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Abstract: Adipose tissue-derived stromal cells (ASCs) are of interest in tissue engineering and
regenerative medicine (TERM) due to their easy acquisition, multipotency, and secretion of a host of
factors that promote regeneration. Retention of ASCs in or around lesions is poor following direct
administration. Therefore, for TERM applications, ASCs can be ‘immobilized’ via their incorporation
into hydrogels such as gelatine methacryloyl (GelMA). Tweaking GelMA concentration is a common
approach to approximate the mechanical properties found in organs or tissues that need repair.
Distinct hydrogel mechanics influence the ability of a cell to spread, migrate, proliferate, and secrete
trophic factors. Mesenchymal cells such as ASCs are potent remodellers of the extracellular matrix
(ECM). Not only do ASCs deposit components, they also secrete matrix metalloproteases (MMPs)
which degrade ECM. In this work, we investigated if GelMA polymer concentration influenced the
expression of active MMPs by ASCs. In addition, MMPs’ presence was interrogated with regard
to ASCs morphology and changes in hydrogel ultrastructure. For this, immortalised ASCs were
embedded in 5%, 10%, and 15% (w/v) GelMA hydrogels, photopolymerised and cultured for 14 d.
Zymography in situ indicated that MMPs had a variable, hydrogel concentration-dependent influence
on ASCs-secreted MMPs. In 5% GelMA, ASCs showed a high and sustained expression of MMPs,
while, in 10% and 15% GelMA, such expression was almost null. ASCs morphology based on F-actin
staining showed that increasing GelMA concentrations inhibit their spreading. Scanning electron
microscopy (SEM) showed that hydrogel ultrastructure in terms of pore density, pore size, and
percentage porosity were not consistently influenced by cells. Interestingly, changes in ultrastructural
parameters were detected also in cell-free materials, albeit without a clear trend. We conclude that
hydrogel concentration and its underlying mechanics influenced MMP expression by ASCs. The
exact MMPs that respond to these mechanical cues should be defined in follow-up experiments.

Keywords: adipose tissue-derived stromal cells; matrix metalloproteases; hydrogels; GelMA;
stiffness; stress relaxation

1. Introduction

Adipose tissue-derived stromal cells (ASCs) are plastic adherent cells that express
surface markers common to mesenchymal stromal/stem cells (MSCs) [1–3]. ASCs are
multipotent and able to differentiate into adipocytes, osteoblasts, chondrocytes, and other
phenotypes [4]. ASCs acquisition via liposuction makes these readily accessible, abundant
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and, overall, more convenient than other MSCs’ sources, such as bone marrow [5]. Hence,
ASCs are ideal candidates for clinical applications for the reasons before-mentioned. Such
applications are commonly performed via systemic or local injections at the afflicted
site [2,6–10]. However, these approaches face disadvantages such as limited cell retention
and low cell viability at the targeted anatomical site [11–13].

ASCs can be combined with carrier biomaterials such as hydrogels to tackle the
before-mentioned disadvantages [11,14–16]. Hydrogels are 3D polymer networks with
high water-retaining capacities, formed by covalent and non-covalent bonds [17,18]. These
polymer networks mimic ECM biophysical properties that are not possible to replicate
by traditional 2D cultures [19,20]. The loading of ASCs into hydrogels, including those
based on gelatine methacryloyl (GelMA) [21,22], is described in literature [18,23,24]. The
combination of ASCs and GelMA has tissue engineering and regenerative medicine (TERM)
potential [25–28]. Literature reports GelMA-ASCs’ combination for skin, bone, cartilage,
and vascular networks in vitro formation within the TERM field [29–31]. GelMA stands
as an inexpensive, rapidly manufacturing semi-synthetic material derived from colla-
gen. GelMA possesses the advantages of natural-derived hydrogels: biocompatibility and
biodegradability; and synthetic hydrogels: tuneable mechanical properties [21,32]. GelMA
hydrogels are formed primarily via covalent bonds under UV/VIS light photopolymeri-
sation. Such covalent crosslinks allow GelMA to retain shape fidelity under standard cell
culture conditions [32–34].

