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Laboratory methods such as hydroponics, rhizotron, rhizos-
lide and luminescence observatory for roots do not provide 
precise and desired root quantification attributes. Though 
3D imaging by X-ray computed tomography (X-ray-CT) 
and magnetic resonance imaging techniques are complex, 
however, it provides the most applicable and practically rel-
evant data for quantifying root system architecture traits. 
This review outlines the current developments in root studies 
including recent approaches viz. X-ray-CT, MRI, thermal 
infrared imaging and minirhizotron. Although root pheno-
typing is a laborious procedure, it offers multiple advantages 
by removing discrepancies and providing the actual practical 
significance of plant roots for breeding programs.

Abstract The phenotyping of plant roots is a challenging 
task and poses a major lacuna in plant root research. Roots 
rhizospheric zone is affected by several environmental cues 
among which salinity, drought, heavy metal and soil pH are 
key players. Among biological factors, fungal, nematode and 
bacterial interactions with roots are vital for improving nutri-
ent uptake efficiency in plants. The subterranean nature of 
a plant root and the limited number of approaches for root 
phenotyping offers a great challenge to the plant breeders 
to select a desirable root trait under different stress condi-
tions. Identification of key root traits can provide a basic 
understanding for generating crop plants with enhanced 
ability to withstand various biotic or abiotic stresses. For 
instance, crops with improved soil exploration potential, 
phosphate uptake efficiency, water use efficiency and others. 
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Introduction

Plant roots are involved in the absorption of water and nutri-
ents, anchorage, growth and development, food storage, and 
as interacting sites for many biotic communities. In response 
to the changing water and nutrient profiles in the soil, the 
dynamics of plant root growth and development serve as 
a black box for exploring the natural variation and identify-
ing the essential root traits to improve plant productivity 
(Lynch 1995; Kano et al 2011; Pal et al. 2017; Hakla et al. 
2021; Sharma et al. 2021; Urfan et al. 2021). In most the 
cereal crops, the root structure is fundamentally of two types 
viz. embryonic roots-primary root (PRs) and seminal root 
(SRs) which develop directly from embryo and post-embry-
onic roots-crown roots (CRs) and brace root (BRs). Both of 
these root systems are collectively known as adventitious 
roots which develop from the shoot node (Hochholdinger 
2009; Lynch and Brown 2012). The growth and development 
(length, number, surface area, angle, lateral root density, and 
longevity) of all the root types are highly regulated and gov-
erned by genetic and environmental factors independently 
or through interaction with each other. In a specific envi-
ronmental condition, the pattern and distribution of a root 
system are known as root system architecture (RSA). The 
RSA being vibrant is influenced by a variety of factors such 
as soil water status, temperature fluctuation, nutrients status, 
and pH (Bao et al. 2014). The nature of the RSA facilitates 
plants to reply, acclimatize and flourish in ever-changing 
environmental conditions. However, selecting crops based 
on important RSA traits poses difficult practical challenges. 
The role of root traits under different environmental con-
ditions has been correlated with crop productivity in rice 
and spring wheat (Kell 2011; Uga et al. 2013; Narayanan 
et al. 2014). The relationship between root traits with agri-
cultural yield under different biological and environmental 
stresses has been studied extensively (Mahanta et al. 2014; 
Le Marié et al. 2014; Mathieu et al. 2015; Tiziano et al. 
2021).

Methods based on captured images (scanners or cameras) 
are mostly applied for computing the morphometric traits 
of root and shoot. These procedures permit several pheno-
types in a short span of time (Clark et al. 2013; Adu et al. 
2014; Le Marié et al. 2014). Furthermore, the 3D imaging 
technique of RSA can be done with X-ray computed tomog-
raphy (X-ray-CT), magnetic resonance imaging (MRI), or 
neutron tomography (NT) (Leitner et al. 2014; Metzner et al. 
2015). The hydroponics approach, in which plants are grown 
without soil, preferably facilitates the root growth observa-
tion (Conn et al. 2013; Mathieu et al. 2015). This method 

is easily applied, replicated, and generally economical, 
which provides significant benefits. Another non-destruc-
tive method is Rhizotron systems, consisting of concealed 
rooms, laboratories, or plane containers with clear glass or 
plastic windows to expose the soil for root visualization. 
Rhizotrons are widely used to observe the root growth and 
developmental changes of a large number of plants in a soil-
like substrate (Chen et al. 2014) and allow a fine analysis of 
soil-root relationships.

