co-GMA50) and the composite films of
WPU1 or WPU2 with P(PEGMA-co-GMA50), at 10 and 20% w/w polymer weight contents,
are shown. The blends exhibit a characteristic behavior of both WPUs and the P(PEGMA-
co-GMA50) polymer. As shown in Figure 8a, while the Tg of WPU1 is −23 ◦C, after the
incorporation of 10% w/w or 20% w/w P(PEGMA-co-GMA50) polymer content, the Tg of
the composites decreases to −37 ◦C and −34 ◦C, respectively (Table 4). Likewise, in the case
of WPU2 blends (Figure 8b), the WPU2/10P(PEGMA-co-GMA50) and WPU2/20P(PEGMA-
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co-GMA50) composites exhibited lower Tg values (−28 ◦C and −32 ◦C, respectively), when
the Tg of WPU2 is −9 ◦C (Table 4). These Tg values of all the WPU1/P(PEGMA-co-GMA50)
and WPU2/P(PEGMA-co-GMA50) composites, suggest that the formed composite films
are characterized by good compatibility of their individual components.

Table 4. Characteristic glass and melting transition temperatures of neat polyurethane films,
P(PEGMA-co-GMA) and P(BA-co-GMA) copolymers and the combination of both polyurethanes
and copolymer in 90/10 w/w or 80/20 w/w.

Sample Tg (◦C) Tc (◦C) ∆Hc (J/g) Tm (◦C) ∆Hm (J/g) %X”c

Pure WPU films
WPU1 −23 - - - - -
WPU2 −9 - - - - -

Copolymers
P(PEGMA-co-GMA50) −45 - - 31 99.2 59.2
P(PEGMA-co-GMA70) −50 −23 33.80 31 73.20 28.6

WPU/copolymer films
WPU1/ 10 P(PEGMA-co-GMA50) −37 - - 28 6.04 36.0
WPU1/ 20 P(PEGMA-co-GMA50) −34 - - 30.5 10.16 30.4

WPU1/ 10 P(PEGMA-co-GMA70) * −32 - - - - -
WPU2/ 10 P(PEGMA-co-GMA50) −28 - - - - -
WPU2/ 20 P(PEGMA-co-GMA50) −32 - - 26.5 6.50 19.4

WPU2/ 10 P(PEGMA-co-GMA70) * −3 - - - - -

* DSC thermograms are shown in Figure S4.

Int. J. Mol. Sci. 2022, 23, 8118 10 of 21 
 

 

  
(a) (b) 

Figure 7. ATR-FTIR spectra of (a) WPU1/P(PEGMA-co-GMA50) and (b) WPU2/P(PEGMA-co-
GMA50) films containing P(PEGMA-co-GMA50) in two weight ratios (10 and 20% w/w). The spectra 
of P(PEGMA-co-GMA50) copolymer and the films of pure WPU1 and WPU2 are also presented. 

The thermal behavior of the WPU/copolymer films was studied by DSC. A summary 
of all DSC results for P(PEGMA-co-GMA) and P(BA-co-GMA) copolymers, as well as of 
WPUs and WPU/copolymer films are presented in Table 4. In Figure 8, the thermograms 
of pure WPU1 and WPU2, the copolymer P(PEGMA-co-GMA50) and the composite films 
of WPU1 or WPU2 with P(PEGMA-co-GMA50), at 10 and 20% w/w polymer weight con-
tents, are shown. The blends exhibit a characteristic behavior of both WPUs and the 
P(PEGMA-co-GMA50) polymer. As shown in Figure 8a, while the Tg of WPU1 is −23 °C, 
after the incorporation of 10% w/w or 20% w/w P(PEGMA-co-GMA50) polymer content, 
the Tg of the composites decreases to −37 °C and −34 °C, respectively (Table 4). Likewise, 
in the case of WPU2 blends (Figure 8b), the WPU2/10P(PEGMA-co-GMA50) and 
WPU2/20P(PEGMA-co-GMA50) composites exhibited lower Tg values (−28 °C and −32 
°C, respectively), when the Tg of WPU2 is −9 °C (Table 4). These Tg values of all the 
WPU1/P(PEGMA-co-GMA50) and WPU2/P(PEGMA-co-GMA50) composites, suggest 
that the formed composite films are characterized by good compatibility of their individ-
ual components.  