Tweaking hydrogel concentrations is a common approach to approximate the me-
chanical properties of native tissues for TERM purposes [35–37]. When in 3D, cells sense
the mechanics of their pericellular environment and elicit biological responses [38,39].
The expression of matrix metalloproteases (MMPs), among other enzymes, enable cells
to degrade their surrounding environment, facilitating their spreading, migration, or pro-
liferation, among others [40]. ASCs can alter the stiffness and viscoelasticity of GelMA
hydrogels [41] through elusive mechanisms; however, this might relate to a combination of
MMPs’ degradation and matrix deposition.

Thus, in this work, we investigated if the expression of ASCs-derived MMPs would
be altered by hydrogel concentration and its related mechanics, namely elastic modulus
(i.e., stiffness) and stress relaxation. We also investigated if MMPs expression could be
reflected in hydrogel swelling ratio and ultrastructure changes after 14 days. We also
evaluated ASCs’ morphology in histological stains. If GelMA-ASCs constructs are aimed
for clinical use, their characterisation in vitro is relevant to know the end product before
patient applications.

2. Methods
2.1. GelMA Synthesis

GelMA was synthesised by a one-pot method using medical grade gelatine type A,
99.8 kDa MW, 262 g Bloom (MedellaPro® > 600 MW, Leverkusen, Germany). Gelatine
(100 g) was dissolved in 1× Dulbecco’s phosphate-buffered saline (DPBS; BioWhittaker®,
Walkersville, MD, USA) and 0.6 mL of Methacrylic anhydride (MAA; Sigma–Aldrich,
Darmstadt, Germany) was added per gram of gelatine at 40 ◦C with gentle stirring for three
hours. The solution was diluted in an equal volume of 1× DPBS, centrifuged at 2000× g
for 5 min., and the supernatant decanted into a 14 kDa dialysis tube (Sigma–Aldrich,
Darmstadt, Germany). The tube was dialysed for a week at 30 ◦C with demi-water that
was replaced twice daily. Once the dialysis was completed, the solution was lyophilised
in a Free Zone® 2.5 Plus freeze dryer (Labconco Corporation, Kansas City, MO, USA)
at −80 ◦C until dry. The degree of functionalisation (DoF) was determined through 1H-
Nuclear Magnetic Resonance (1H-NMR), as described previously [41]. The GelMA working
solution was prepared by dissolving the lyophilised GelMA powder in 1× DPBS at 5%, 10%
and 15% (w/v) concentrations. All working solutions were mixed with the photoinitiator
lithium phenyl-2,4,6-trimethylbenzoylphosphinate (LAP; Allevi Inc., Philadelphia, PA,
USA) at a concentration of 0.5% (w/v) at 50 ◦C. Once dissolved, the working solutions were
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filter-sterilised with 0.2 µm polyethersulfone membrane filters (Corning®, Kaiserslautern,
Germany) and stored in the dark at −20 ◦C until further use.

2.2. 3D Cell Culture

Immortalised ASCs (iADSC13) [42] were cultured in gelatine-coated T75 flasks
(Corning® Costar®, Darmstadt, Germany) in growth media composed of high glucose
Dulbecco’s modified Eagle medium (DMEM; Lonza, Walkersville, MD, USA) containing
10% Fetal Bovine Serum (FBS; Sigma–Aldrich), 1% Penicillin-Streptomycin (Gibco™,
Paisley, UK) and 2 mM L-glutamine (BioWhittaker®, Verviers, Belgium).

All cells were harvested with 0.5% trypsin-EDTA (Sigma–Aldrich) after reaching 80%
confluence and counted with an automated cell counter (Beckman Coulter™, Brea, CA,
USA). Aliquots of 7 × 105 ASCs were resuspended in 350 µL of either 5%, 10%, or 15%
(w/v) GelMA working solutions and thawed at 37 ◦C. The GelMA-ASC suspensions were
cast in 48-well plates (Corning®) and photopolymerised at 7 mW/cm2 for 5 min. with
a UV/blue light lamp (405 nm). All gels, including cell-free (acellular) hydrogels, were
cultured in growth media for 1 d, 7 d, and 14 d at 37 ◦C, 5% CO2 (Figure 1a). Only cells
negative for Mycoplasma spp. from passages 19 to 22 were employed in these experiments.

