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Role of the PD-1 and PD-L1 axis in COVID-19

Srinivasa R Bonam1 , Haitao Hu1,2 & Jagadeesh Bayry*,3

1Department of Microbiology & Immunology, University of Texas Medical Branch, Galveston, TX 77555, USA
2Institute for Human Infections & Immunity, Sealy Institute for Vaccine Sciences, University of Texas Medical Branch, Galveston,
TX 77555, USA
3Department of Biological Sciences & Engineering, Indian Institute of Technology Palakkad, Palakkad, 678623, India
*Author for correspondence: bayry@iitpkd.ac.in

“Circulating levels of soluble PD-L1 has been proposed as a promising biomarker to predict the
severity of the disease.”

Tweetable abstract: Severe COVID-19 patients display dysregulated expression of checkpoint molecules
PD-1 and its ligand PD-L1, suggesting that these checkpoint molecules could be considered as prognostic
markers and therapeutic targets in severe cases of COVID-19.
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PD-L1 is a transmembrane protein with a molecular weight of 40 kDa and it signals through a short cytoplasmic
tail. Synonymously, it is also termed as B7-H1 (a member of B7 family) and CD274. Numerous cell types express
the PD-L1, including leukocytes (granulocytes, monocytes, macrophages, dendritic cells, mast cells, basophils,
platelets, B cells, T cells and others), nonhematopoietic cells (cancer cells, microglia, astrocytes, neurons and
epithelial cells) and nonlymphoid cells (muscle, heart, placenta and renal tubular cells) [1]. PD-L1 and PD-L2 were
discovered in 2000 and 2001, respectively, as negative regulators of T-cell activation [2]. Compared with PD-L1, its
putative receptor, PD-1 (CD279; 55 kDa) expressed on the surface of antigen-stimulated T cells, was discovered
earlier in 1992. Since its discovery, several studies have confirmed the role of PD-1 in the maintenance of immune
tolerance. Later findings identified the role of PD-L1 in protecting the host from autoimmunity by maintaining
self-tolerance with the help of regulatory T cells (Treg cells). On the other hand, PD-1/PD-L1 axis limits anti-tumor
immunity and therapeutic response. Blocking the abovementioned signaling pathway has shown beneficial clinical
outcomes in several cancer types. Therefore, PD-L1 expression has been considered as a predictive biomarker for
cancer immunotherapy, although dynamic and heterogeneous expression of PD-L1 is a limiting factor.

Several recent reports also highlight that PD-1/PD-L1 axis plays a role in the pathogenesis of various infectious
diseases, including AIDS and hepatitis B. Though in the acute condition, the interaction between the checkpoint
molecules PD-1 and its ligand PD-L1 help in reducing the infection-associated inflammation and inflammation-
mediated tissue damage, chronic stimulation leads to immune exhaustion, reduced effector functions of immune
cells and progression of the disease as reported in case of the recent COVID-19 caused by SARS-CoV-2. Therefore,
therapeutically blocking this pathway ‘transiently’ would activate the immunity against pathogens.

In general, innate immunity lowers the viral load and adaptive immunity, particularly T cells, clear the virus-
infected cells. For various reasons, SARS-CoV-2 hijacks the innate immune defense system and induces immune
checkpoint molecules. When SARS-CoV-2 infects lung epithelial cells, they produce inflammatory cytokines, like
IL-6 and TNF-α. In addition, initial interaction with the virus leads to PD-L1 expression on the epithelial cells.
The reason for the expression of this molecule, either ‘eat me signal’ or ‘save me signal’ is not known yet. The
secreted cytokines recruit the innate immune cells (first neutrophils and then monocytes) to the location, followed
by the activation of innate immune cells. More than epithelial cells, innate immune cells secrete copious amounts of
proinflammatory cytokines (IL-6, IL-8, TNF-α and others; denoted as cytokine storm) followed by the recruitment
of adaptive immune cells.
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Studies on the gene expression of PDL1 from in vitro and ex vivo experiments have revealed more interesting
facts. Lung epithelial cells (Calu3 and A549 [transduced with ACE2]) following incubation with SARS-CoV-2
have shown elevated levels of PD-L1 [3]. Supporting the above data, lung biopsies of COVID-19 patients were
tested for PDL1 gene expression, revealing upregulation of PD-L1 expression compared with healthy donors [3].

Dysregulated surface expression of PD-1/PD-L1 in innate immune cells & T cells of COVID-19
patients
Several reports have now demonstrated that severe and critical COVID-19 patients display dysregulated PD-1/PD-
L1 axis. The expression of PD-L1 is enhanced on both dendritic cells (myeloid and plasmacytoid dendritic cell
subsets) and monocytes in severe COVID-19 patients [4,5] and was associated with their inability to respond to
stimuli [5] and reduced T cell stimulatory capacity [6]. Though the functional consequences are not yet clear, disease
severity also appears to be associated with the emergence of PD-L1 expression in eosinophils and basophils [7]. In
addition, platelets from COVID-19 patients show an increased expression of PD-L1 that negatively affects the
CD4+ T cell IFN-γ production when cocultured with the platelets [8].