  
(a) (b) 

Figure 8. DSC of the (a) WPU1/P(PEGMA-co-GMA50) and (b) WPU2/P(PEGMA-co-GMA50) films 
containing P(PEGMA-co-GMA50) in two different weight ratios (10 and 20 %wt). P(PEGMA-co-
GMA50) copolymer and the films of pure WPU1 and WPU2 are also presented. 

3500 3000 2500 2000 1500 1000 500

1530174028602940
3340

955
1460

1100

WPU1 / 20P(PEGMA-co-GMA50)

Wavenumber (cm−1)

 %
 T

WPU1

P(PEGMA-co-GMA50)

WPU1 / 10P(PEGMA-co-GMA50)

3500 3000 2500 2000 1500 1000 500

Wavenumber (cm−1)

 %
 T

WPU2

WPU2 / 10P(PEGMA-co-GMA50)

WPU2 / 20P(PEGMA-co-GMA50)

P(PEGMA-co-GMA50)

1460 1100 955

3340 2940 2860 1740 1530

-60 -40 -20 0 20 40 60exo up

WPU1/20 P(PEGMA-co-GMA50)

WPU1/10 P(PEGMA-co-GMA50)

WPU1

H
ea

t f
lo

w
 (W

/g
)

Temperature (°C)

P(PEGMA-co-GMA50)

-50 -40 -30 -20 -10 0 10

H
ea

t f
lo

w
 (W

/g
)

Temperature (°C)

WPU1

− 23 °C

-60 -40 -20 0 20 40 60

WPU2/20P(PEGMA-co-GMA50)

WPU2/10P(PEGMA-co-GMA50)

WPU2

P(PEGMA-co-GMA50)

H
ea

t f
lo

w
 (W

/g
)

Temperature (°C)
exo up

-60 -40 -20 0 20 40

H
ea

t f
lo

w
 (W

/g
)

Temperature (°C)

WPU2

− 9 °C

Figure 8. DSC of the (a) WPU1/P(PEGMA-co-GMA50) and (b) WPU2/P(PEGMA-co-GMA50) films
containing P(PEGMA-co-GMA50) in two different weight ratios (10 and 20 %wt). P(PEGMA-co-
GMA50) copolymer and the films of pure WPU1 and WPU2 are also presented.

The Tg of the WPU2/10P(PEGMA-co-GMA70) was found to be −3 ◦C, a value close
to the value found for pure WPU2 and much higher than that of the corresponding
WPU2/10P(PEGMA-co-GMA50) composite (Tg = −28 ◦C). This difference probably indi-
cates a poor compatibility of the two ingredients (WPU2 and P(PEGMA-co-GMA70)) of
this composite system.

The WPU1/10P(PEGMA-co-GMA50), WPU1/20P(PEGMA-co-GMA50) and WPU2/
20P(PEGMA-co-GMA50) films presented Tm at 28 ◦C, 30.5 ◦C and 26.5 ◦C, respectively,
showing a significant melting point depression, as compared to the Tm value (37 ◦C)
of the pure copolymer. For these samples, the crystallinity %X”c was determined after
taking into account the actual copolymer composition, corresponding to %X’c, and the film
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composition. A strong reduction of the crystallinity of PEGMA segments is observed after
mixing, enabling thus the amorphous copolymer phase to interact with the PU resin, as
supported also by the Tg values.

2.3. Self-Healing Tests

For the study of the healing capability of the WPU/polymer composite films, the films
were scratched by a razor blade and the created scratches were monitored by an optical
microscope.

As an initial study, we proceeded in the preparation of a blend containing WPU1
and the pure P(PEGMA) homopolymer (polymer mass content on dry basis in the blend:
x = 10% w/w), namely WPU1/10P(PEGMA). This composite gave a film that did not exhibit
any scratch healing efficiency, neither by adding droplets of water on the scratch, nor by
heating the scratched film. This behavior possibly indicates the importance of the presence
of the GMA content in the copolymers, to also contribute to the healing process.