This review describes different approaches to studying 
the RSA. It will attempt to establish a greater clarity of cur-
rent knowledge about technologies used to study plant RSA. 
The main highlights of this article include an overview of 
the methodologies and the approaches for plant root studies 
such as X-ray computed tomography (X-ray CT), magnetic 
resonance imaging (MRI), thermal infrared imaging, and 
minirhizotron (MR) with their advantages, disadvantages, 
discrepancies and practical significances for crop and forage 
breeding programs.

Root phenotyping strategies

One of the most important and necessary parameters consid-
ered for the in-depth understanding of the growth and devel-
opment of plants under various biotic and abiotic stresses 
is the precise measurement of a root system. The RSA is 
studied mostly through laboratory-based methods and in 
field conditions. Environmental conditions are highly con-
trolled and regulated in laboratory methods, thus providing 
real-time analysis for RSA. The early RSA traits have been 
thoroughly examined and estimated under different envi-
ronmental stimuli. In order to gain knowledge of the archi-
tectural complexity of roots, for researchers to be able to 
observe root growth kinetics and its developmental pattern 
is extremely important. The transparent nature of the media, 
in which roots become opaque, offers great difficulty in esti-
mating RSA traits quantitatively. Various soil-less strategies, 
including aeroponics, in which roots of the desired plant are 
hung in the air and sprayed with a fine mist of nutrient solu-
tions (Gangopadhyay et al. 2021) and hydroponics (Fig. 1a) 
in which plants are grown in containers (static hydroponics) 
and PVC pipes (water circulating hydroponics) filled with 
water and nutrients are in practice for RSA studies (Tizi-
ano et al. 2021). The paper roll method (Fig. 1b), which is 
equally competent and an easy approach to analyzing and 
recording early RSA traits, under different environmental 
cues is also widely used in wheat and mung bean seedlings 
respectively (Alemu et al. 2021; Hakla et al. 2021). These 
methods offer minimal physical resistance to the plant root 
system growth due to that its 3- dimensional shape, thus 
RSA studies in lab-based methods will not infer the true or 
actual response of RSA under field conditions. In addition 
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to these methods, novel techniques and methodologies used 
in laboratory and greenhouse conditions for RSA analysis 
were thoroughly investigated and compared for advantages 
and their discrepancies.

Rhizoponics

The hydroponic rhizotrons are used for analyzing the RSA of 
mature Arabidopsis plants. In hydroponics plants are grown 
without soil and the nutrients are regulated manually, and 
their influences on RSA can be explored in-depth (Fig. 1c). 
Interestingly, rhizoponics is the combination of hydroponics 
and rhizotron, which enables a researcher to study RSA in 
Arabidopsis and other similar plants.

The rhizoponics method provides precise quantification of 
root development in plants. Important root traits such as root 
surface area, length, depth, width and lateral root density 
are measurable with rhizoponic setup in Arabidopsis plants 
(Mathieu et al. 2015). This setup has been used to char-
acterize the RSA and shoot growth from seedling to adult 
stages, i.e., from seed to seed in Arabidopsis. The system 
thus offers the advantages of hydroponics in controlling the 

root environment with easy access to the roots for measure-
ments of key root attributes.