On the other hand, T cells from the severe COVID-19 patients show an exhausted phenotype, functional
paralysis and an enhanced expression of PD-1 and other checkpoint molecules like TIGIT (T cell immunoreceptor
with immunoglobulin and ITIM domain) and TIM-3 (T cell immunoglobulin and mucin-domain containing-3)
that indicates the progression toward immunosuppressive milieu [9–11]. Furthermore, extended epigenetic studies
on the T cells have revealed altered degree of PD1 promoter methylation in CD8+ T cells [12]. Nonetheless, the
precise role of PD-1/PD-L1 axis in the pathogenesis of COVID-19 is far from clear.

Enhanced expression of PD-L1 on the innate cells of COVID-19 patients could be due to both SARS-CoV-2
and/or inflammatory milieu induced by the virus infection. Under in vitro conditions, stimulation of plasmacytoid
dendritic cells with SARS-CoV-2 has been reported to induce surface expression of PD-L1 [13]. Cytokines like
IFN-γ that are induced due to host response to SARS-CoV-2 are also capable of inducing PD-L1. We found that
SARS-CoV-2 is incapable of inducing PD-L1 on human basophils [14]; however, under IL-3 priming conditions,
IFN-γ could induce it [15]. Hypoxia-induced multiple organ injury could also enhance the expression of PD-L1 [16].

Elevated levels of soluble forms of PD-L1 in COVID-19 patients
Interestingly, recent studies have highlighted the existence of different forms of PD-L1, such as a surface of
plasma membrane, the surface of exosomes, cell nuclei and circulating soluble PD-L1. However, the underlying
mechanisms on their generation are not fully characterized [17]. One of the recent studies has characterized both
soluble and genomic expression of PD-L1 in COVID-19 patients. It was found that soluble PD-L1 levels were
significantly elevated in the blood of COVID-19 patients compared with healthy donors [3]. The reason for the
shedding and enhanced soluble levels of PD-L1 in COVID-19 patients is not known. SARS-CoV-2 could act as
one of the triggering factors as a direct correlation between viral RNA load in the plasma of the patients and the
soluble PD-L1 has been reported [18].

PD-L1 as a potential biomarker of COVID-19
Circulating levels of soluble PD-L1 has been proposed as a promising biomarker to predict the severity of the
disease and to identify the COVID-19 patients that need invasive mechanical ventilation [19]. Further, soluble
PD-L1 in COVID-19 patients is positively correlated with increased C-reactive protein and negatively correlated
with decreased lymphocytes, PaO2/FIO2 (arterial oxygen partial pressure/fractional inspired oxygen). Similarly,
increased plasma levels of soluble PD-1 and PD-L1 in COVID-19 patients is associated with decreased immune
response of peripheral blood mononuclear cells to nonspecific antigens [12].

PD-1/PD-L1 axis as a therapeutic target in COVID-19: rationale & evidence
As discussed above, targeting ‘transiently’ (to avoid the adverse effects of long-term inhibition) the PD-1/PD-L1
axis or its pathways of induction in the early stages of infection might have a beneficial outcome. Furthermore,
under the therapeutic setting, kinase inhibitors could suppress the PD-L1 expression. Ruxolitinib, a reversible and
selective JAK1 and JAK2 inhibitor, has been shown to reduce the PD-L1 expression in lung epithelial cells that
have been exposed to SARS-CoV-2 [3].

It has been documented that during the viral replication process, cells secrete anti-inflammatory cytokine, IL-10,
that regulates the expression of PD-L1 and PD-1 in a STAT-3-dependent pathway on dendritic cells/monocytes
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and T cells, respectively [1,20]. In addition, several studies have reported elevated levels of IL-10 in the COVID-19
patients. Therefore, either blocking IL-10 or blocking both IL-10 and PD-L1, serves as viable targets for therapeutic
purposes in chronic infections. Of note, blockade of PD-L1 could restore the ex vivo IFN-γ-stimulatory capacity of
platelets in COVID-19 patients [8]. Also, ex vivo blockade of PD-1 has re-established T cell function of COVID-19
patients [12]. That being said, none of the interesting clinical studies has been registered in these directions.

There are several outstanding questions that need to be answered in the future, including detailed investigation of
checkpoint molecules and kinetics of expression in various immune cells of COVID-19 patients, the mechanisms
of their induction and shedding, proof of concept on their use as therapeutic targets and the genetic basis like
variants in the genes and epigenetic factors that lead to dysregulated expression of checkpoint molecules in the
COVID-19 patients.
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