Figure 9 shows the self-healing process of the WPU1/P(PEGMA-co-GMA) composite
films, after placing the cut films in an oven at 80 ◦C for 12 h. As seen in Figure 9a, pure
WPU1 exhibited almost full crack recovery. The Tg of WPU1 from DSC (Table 4) is as low
as −23 ◦C. Thus, heating at 80 ◦C can cause heat-induced mobility and molecular diffusion
of the soft segments of WPU1 across the interface, that leads to the formation of chain
entanglements between the scratch surfaces, resulting eventually to its recovery. As far
as the WPU1/polymer composites are concerned, the incorporation of the polymers into
WPU1 resulted in a decrease of this self-healing behavior of WPU1. The cracks on the
WPU1/P(PEGMA-co-GMA) films (Figure 9b–f) healed at a large extent, while the healing
of the WPU1/P(BA-co-GMA) films (Figure 9g–j) was insignificant. By these findings it can
be assumed that the nature of the WPUs and their thermal characteristics are the decisive
factors ruling the behavior of the final composites.
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In Figure 10 the healing progress of the WPU2/P(PEGMA-co-GMA) composite films is
presented, after placing the films in an oven at 80 ◦C. Pure WPU2 exhibited a slight decrease
of the cross scratch after exposure at 80 ◦C (Figure 10a), in contrast to the full recovery of
the cut in the pure WPU1 film, as already shown in Figure 9a. The incorporation of the
P(PEGMA-co-GMA50) copolymer in WPU2 (Figure 10b,c) did not ameliorate the healing
behavior of the composite films.
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The heat induced self-healing potential of the WPU2/P(BA-co-GMAy) composite films
was also explored. For this study, the WPU2/P(BA-co-GMAy) films were cross scratched
and put in the oven at 80 ◦C, for 12 h. In Figure S5, no satisfying healing of the scratch
is observed for all the studied films. It is noteworthy that the WPU2/P(BA-co-GMAy)
composites with GMA content y = 30, 40 and 50% moles, exhibit a trend to repair the cross
scratch upon heating, unlike the WPU2/P(BA-co-GMA70) composites, with a GMA content
y = 70% moles, that displays zero healing capability.

Figure 11 shows the self-healing process of WPU1/P(PEGMA-co-GMAy) copolymers,
after the addition of droplets of water on the cut scratches. The optical microscope images
of the healed samples were taken after full evaporation of the added water. As shown in
Figure 11a, the scratch on the pure WPU1 film did not heal after addition of water on it. In
contrast, all WPU1/P(PEGMA-co-GMAy) composites studied (Figure 11b–d), exhibited
high healing ability. In fact, it can be clearly seen that after addition of water, the cracks
have almost disappeared.

The mechanism of healing herein is based on the water-assisted motion of the copoly-
mers in the WPU1 matrix. Since the P(PEGMA-co-GMA50) and P(PEGMA-co-GMA70)
copolymers are water-soluble, the addition of water probably leads to the softening of the
polymer chains in the composites, favoring interdiffusion or even interpenetration of the
polymer chains. Next, the chain’s mobility brings the cracked surfaces closer, enabling
possible healing routes like hydrogen bonding of the urethane groups in WPU1, hydrol-
ysis of the epoxide groups of GMA by water as well as reaction of the epoxide groups



Int. J. Mol. Sci. 2022, 23, 8118 14 of 22

with groups like –NH2, –OH or –COOH, that could be present in the polyurethane. In
fact, GMA-based healing materials, originating from the reaction of epoxide group with
amines, are reported in literature. In such systems, either copolymers of GMA comprise a
matrix [68] or GMA is encapsulated as a healing agent in microcapsules or hollow fibers,
embedded in a matrix [35,69]. In these cases, healing is apparently not reversible, as the
GMA epoxy groups will react once in the scratched area. However, the amount of the GMA
content is designed to be sufficient so as not to be depleted at once. Moreover, from initial
studies on the self-organization of the P(PEGMA-co-GMAy) copolymers in aqueous media,
we have found that these copolymers form spherical, micellar-type self-assemblies, with a
hydrophobic GMA core, surrounded by a hydrophilic PEGMA shell. Thus, GMA moieties
are protected in the hydrophobic cores of such self-organized structures. So, GMA will be
exposed, and its epoxide groups will be able to react with groups that could be present
in the polyurethane matrix, only when a scratch or cut happens, that might disintegrate
the micelle.
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The WPU1/P(BA-co-GMA) composites, on the contrary, did not display analogous
behavior. In this case, none or only marginal healing was observed after the addition of
water on the scratch (Figure S6).

