Skip to main content
. 2022 Jul 22;29(8):5179–5194. doi: 10.3390/curroncol29080410

Table 3.

Models’ results in terms of AUC, accuracy, precision, and recall.

Harmo CT + Original PET Features (A)
Linear SVM (A1)
AUC * Accuracy Precision ** Recall ** p ***
Training dataset 0.77 [0.66–0.87] 0.72 ± 0.02 0.67 0.83 1.0 × 10–4
External validation dataset 0.75 [0.55–0.88] 0.66 ± 0.01 0.68 0.65 0.01
Subspace Discriminant (A2)
AUC * Accuracy Precision ** Recall ** p ***
Training dataset 0.79 [0.67–0.87] 0.71 ± 0.01 0.69 0.83 0.02
External validation dataset 0.71 [0.52–0.86] 0.63 ± 0.02 0.68 0.65 0.046
Harmo CT features (B)
Linear SVM (B1)
AUC Accuracy Precision ** Recall ** p ***
Training dataset 0.77 [0.63–0.85] 0.67 ± 0.02 0.74 0.58 1.0 × 10−4
External validation dataset 0.56 [0.39–0.74] 0.58 ± 0.01 0.67 0.52 0.5
Subspace Discriminant (B2)
AUC Accuracy Precision ** Recall ** p ***
Training dataset 0.76 [0.66–0.87] 0.71 ± 0.02 0.73 0.6 0.01
External validation dataset 0.57 [0.4–0.75] 0.58 ± 0.01 0.67 0.52 0.50
Original CT features (C)
Linear SVM (C1)
AUC Accuracy Precision ** Recall **
Training dataset 0.56 [0.42–0.68] 0.52 ± 0.03 0.49 0.45
External validation dataset 0.50 [0.34–0.68] 0.43 ± 0.02 0.54 0.65
Subspace Discriminant (C2)
AUC Accuracy Precision ** Recall **
Training dataset 0.63 [0.48–0.72] 0.56 ± 0.03 0.58 0.56
External validation dataset 0.51 [0.39–0.74] 0.54 ± 0.01 0.58 0.65
PET features only (D)
Linear SVM (D1)
AUC Accuracy Precision ** Recall ** p ***
Training dataset 0.68 [0.53-0.78] 0.64 ± 0.03 0.64 0.80 0.09
External validation dataset 0.65 [0.43-0.82] 0.64 ± 0.01 0.67 0.78 0.18
Subspace Discriminant (D2)
AUC Accuracy Precision ** Recall ** p ***
Training dataset 0.71 [0.59–0.82] 0.69 ± 0.01 0.67 0.8 0.10
External validation dataset 0.68 [0.51–0.84] 0.60 ± 0.01 0.67 0.61 0.08
Harmo CT + Original PET + Clinical features (E)
Linear SVM (E1)
AUC * Accuracy Precision ** Recall ** p ***
Training dataset 0.79 [0.67–0.87] 0.73 ± 0.02 0.72 0.83 6.0 × 10−5
External validation dataset 0.73 [0.54–0.87] 0.73 ± 0.01 0.77 0.74 0.02
Subspace Discriminant (E2)
AUC * Accuracy Precision ** Recall ** p ***
Training dataset 0.76 [0.65–0.86] 0.74 ± 0.01 0.72 0.83 0.01
External validation dataset 0.75 [0.54–0.88] 0.68 ± 0.02 0.73 0.70 0.02

* AUCs in square brackets are their bootstrapped 95% CIs. ** Precision and recall are presented for class 1. *** p-values are calculated with respect to the conditions C1 and C2 for linear SVM and ESD models, respectively. Values in bold mean the statistical significance.