2.3. ASCs Morphology

Cell-loaded hydrogels of 1 d, 7 d, and 14 d were fixed with 2% formalin for 24 h, fol-
lowed by a series of ethanol dehydration and paraffin wax embedded (Figure 1b). Sections
of 4 µm thickness were prepared with a microtome and mounted in microscopy slides
StarFrost®(Waldemar Knittel, Braunschweig, Germany). All sections were conventionally
deparaffinised in xylene and in a graded series of ethanol followed by hematoxylin and
eosin (H&E) staining to visualise the ASC’s morphology. Sections were stained with Pi-
crosirius red for 1 h in a single batch to reduce staining variability [43]. Staining with Texas
Red™-X Phalloidin (Invitrogen™, Waltham, MA, USA) and 4′,6-diamidino-2-phenylindole
(DAPI; Sigma–Aldrich) for 1 h allowed to visualise the cytoskeleton and the cell nuclei. All
sections were imaged with Leica DM4000B fluorescent microscope (Leica Microsystems,
Wetzlar, Germany) with the following filter light cubes: DAPI (λex BP 340–380 nm/λem BP
450–490 nm) and TXR (λex BP 540–580 nm/λem BP 593–668 nm) at 20×magnification.

2.4. In Situ Zymography

Cell-loaded and cell-free hydrogels were snap-frozen in liquid nitrogen and cryosec-
tioned (4 µm thick) for experiments (Figure 1c). Evaluation of ASCs-derived MMPs was
assessed using DQ™ Gelatin (EnzChek™ Molecular Probes, Eugene, OR, USA), which
consists of gelatine densely labelled with fluorescein such that its fluorescence is auto-
quenched. Upon proteolytic degradation of DQ™ Gelatin, the fluorescein is released and
yields a bright green fluorescence signal locally [44]. Stock solutions were prepared as
follows: 1 mg of DQ™ Gelatin and 5 mg of DAPI (Sigma–Aldrich) were individually
diluted in 1 mL of DPBS. Then, 20 µL of DAPI stock solution were diluted in 50 mL of
DPBS to a working concentration of 2 µg/mL (1:2500). DQ™ Gelatin was dissolved in the
DAPI working solution (1:5). Additionally, the presence of inactive MMPs was detected
by adding 4-aminophenylmercuric acetate (APMA) solution [3 mM/mL] at a 1:1 ratio to
the DQ™ Gelatin working solution. Inhibition of MMPs was demonstrated by mixing the
DQ™ Gelatin working solution with EGTA (20 mM/mL), a known MMP inhibitor [44]. The
fluorescent dye mix (30 µL per section) was placed on top of the unfixed cryosections and
incubated at room temperature (RT) for 1 h, protected from light. Cell-free hydrogels were
also exposed to the before-mentioned conditions. After incubation, all stained cryosections
were gently washed with DPBS before mounting in Citifluor™ AF1 (Electron Microscopy
Solutions, Hatfield, PA, USA) and visualised with a Leica DM4000B fluorescent microscope
with the following filter light cubes: FITC (λex BP 460–500 nm/λem BP 512–542 nm) and
DAPI (λex BP 340–380 nm/λem BP 450–490 nm) at 20×magnification.
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Figure 1. Methods: (a) Culture of adipose tissue-derived stromal cells (ASCs) and loading in 5%, 10%,
and 15% gelatine methacryloyl (GelMA) hydrogels. (b) Histology stains after 4% formalin-fixed and
paraffin-embedding. Sections (4 µm) were stained with hematoxylin and eosin (H&E), picrosirius
red (PSR) and phalloidin/DAPI stains to observe the cellular morphology and distribution within
the GelMA hydrogels. (c) In situ zymography to detect matrix metalloproteases (MMPs). Hydrogels
were cryofixed (liquid nitrogen), cryosectioned (4 µm), and exposed to four different conditions:
DQTM Gelatin, DQTM Gelatin/APMA (MMP activator) DQTM Gelatin/EGTA (MMP inhibitor) and
DAPI alone. Cell-free material was also stained. (d) Scanning electron microscopy (SEM) of GelMA
hydrogels after fixation with 2% paraformaldehyde and 2% glutaraldehyde followed by freeze-drying
and visualised at 1000×magnification. Created with biorender.com (accessed on 18 July 2022).