Unlike the successful water-mediated healing performance of the WPU1/P(PEGMA-
co-GMA) composites, the corresponding WPU2/xP(PEGMA-co-GMAy) composites did
not show any healing tendency (Figure 12b–d), apart from the WPU2/10P(PEGMA-co-
GMA70) film (Figure 12d), which showed a slight decrease of the cross-scratch width
after the addition of water on the scratch. As already discussed in Table 4, the Tg values
of the WPU2/10P(PEGMA-co-GMA50) and WPU2/20P(PEGMA-co-GMA50) composite
films, indicated good compatibility of WPU2 and P(PEGMA-co-GMA50). This means
that the P(PEGMA-co-GMA50) copolymer is well distributed in the WPU2 matrix. This
compatibility, combined with the fact that WPU2 is a harder resin than WPU1 (Tg = −9 ◦C,
Figure 8), suggests that the P(PEGMA-co-GMA50) copolymer is “immobilized” in the
WPU2 matrix, not being able thus to move upon addition of water towards the scratch
and promote healing, as in the case of the WPU1/P(PEGMA-co-GMAy) blends shown in
Figure 11. Again here, it can be assumed that the governing behavior is based on the nature
and the characteristics of the WPUs.
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Figure 12. Optical microscopy images of cross scratches on (a) neat WPU2, (b) WPU2/10P(PEGMA-
co-GMA50), (c) WPU2/20P(PEGMA-co-GMA50) and (d) WPU2/10P(PEGMA-co-GMA70) films,
before (left photos) and after (right photos) addition of water on the cut.

The results of scratch heal recovery in the presence of water as a healing trigger
for the WPU2/P(BA-co-GMA) blends are shown in Figure 13. It seems like the healing
progress is enhanced as the molar ratio of GMA moieties is increased. For example,
in Figure 13a,b, the WPU2/10P(BA-co-GMA30) film containing 10 and 20% w/w P(BA-
co-GMA30) exhibit insignificant cure of the cut. As the GMA content increases in the
respective films (Figure 13c–h), the scratches become smoother with a tendency to totally
repair in some cases. In a recent study, Davydovich and Urban reported water accelerated
self-healing in alternating/random hydrophobic acrylic-based copolymers (poly(methyl
methacrylate/n-butyl acrylate) [p(MMA/nBA)] copolymers) [37]. In this study it was
shown that the presence of confined water molecules in the proximity of ester groups may
disrupt van der Waals interactions and participate in self-H-bonding. The unfavorable
polymer-water interactions within hydrophobic domains will lead to the expulsion of
water from the system. Then, polymer–polymer interactions due to enhanced interchain
cohesive energies are generated. These interactions lead probably to potential fast repair.
This is probably the case in our system too, were the P(BA-co-GMA) random, hydrophobic
copolymer are used. What is more, in the present study, the healing process may not be
only due to the water accelerated healing based on the interactions of BA, but also due to
the presence of the reactive GMA moieties that will possibly proceed to reactions of the
epoxide groups in the presence of water molecules, enhancing thus the healing progress.
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(e) WPU2/10P(BA-co-GMA50), (f) WPU2/20P(BA-co-GMA50), (g) WPU2/10P(BA-co-GMA70) and
(h) WPU2/20P(BA-co-GMA70) films, before (left photos) and after (right photos) addition of water
on the cut. Scale bar is 100 µm.

Though the healing process was not followed as a function of time, it is worthy to note
that the aforementioned successful results have been observed 15 h after triggering. This
healing time scale can be considered reasonable, taking into account that this is the upper
time limit, while it can be further optimized for the intended practical application.

3. Materials and Methods
3.1. Materials

The monomers GMA (≥97%) and BA (≥99%), the macromonomer PEGMA (average
molecular weight Mn = 950 g/mol) and the initiator azobisisobutyronitrile (AIBN) were
purchased from Aldrich (Taufkirchen, Germany) and used as received. The solvents
tetrahydrofuran (THF, anhydrous, p.a, ≥99.9%), 1,4-dioxane (p.a, ≥99.8%), hexane and
diethyl ether (p.a, ≥99.5%) were obtained from Carlo Erba (Milano, Italy), while the
solvent chloroform (p.a, ≥99.8%) was obtained from Honeywell (Ile de France, France).
These solvents were used as received without further purification. Deuterated chloroform
(CDCl3, 99.8% D) was purchased from Eurisotop (Saint-Aubin, France). The waterborne
polyurethane dispersions WPU1 and WPU2 were kindly provided by Megara Resins SA
(Megara, Greece). These WPUs have been synthesized through the prepolymer method,
using the same diisocyanate agent. In WPU1, a polycarbonate polyol was utilized while in
WPU2, a polyether-ester polyol was used. Moreover, it should be noted that WPU2 was a
hybrid-alkyd PU, instead of WPU1 which was pure PU.