Rhizoslide

Rhizoslide involves the growing of a plant with-in a layer of 
two-dimensional large plates (Fig. 1d). Its central glass shel-
ter stabilizes the root system and is covered on mutual sides 
with germination sheets, which provide substrate, water 
and nutrient for the developing embryo. Primary root and 
seminal roots grow hidden between a plexiglass surface and 
germination sheets; however, crown roots growth could be 
visibly detected. Rhizoslide could create a plant growth sys-
tem that enables non destructive measurement of the RSA. 
The platform distinguishes easily between embryonic and 
post-embryonic roots and is useful for the genetic studies 
of crown roots and other root types which are adaptive in 
character for the management of abiotic and biotic stresses. 
Similarly, it offers a great opportunity in studying the role 
of nutrients in root system development. Several studies 
have been carried out using rhizoslide on both dicot and 
monocot species (For more details, Le et al. 2014; Perelman 
et al. 2020). Estimation of seminal roots and screening of 

Fig. 1  Root system analyzing methods in use under laboratory and 
field conditions. Laboratory based methods: a hydroponics, b paper 
roll, c rhizoponics, d rhizoslide (for details Le Marié et  al. 2014), f 
growth luminescence observatory root (for details Rellán-Álvarez 
et al. 2015)

Field based methods: f plant in pot filled with soil, g X-ray of plant 
roots in soil pot conditions (for details Lontoc-Roy et  al. (2006), h 
rhizotron (for details Rahman et  al. 2020), i (for details) minirhizo-
trons method (for details Rahman et al. 2020)
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quantitative trait loci in wheat under different environmental 
factors (Boudiar et al. 2020).

Transparent pots

The use of a transparent or clear pot is an efficient and eco-
nomical root phenotyping method to study desirable RSA 
traits. Seeds are placed vertically, embryos downward along 
the wall of the pot. After sowing, the transparent pots are 
placed in the black pots in order to protect against the influ-
ence of light on root growth. For root image acquisition of 
primary roots and seminal roots, the camera is placed on 
the tripod strand and there after images are taken or recorded 
from different angles by rotating the pot. Transparent pots 
have been successfully used for high-throughput system 
analysis of RSA in wheat seedlings (Richard et al. 2015). 
This method is used for measuring lateral root density, root 
behavior and their distribution in correlation with the natural 
environment in plants (Neumann et al. 2009) (Table 2).

Growth luminescence observatory

The growth luminescence observatory (GLO) is a plant 
root imaging platform for the analysis of RSA (Fig. 1e) 
(Rellán-Álvarez et al. 2015). In GLO, luminescent mark-
ers are used, which enable the researchers to examine and 
investigate the changes occurring during root growth and 
development via visualizing the root system of a plant grown 
in thin and soil-filled transparent pots (Rellán-Álvarez et al. 
2015; LaRue 2020). Experimental set up and use of GLO 
is explicitly presented in Rellán-Álvarez et al. (2015). The 
GLO-ROOT, allow the researchers to study RSA traits such 
as root length, the direction of roots, their shape and root 
depth as well as their gene expression. GLO-ROOT can be 
used for the measurement of soil water content in soil at dif-
ferent levels, while studying the water status impact on the 
RSA. Its applications are well established in many plant spe-
cies such as Arabidopsis and Brachypodium distachyon in 
analyzing the RSA (Rellán-Álvarez et al. 2015). Further, it is 
extended widely for a better understanding of RSA response 
under low water conditions, phosphate deficiency and light. 
Furthermore, GLO is used for image analysis algorithms, 
which later helped in understanding the spatial integration 
of soil properties, RSA traits and related gene expression in 
plants. Thus, emerged as a system that has great utility in 
presenting environmental stimuli to roots in ways that evoke 
natural adaptive responses and in providing tools for study-
ing the multi-dimensional nature of such processes. Some 
other plants on which this technique was used to study the 
root system architecture are Tomato (Lycopersicum esculen-
tum) and grasses, Rellán-Álvarez et al. (2015).

