Table 3.
Harmo CT + Original PET Features (A) | |||||
---|---|---|---|---|---|
Linear SVM (A1) | |||||
AUC * | Accuracy | Precision ** | Recall ** | p *** | |
Training dataset | 0.77 [0.66–0.87] | 0.72 ± 0.02 | 0.67 | 0.83 | 1.0 × 10–4 |
External validation dataset | 0.75 [0.55–0.88] | 0.66 ± 0.01 | 0.68 | 0.65 | 0.01 |
Subspace Discriminant (A2) | |||||
AUC * | Accuracy | Precision ** | Recall ** | p *** | |
Training dataset | 0.79 [0.67–0.87] | 0.71 ± 0.01 | 0.69 | 0.83 | 0.02 |
External validation dataset | 0.71 [0.52–0.86] | 0.63 ± 0.02 | 0.68 | 0.65 | 0.046 |
Harmo CT features (B) | |||||
Linear SVM (B1) | |||||
AUC | Accuracy | Precision ** | Recall ** | p *** | |
Training dataset | 0.77 [0.63–0.85] | 0.67 ± 0.02 | 0.74 | 0.58 | 1.0 × 10−4 |
External validation dataset | 0.56 [0.39–0.74] | 0.58 ± 0.01 | 0.67 | 0.52 | 0.5 |
Subspace Discriminant (B2) | |||||
AUC | Accuracy | Precision ** | Recall ** | p *** | |
Training dataset | 0.76 [0.66–0.87] | 0.71 ± 0.02 | 0.73 | 0.6 | 0.01 |
External validation dataset | 0.57 [0.4–0.75] | 0.58 ± 0.01 | 0.67 | 0.52 | 0.50 |
Original CT features (C) | |||||
Linear SVM (C1) | |||||
AUC | Accuracy | Precision ** | Recall ** | ||
Training dataset | 0.56 [0.42–0.68] | 0.52 ± 0.03 | 0.49 | 0.45 | |
External validation dataset | 0.50 [0.34–0.68] | 0.43 ± 0.02 | 0.54 | 0.65 | |
Subspace Discriminant (C2) | |||||
AUC | Accuracy | Precision ** | Recall ** | ||
Training dataset | 0.63 [0.48–0.72] | 0.56 ± 0.03 | 0.58 | 0.56 | |
External validation dataset | 0.51 [0.39–0.74] | 0.54 ± 0.01 | 0.58 | 0.65 | |
PET features only (D) | |||||
Linear SVM (D1) | |||||
AUC | Accuracy | Precision ** | Recall ** | p *** | |
Training dataset | 0.68 [0.53-0.78] | 0.64 ± 0.03 | 0.64 | 0.80 | 0.09 |
External validation dataset | 0.65 [0.43-0.82] | 0.64 ± 0.01 | 0.67 | 0.78 | 0.18 |
Subspace Discriminant (D2) | |||||
AUC | Accuracy | Precision ** | Recall ** | p *** | |
Training dataset | 0.71 [0.59–0.82] | 0.69 ± 0.01 | 0.67 | 0.8 | 0.10 |
External validation dataset | 0.68 [0.51–0.84] | 0.60 ± 0.01 | 0.67 | 0.61 | 0.08 |
Harmo CT + Original PET + Clinical features (E) | |||||
Linear SVM (E1) | |||||
AUC * | Accuracy | Precision ** | Recall ** | p *** | |
Training dataset | 0.79 [0.67–0.87] | 0.73 ± 0.02 | 0.72 | 0.83 | 6.0 × 10−5 |
External validation dataset | 0.73 [0.54–0.87] | 0.73 ± 0.01 | 0.77 | 0.74 | 0.02 |
Subspace Discriminant (E2) | |||||
AUC * | Accuracy | Precision ** | Recall ** | p *** | |
Training dataset | 0.76 [0.65–0.86] | 0.74 ± 0.01 | 0.72 | 0.83 | 0.01 |
External validation dataset | 0.75 [0.54–0.88] | 0.68 ± 0.02 | 0.73 | 0.70 | 0.02 |
* AUCs in square brackets are their bootstrapped 95% CIs. ** Precision and recall are presented for class 1. *** p-values are calculated with respect to the conditions C1 and C2 for linear SVM and ESD models, respectively. Values in bold mean the statistical significance.