Ultra-pure water was obtained by means of an Arium mini water purification system
from Sartorius (Goettingen, Germany).
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3.2. Synthesis of Copolymers
3.2.1. Synthesis of P(BA-co-GMAy) Copolymers

The copolymers poly(n-butyl acrylate-co-glycidyl methacrylate) were synthesized via
free radical copolymerization of BA and GMA monomers using AIBN as the initiator in
THF at 70 ◦C. A typical polymerization reaction is as follows (e.g., P(BA-co-GMA70)) [70]. A
round bottom flask, equipped with a magnetic stirrer and a reflux condenser, was charged
under argon atmosphere with 10 mL BA (0.0698 mol), 21.5 mL GMA (0.1618 mol) and
108 mL THF, in order to acquire a concentration of ~30% w/v. The initiator AIBN was then
added 0.305 g (1.9 mmol, 0.8 mol% over the total monomer concentration). The solution
was degassed and left under inert atmosphere, while vigorously stirred in an oil bath at
70 ◦C for 1 day. The product was received by precipitation in hexane, filtered, washed with
hexane and dried in a vacuum oven at 40 ◦C for 24 h. The actual mole fraction of GMA
units in the copolymer P(BA-co-GMAy) was determined through Proton Nuclear Magnetic
Resonance (1H-NMR) characterization in CDCl3. Moreover, the molecular weight of the
copolymers was determined through size exclusion chromatography (SEC). in chloroform.
In total, four copolymers P(BA-co-GMAy) were synthesized with feed composition y = 30,
40, 50, 70% moles GMA. A PBA and a PGMA homopolymer were synthesized for reasons
of comparison.

3.2.2. Synthesis of P(PEGMA-co-GMAy) Copolymers

Four P(PEGMA-co-GMAy) copolymers (with feed compostion y = 40, 50, 60 or 70%
moles in GMA) were synthesized through conventional radical polymerization of the
macromonomer PEGMA and the monomer GMA, in presence of AIBN as initiator. In a
three neck round bottom flask, PEGMA and GMA were dissolved in dioxane. The total
monomers’ concentration in the organic solvent was 0.7 M. The mixture was degassed with
nitrogen bubbling for ~30 min, followed by the addition of the initiator AIBN (1 mol%
over the total monomer concentration). The final mixture was degassed with nitrogen
for 1 h and the reaction temperature was set at 80 ◦C. Polymerization was carried out for
24 h. The copolymers with 40 and 50 %mol GMA content in feed (P(PEGMA-co-GMA40)
and P(PEGMA-co-GMA50)) were recovered by adding in the copolymer mixture equal
to dioxane volume of ultra-pure water. The final products were purified from monomers,
impurities, etc., through dialysis against ultra-pure water (using a dialysis membrane with
a MWCO of 12,000–14,000 Da) and were received in solid state through freeze drying. On
the contrary, for the copolymers with 60 and 70 %mol GMA content in feed (P(PEGMA-
co-GMA60) and P(PEGMA-co-GMA70)), the reaction mixture was precipitated in excess
volume of diethyl ether. The precipitate was filtered, subsequently washed with diethyl
ether and finally dried in a vacuum oven at 40 ◦C. The actual mol fractions of PEGMA
and GMA were determined by 1H-NMR, using CDCl3 as solvent. The number and weight
average molecular weight of the copolymers were determined by SEC. For comparison
reasons, a P(PEGMA) homopolymer was similarly synthesized.

3.3. Preparation of Polyurethane/Polymer Films

For the preparation of the films from blends of polyurethane dispersions (WPU) and
GMA copolymers, the following experimental procedure was followed: initially, aqueous
solutions of P(PEGMA-co-GMAx) copolymers or solutions of P(BA-co-GMAy) in THF were
prepared, dissolving a sufficient mass of each copolymer in a suitable volume of ultra-pure
water or THF, respectively (the concentration of polymers was in the order of 6–10 %wt).
The solutions were stirred at room temperature until full dissolution. Next, considering
the solid content in PU of the WPU dispersions, appropriate amounts of the copolymers’
solutions were mixed with the WPU dispersions to achieve the desired copolymer mass
content on dry basis, x (% w/w). Films with x = 10% w/w and 20% w/w were prepared.
The mixtures were gently stirred to become homogenous and then poured into petri dishes
or on Teflon sheet and allowed to stand for about ten days until the solvent was completely
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evaporated. The films had a thickness of ~0.3 mm. In addition, pure WPU films without
GMA-based copolymers as additives were also prepared as reference.