X‑ray computed tomography

Minimally invasive structural imaging by X-ray computed 
tomography (CT) method enables researchers to reconstruct 
the scanned objects in a three-dimensional (3-D) fashion 
(Fig. 1 g). Initially used as a medical diagnostic tool, this 
technique was first used as a medical diagnostic tool in 1971, 
but since then has been utilized in a wide range of scientific 
fields, such as natural, material and earth sciences (Stuppy 
et al. 2003; Cnudde et al. 2006; Teramoto et al. 2020; Shao 
et al. 2021). This method is widely used to visualize the 
plant root system growing in the natural environment. For 
this remarkable work, the pioneer of this technique G. 
N. Hounsfield was awarded a Nobel prize in 1979. The non 
destructive and non-invasive nature of this technique has 
made it a competent tool for soil profile analysis. The use of 
X-ray CT in plant science and soil sciences was started by 
Crestana and Vaz (1998). Hainsworth and Aylmore (1983) 
used computer-assisted tomography to determine the spa-
tial distribution of water content in soil and also studied its 
role in the visualization of the root system. The technique 
is explored for root phenes identification under different 
substrates, such as sandy and clayey soils. For instance, 
X-ray CT is used to collect root-network images of chestnut 
(Aesculus hippocastanum) and maple (Acer pseudoplata-
nus) trees growing in sandy and clayey soils. In this study, 
large roots permitted the use of a global threshold approach, 
where seeds were germinated and allowed to grow until 
2–3 weeks’ time on germination sheets placed in containers 
containing different abiotic stressors. Interestingly, Pierret 
et al. (1999) were amongst the first to identify one of the 
major imaging challenges concerned with root segmentation. 
Later, Kaestner et al. (2006) endeavored to provide the solu-
tion by applying a non-linear diffusion filter to smoothen the 
images followed by conveying a threshold value extracted 
from Rosin’s (2001) algorithm, and concluded that a phe-
notyping dilation operation could be used to eradicate 
misclassified objects. This method could perceive primary 
roots and fine lateral roots as well. Lontoc-Roy et al. (2006) 
observed maize (Zea mays) roots growth in different sub-
strates (sandy and sieved loamy sand) in both dry and wet 
conditions. These tactics were applied for image analysis and 
created preliminary documentation of root material using 
the whole threshold selected values. The threshold values 
varied with various samples, such as the CT responses 
between the types and conditions (e.g., moisture content) 
of a roots under study. The resultant threshold values could 
produce a model comprised of a root system enclosed by 
‘clouds’ of categorized voxels followed by analysis, which 
could iteratively improve the threshold boundaries, thus out-
come similar voxels related to the whole root. The final step 
involves skeletonizing the region identified as the root. This 
illustrates, how water content affects the overall density of 
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the plant roots when examined using X-ray CT. In another 
study Perret et al. (2007) developed a range of methods 
to estimate and analyses RSA traits such as root volume, 
root surface area, root length and root number using high 
resolution X-ray CT in chickpea (Cicer arietinum) grown 
in the sand substrate. This method was able to segregate 
threshold values of roots, air, and water content. The simi-
lar attenuation values between the air spaces and near root 
objects could create a hindrance, as air spaces are close to 
root sectors and therefore not eliminated by using a filter. 
Structural organization of X-ray CT and its functioning is 
explained by Paya et al. (2015). Researchers have addressed 
a number of limitations of previous methods. An impres-
sive study conducted by Aravena et al. (2011), utilized a 
synchrotron radiation computed tomography to visualize the 
structure of root and root hairs. Ferreira et al. (2010) applied 
X- ray-CT scan to potato tubers volume using ~ 0.1 mm reso-
lution, and obtained values were vastly correlated (0.986) 
with the root volumes (RV) of excavated tuber samples. 
However, no information could be inferred about the type 
of substrate used for plant growth experiments. Tracy et al. 
(2010) and Lucas et al. (2011) provided finer inputs, their 
work proposed that new X-ray CT systems could envisage 
thin lateral roots i.e. few micrometers. X-ray CT has been 
used in numerous studies for invasive root observation in the 
soil, which includes roots interaction in Populus tremuloides 
and Picea mariana, root and soil interaction in tomato and 
wheat. However, root growth kinetics using high-throughput 
images by X-ray CT has not been extensively explored yet, 
in spite of its importance in revealing RSA plasticity in the 
soil. Estimate and analyses RSA traits such as root volume, 
root surface area, root length and root number using high 
resolution X-ray CT in chickpea (Cicer arietinum) grown in 
the sand substrate.