2.5. Swelling Ratio

Cell-loaded and cell-free GelMA hydrogels of 1 d, 7 d, and 14 d were carefully removed
from the 48-well plates and weighed (Ws) on a scale (Sartorius Lab Instruments, Gottingen,
Germany). All samples were freeze-dried for 24 h and weighed again to determine the dry
weight (Wd). The swelling ratio was calculated as shown in Equation (1):

Swelling ratio =
Ws−Wd

Wd
(1)
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2.6. Mechanical Properties

The 5%, 10%, and 15% GelMA hydrogels were swollen in 1 X DPBS for 24 h before
mechanical testing on the Low-Load Compression Tester (LLCT) [41,45]. The LLCT is a
non-destructive method that allows for determining the elastic and viscoelastic properties
of hydrogels in terms of elastic modulus (i.e., stiffness) and stress relaxation (%), respec-
tively. All hydrogels were quickly blotted to remove the excess water and mounted on
standard microscopy glass slides. The specimens underwent uniaxial compression with
a 2.5 mm plunger at RT. Hydrogels were compressed 20% (i.e., strain, ε = 0.2) of their
original thickness at a strain rate (ε) deformation rate of 20%·s−1. The elastic modulus was
determined during the first second of compression. For the stress relaxation percentage, the
strain rate (ε) of 0.2 s−1 was kept constant for 50 s and calculated as the difference between
t = 0 and t = 50 s. Data derived from three independent experiments were analysed with
MatLab 2018 (MathWorks® Inc., Natick, MA, USA).

2.7. Scanning Electron Microscopy

Cell-loaded and cell-free hydrogels of 1 d, 7 d, and 14 d were prepared, as described
previously [46], by fixing with a 1:1 ratio mix of 1% paraformaldehyde and 1% formalin at
4 ◦C for 24 h. After, all samples were washed with DPBS and Milli-Q® water, snap-frozen in
liquid nitrogen, and freeze-dried for 24 h. The lyophilised hydrogels were mounted on top
of 0.5” pin stubs (Agar Scientific, Stansted, UK), placed inside a Leica EM SCD050 sputter
coater device (Leica Microsystems B.V., Amsterdam, Netherlands), and rinsed and coated
with Au-Pd one day before scanning electron microscopy (SEM) imaging. Hydrogels were
visualised with Zeiss Supra 55 STEM (Carl Zeiss NTS GmbH, Oberkochen, Germany) at
2500×magnification, 3.0 kV, and Z = 40.0 mm (Figure 1d). A minimum of six random areas
from three specimens per condition and timepoint were imaged and used to determine the
pore density (i.e., number of pores), pore size (µm), and porosity percentage using ImageJ
Ver 1.52p [47]. All images were transformed into 8-bit, and the number and size of particles
(pores) were calculated.

2.8. Statistical Analysis

All statistical analyses were performed using GraphPad Prism v9.1.0 (GraphPad
Company, San Diego, CA, USA). All data were searched for outliers using the robust
regression and outlier removal (ROUT) test and analysed for normality using Shapiro–Wilk
and D’Agostino and Pearson tests [48–50]. The swelling ratio pore size and porosity %
data were analysed with a two-way analysis of variance (ANOVA) and Tukey’s post-test.
Stiffness data were analysed with Brown Forsythe and Welch ANOVA and Dunnett’s T3
post-test. Stress relaxation data with one-way ANOVA and Tukey’s post-test. Data are
presented as mean with standard deviation (SD) or median values with quartiles. p values
below 0.05 were considered statistically significant.

3. Results
3.1. Cell Morphology in 3D
3.1.1. H&E

Cells were visible in all hydrogel sections with areas of clustered cells randomly
distributed (Figure 2, red arrow). The staining intensity of the hydrogels increased with the
GelMA concentration (a), but the nuclear material intensity remained similar, as shown
in the magnified views (red asterisk). The most concentrated hydrogel (i.e., 15%) showed
evidence of cutting artefacts (unidirectional cutting lines) due to the hardness of the material.
The pericellular region showed a gap between cells and hydrogel in many cases.
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Figure 3. ASCs morphology in 5%, 10%, and 15% GelMA at 1 d, 7 d, and 14 d. Sections stained with 
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Figure 2. H&E stain of 5%, 10%, and 15% GelMA loaded with ASCs. Overview (Scale bar 100 µm)
indicates the hydrogel (a) and the areas of clustered cells (red arrow). Such clustered areas are shown
in the magnified view (Scale bar 25 µm), positive Hematoxylin (i.e., nuclei) seen as intense purple
indicated with a red asterisk.