3.4. Characterization Techniques

3.4.1. Proton Nuclear Magnetic Resonance (1H-NMR)
1H-NMR spectra of P(BA-co-GMAy) and P(PEGMA-co-GMAy) copolymers in CDCl3

were obtained at 400 MHz and at 25 ◦C using a Bruker AVANCE DPX 400 spectrometer
(Billerica, MA, USA).

3.4.2. Size Exclusion Chromatography (SEC)

The number average molecular weight (Mn) and weight average molecular weight
(Mw) as well as the polydispersity (PDI) of the P(BA-co-GMAy) and P(PEGMA-co-GMAy)
copolymers were determined by SEC at 25 ◦C using a Marathon II HPLC (Rigas Labs,
Thessaloniki, Greece) instrument with chloroform as the mobile phase and equipped with
a Fasma 500 UV/vis detector, and two PLgel 5 µm Mixed columns (Agilent Technologies,
SCC, Santa Clara, CA, USA). The flow rate of chloroform was set at 1 mL/min, while
linear polystyrene standards were used for calibration of the columns. The software Clarity
v.3.0.07.662 (DataApex Ltd., Prague, Czech Republic) was used for the spectra analysis.

3.4.3. Attenuated Total Reflection Fourier Transform Infrared Spectroscopy (ATR-FTIR)

The ATR-FTIR spectra of the copolymers and PUD/copolymer films were recorded
on a Bruker Platinum ATR-FTIR spectrometer (Billerica, MA, USA).

3.4.4. Differential Scanning Calorimetry (DSC)

The thermal processes of pure polymers, pure WPUs films and WPU/polymer compos-
ite films were studied by DSC using a TA Instruments Q100 thermal analyzer (New Castle,
DE, USA). All measurements were performed in a nitrogen atmosphere (50 mL/min).
The specimens were heated from −100 to 100 ◦C at a heating rate of 10 ◦C/min and sub-
sequently cooled to −100 ◦C at a cooling rate of 10 ◦C/min. Thermal transitions were
obtained from first run, since the information from the first heating cycle refers to the actual
state of the polymer.

3.4.5. Self-Healing Tests

For the self-healing study, the polyurethane/polymer films were scratched with a
razor blade. Then, the films were either heated to 80 ◦C for 15 h or droplets of water were
added on the scratch by a micropipette and left to dry at room temperature. The healing
process of the films was monitored by a Nikon Eclipse L150 optical microscope (& Nikon’s
NIS-Elements DS-U3 software) (Nikon metrology, Paris, France).

4. Conclusions

Two functional copolymer series, namely hydrophobic P(BA-co-GMAy) copolymers
of GMA with n-butyl acrylate (BA) and amphiphilic copolymers P(PEGMA-co-GMAy) of
GMA with a poly(ethylene glycol) methyl ether methacrylate (PEGMA) macromonomer,
were designed and evaluated as potential healing agents of waterborne polyurethanes
(WPUs) films. Homogenous composite films are obtained through the solution casting
of WPU/P(BA-co-GMAy) or WPU/P(PEGMA-co-GMAy) mixtures for the studied com-
positions (the copolymer content is up to 20% w/w). The hybrid WPU/P(BA-co-GMAy)
composites are amorphous, while the WPU/P(PEGMA-co-GMAy) vary from amorphous
to semi-crystalline, depending on copolymer or blend composition.

Two potential external healing triggers, namely heating at 80 ◦C or the addition of
water, were explored. From the overall study, it is evidenced that the nature of the WPU
used is decisive for the observation of healing behavior. In fact, the heating-triggered
healing efficiency of both types of copolymers was proved limited. In contrast, these
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copolymers have been proved very effective materials for the water-triggered healing of
WPU films.

In the present work, we focus on the design of the copolymers, while initial scratch
studies were explored to follow healing. Detailed studies are under way to fully com-
prehend the behavior and to optimize the systems in terms of copolymers and blending
composition. In the designed studies, mechanical tests are of utmost importance, to evaluate
the influence of blending on the mechanical properties of WPUs, as well as the mechanical
recovery after healing. Nevertheless, these initial studies evidence the potential of the
novel materials as healing agents of WPUs or alternate polymer coatings upon water- or
temperature- triggering. Moreover, the use of traditional free radical copolymerization
techniques for the synthesis of such copolymers allows the design and facile development
of additional functional copolymer families with potentially improved healing abilities,
taking advantage of non-covalent interactions (hydrogen bonding, van der Waals, ionic
interactions) through the selection and copolymerization of adequate monomers.
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