3.1.2. F-Actin

Morphology of ASCs differed across GelMA concentrations and time points (Figure 3).
In 5% GelMA, phalloidin positive staining (red) demonstrated that cells spread at 1 d, 7 d,
and 14 d. At 7 d, it became noticeable that certain cells were organised in spheroid-like
structures. In 10% GelMA, the cell cytoskeleton was not noticeable at 1 d, but cell spreading
was evident at 7 d and 14 d. Compared to the previous concentrations, cells in 15% GelMA
remained rounded, indicating null spreading.
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Figure 3. ASCs morphology in 5%, 10%, and 15% GelMA at 1 d, 7 d, and 14 d. Sections stained
with DAPI and Phalloidin. Representative images are shown. Scale bar represents 25 µm, all
fluoromicrographs have the same original magnification.
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3.1.3. Picrosirius Red

The staining time (1 h) was kept consistent for all GelMA concentrations and the
staining intensity of PSR increased alongside hydrogel concentration comparable to the
H&E staining (Figure 4). PSR allowed for visualisation of the cytoplasm (yellow) surround-
ing the cell nuclei (light purple). Cutting artefacts were present in 10% and 15% GelMA.
Deposition of cell-derived collagen was visible in 5% GelMA as an increase in red stain
surrounding the cells. In contrast, deposition of cell-derived collagen was not visible in
10% nor 15% GelMA due to the high degree of staining intensity of the hydrogel.
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indicates the hydrogel (a) and the areas of clustered cells (white arrow). Such clustered areas are
shown in the magnified view (Scale bar 25 µm); the cytoplasm of the cell and the nuclei are indicated
with a cyan asterisk.

3.1.4. MMPs Expression

All ASCs secreted active MMPs irrespective of GelMA concentration after 1 d (Figure 5a).
At 14 d, active MMPs were only detected in 5% GelMA (Figure 5b), while the presence of
inactive MMPs was detected in 5%, 10%, and 15% GelMA. No MMPs were detected in cell-free
hydrogels (Figure S1).

3.1.5. Swelling Ratio

The 5% GelMA had the highest swelling ratio of all concentrations, followed by 10%
and 15%. ASCs did not change the GelMA swelling properties when compared across
timepoints and cell-free material (Figure 6).

3.1.6. Mechanical Properties

Increasing hydrogel concentration led to a significant, near-linear increase in elastic
modulus (i.e., stiffness). The elastic modulus of 5%, 10%, and 15% GelMA hydrogels were
5.2 ± 1.7 kPa, 55.6 ± 8.4 kPa, and 161.1 ± 11.5 kPa, respectively. Regarding hydrogel
viscoelasticity, the 5% GelMA (8.2 ± 3.2%) had a greater stress relaxation % than 10%
GelMA (5.5 ± 0.8%) but not more than 15% GelMA (6.3 ± 1.0). No differences between
10% and 15% were found.

3.1.7. Ultrastructure

The surface ultrastructure of cell-loaded and cell-free GelMA hydrogels was visualised
with SEM (Figure 7). The analysis from SEM-derived images (Figure 8) showed that, in all
GelMA concentrations, the percentage porosity remained unaffected by the presence of
cells over time. Cell-loaded 5% GelMA had a greater pore density of smaller dimensions
than cell-free hydrogels only at 1 d.
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with DQ-Gelatin, DQ-Gelatin/APMA (MMP activator), DQ-Gelatin/EGTA (MMP inhibitor), and 
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Figure 5. (a) Active ASC-secreted MMP in 5%, 10%, and 15% GelMA at 1 d. Cryosections stained
with DQ-Gelatin, DQ-Gelatin/APMA (MMP activator), DQ-Gelatin/EGTA (MMP inhibitor), and
DAPI only. Representative images are shown. Scale bars represent 10 µm (magnified view) and
50 µm (overview). (b) Active ASC-secreted MMP in 5%, 10%, and 15% GelMA at 14 d. Cryosections
stained with DQ-Gelatin, DQ-Gelatin/APMA (MMP activator), DQ-Gelatin/EGTA (MMP inhibitor),
and DAPI only. Representative images are shown. Scale bars represent 10 µm (magnified view) and
50 µm (Overview).
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Figure 6. Swelling and mechanical properties of GelMA hydrogels: (a) Swelling ratio of cell-loaded
(ASC) and cell-free (Control) GelMA hydrogels at 1 d, 7 d, and 14 d, calculated according to
Equation (1). Data derived from three independent samples per timepoint. Data are presented
as mean with standard deviation. No statistical differences were found according to two-way
ANOVA and Tukey. (b) Elastic modulus (kPa) and (c) stress relaxation (%) of cell-free (Control)
GelMA hydrogels after swelling for 24 h. Data derived from a minimum of three independent LLCT
measurements per sample, from three independent experiments. Data are presented as mean with
standard deviation. Differences in elastic modulus and stress relaxation according to Brown Forsythe
and Welch ANOVA and Dunnett’s T3 post-test one-way ANOVA and Tukey’s post-test, respectively.
p values are indicated * p < 0.05 and **** p < 0.0001.
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Scale bar represents 40 µm. All micrographs have the same magnification.
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Figure 8. Analysis of GelMA architectural parameters based on SEM imaging of cell-loaded (ASC)
and cell-free (Control) hydrogels. The pore density (i.e., number of pores), the average pore size
(um), and the porosity % between cell-loaded (ASC) and cell-free (Control) hydrogels. Data derived
from three independent samples per timepoint, from a minimum of five random areas per hydrogel.
Data are presented as mean with standard deviation. p values are indicated * p < 0.05, ** p < 0.01,
*** p < 0.001 and **** p < 0.0001 according to two-way ANOVA and Tukey.

In 10% GelMA, cell-loaded material had a greater pore density after 14 d compared to
1 d and 7 d and its respective control. In contrast, the average pore size decreased after 14 d
in culture. Interestingly, differences in pore density and average pore size were detected in
cell-free 10% GelMA.

In 15% GelMA, pore density increased in cell-loaded hydrogels after 14 d. Compared
to cell-loaded 1 d, the average pore size increased at 7 d but decreased at 14 d.

4. Discussion

Modulating hydrogel concentration is a common approach to tailor GelMA-ASCs’
hydrogels for TERM applications. In this work, we found that increasing hydrogel con-
centration led to an inhibition of active MMPs after 14 d in cell culture. The availability of
active MMPs seems to be a spatiotemporal regulated process influenced by hydrogel con-
centration and mechanics. Such spatiotemporal regulation of MMPs is described in in vivo
models with pathological conditions but is less studied in 3D in vitro models [51–53].

MMPs facilitate cell spreading by degrading the immediate microenvironment and
reducing the mechanical constraint from the pericellular region [54]. Hence, it was expected
that ASCs morphology would spread the most at higher MMPs expression; however, this
only occurred in 5% GelMA. In 10% GelMA, ASCs spread after 14 d despite the null levels
of MMPs detected. Thus, such spreading could be either derived by MMP-independent
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mechanisms [55,56] or by a lack of sustained MMPs secretion up to 14 d, hinting again
towards a spatiotemporal process. In 15% GelMA, the presence of positively stained actin
was minimal, showing no cell spreading, which is consistent with our previous report [41].
A high concentration of GelMA, i.e., 15%, might result in more binding of MMPs to gelatine,
as compared to lower concentrations of GelMA [57]. In other words, fewer less MMPs
will be free floating in the hydrogel. ASCs are known to also secrete tissue inhibitors of
metalloproteases (TIMPs) which inhibit MMPs [45]. When a lower number of MMPs are
free-floating, more of them might be relatively inhibited. This could potentially lead to
lower spreading of ASCs in 15% GelMA.

ASCs’ spreading follows a clear trend regarding hydrogel concentration, where cell
spreading is facilitated at lower polymer concentrations—where the elastic modulus is
lower and exhibits higher stress relaxation. Thus, MMPs expression does not follow the
same trend as spreading in terms of hydrogel concentration. Although GelMA has MMP
degradation motifs, a lack of sustained expression suggests that MMPs’ release and activity
are influenced by the pericellular mechanics. In our model, increasing hydrogel concentra-
tion led to a near-linear increase in the hydrogel elastic modulus. Reportedly, mechanics
downregulated MMPs through TIMPs, albeit in 2D hydrogel models [58]. Previously
reported [41], ASCs decreased GelMA stiffness after 14 d, regardless of hydrogel concen-
tration. However, a decrease in stiffness might be insufficient to induce MMP activation.
Time-dependent mechanics, such as stress relaxation, might facilitate MMP expression
and activation [59]. In our study, 5% GelMA had a faster stress relaxation percentage than
10% and 15% GelMA. Such GelMA stress relaxation can be altered by ASCs in contrasting
manners, changing from increasing (5%), sustaining (10%), or decreasing (15%) it [41].
Hence, ASCs-derived MMPs’ expression and activation seem to be predominantly mod-
ulated by hydrogel stress relaxation beyond sole stiffness, however further evidence is
required to confirm this. Overall, GelMA hydrogels had a lower stress relaxation compared
to non-covalent bound hydrogels previously characterised through LLCT [46,60].

The relation between hydrogel concentration and the inhibition of MMPs is of clinical
relevance. GelMA hydrogels are well suited as carrier biomaterial to deliver ASCs on site
of injection to decrease osteoarthritis or to heal osteochondral defects [61,62]. On one hand,
a higher concentration of GelMA provides more stability and rigidness to the hydrogel. A
stable construct is necessary in load-bearing joints such as the knee to prevent hydrogels
from collapsing. When hydrogels collapse, ASCs will be released to the environment as
single cells and tend to migrate from the site of injection. On the other hand, a higher
concentration of GelMA appears to inhibit MMPs’ activity, resulting in no cell spreading.
The question arises if these ASCs are still biologically active to improve the surrounding
microenvironment, e.g., heal bony defects or decrease inflammation in joints.

Polymer degradation also impacts hydrogel mechanics, although most studies char-
acterise such a phenomenon in cell-free materials [63–65]. Such approaches overlook
cell-induced degradation and the subsequent impact on hydrogel’s 3D architecture and
water-retaining capacities. Indirect methods to evaluate hydrogel degradation include
swelling and ultrastructure analysis. Our data did not show any differences regarding the
swelling ratio of hydrogels, and changes observed in ultrastructural parameters did not
follow a clear trend either. The study of the ultrastructure parameters evaluated are highly
dependent on a sample preparation method, which means the data is biased when utilising
SEM [46,66,67]. Nevertheless, other authors concluded that 3T3 fibroblasts increase GelMA
pore sizes based on SEM imaging [56]. Other imaging methods, such as second-harmonic
generation, have shown a decrease in the pore sizes of cell-loaded collagen hydrogels, a
contrasting finding [68].

Interestingly, cell-free GelMA also changed in terms of ultrastructure parameters
across timepoints, and it is unclear if such changes are due to artefacts during specimen
preparation for SEM, hydrogel contraction during culture, or additional changes in hy-
drogel conformation. Overall, data on the hydrogel structure in its native wet state is
scarce and even less present when describing cell-loaded materials. We also recognise
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the additional limitations of our current work. For example, matrix deposition, such as
ASCs-derived collagen, was not discernible in PSR stain and might require further his-
tological assessments. Evidence indicates that hydrogel concentration influences MMPs’
expression, such as MMP-2 and MMP-9 [69]; however, we did not explore particular MMPs,
and this remains to be investigated. Since the type of MMPs produced by cells is linked to
their lineage [70,71], the ASCs phenotype in the different environments should be inves-
tigated. Additionally, SEM visualisation is limited to the hydrogel surface and not to the
internal structure where most cells are located. Specimen preparation for SEM introduces
biases due to the dehydration steps before-mentioned [72]. Clearly, novel methods are
required to determine that the hydrogel architecture and ultrastructure do not rely on
sample dehydration.

5. Conclusions

Active MMP expression by ASCs is a regulated spatiotemporal process influenced by
hydrogel concentration and its underlying mechanics. Hence, we observe that an increased
GelMA hydrogel stiffness inhibits MMPs activity in a 3D microenvironment. A more
gradual trend was seen in terms of the function of ASCs, i.e., less spreading and collagen
deposition observed in the highest concentration hydrogels.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/bioengineering9080340/s1, Figure S1. Cryosections of cell-free 5%,
10%, and 15% GelMA at 1 d and 14 d. All cryosections stained with DQ-Gelatin, DQ-Gelatin/APMA
(MMP activator), DQ-Gelatin/EGTA (MMP inhibitor), and DAPI alone. Representative images are
shown. Scale bar represents 50 µm (overview).
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