Magnetic resonance imaging (MRI)

A plant root system is highly flexible and plastic in respond-
ing to various soil environments and other gradients. So far, 
RSA trait analyses focus on 2D images acquisition, a non-
invasive 3D root imaging could portray the real behavior 
of a root system in a given soil condition. These 3D RSA 
traits analyses could be obtained through MRI imaging 
with a standard protocol including spin-Echo-Multi slice 
(Van et al. 2016; Bagnall et al. 2020). Root image detec-
tion through MRI is affected by different soil substrates and 
moisture content. Results obtained from previous studies 
indicate that seminal root images could be detected easily 
in MRI; however, the dense soils create hindrance in lateral 
root detection. Furthermore, soil moisture content could 
greatly influence plant root analysis through MRI grown 
under different soil substrates. Moisture content above 
80% and highly dense soil can significantly hamper the 

visualization of lateral roots in the soil and to some extent 
the seminal roots. Application of MRI for the RSA studies 
in barley has been conducted by Pflugfelder et al. (2017). For 
detailed experimentation and understanding refer to Pflug-
felder et al. (2017) and Bagnall et al. (2020).

Field‑based methods

In field-based methods, growth conditions are minimally 
controlled and could provide a practical relevance in RSA 
studies. Field-based methods impose several challenges 
due to variability in the physio chemical properties of the 
soil. Ground-based methods are damaging, effort and time 
exhaustive, few among these are trenching, coring, excavat-
ing, and minirhizotron (MR) used to access roots in situ. 
Among non-invasive techniques, minirhizotron (MRs) are 
widely used in field conditions for RSA analysis.

Minirhizotron

Minirhizotron (MR) technique is extensively used to explore 
subterranean plant root systems (Fig. 1 h-i). MR applica-
tion allows direct observations of plant roots falling in the 
rhizosphere zone. Besides phenotyping, in situ root studies 
are increasingly important to understand the factors con-
trolling agricultural yields in diverse environmental condi-
tions. MRs has emerged as a sound tool for understanding 
root responses of crop systems. In general, MRs comprises 
mainly three parts: a transparent tube, a camera system with 
storage, and a computer-processing unit (Smit et al. 2000; 
Nakaji et al. 2008). MR installation involves, tubes hidden 
in the field for roots to be monitored. The positioning and 
imaging process is mostly manual. After the images are 
acquired, they need to be processed for research, which is 
done manually or semi-automatically using customized or 
commercially available software packages (ImageJ: IJ-Rhizo 
(Pierret et al. 2013) and SmartRoot software (Lobet et al. 
2011) (Table 1).

The MRs has been used to study species of turf grass 
roots (Fu et al. 2007). MR allows the observation of root 
growth over time for the quantification of root length and 
measurements of RSA. The most common morphological 
parameter assessed is root diameter (mm to µm); though 
some studies have addressed root pigmentation and branch-
ing also. MRs has helped to improve our understanding of 
root systems, for example, in respect of root production, lon-
gevity, root interaction and distribution (Treseder et al. 2005; 
Vargas and Allen 2008; Ephrath and Eizenberg 2010). MRs 
are also used in the measurements of root depth distribution 
(Baumann et al. 2005; Hendricks et al. 2006; Gandullo et al. 
2021) and extensively in assessing root length.

Some conflicting reports demonstrated several factors 
such as soil type, soil density, tube installation technique, 
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replicate numbers and sampling errors could largely influ-
ence MR data authenticity and its image acquisition. The 
consistency of MR method to predict the physiological sta-
tus of plant roots i.e., dead or alive has been recently demon-
strated by Rahman et al. (2020) and Gandullo et al. (2021).

Minirhizotrons for studying below‑ground interactions

MRs has been used to demonstrate below-ground interac-
tions between roots and their mycorrhizal partners and for 
roots and soil fauna/plant parasite interactions. Dynamics of 
mycorrhizal colonization in the soil cores have been studied 
with MRs (Mukerji et al. 2006). Fungal structures up to the 
single hyphae and density estimates of ectomycorrhizae, 
rhizomorphs and colonies of saprophytic fungi have been 
demonstrated with MRs (Treseder et al. 2005; Pritchard 
et al. 2008; Hasselquist et al. 2010). Below-ground resource 
competition, mediated through root–root interaction is of 
wide importance in plant ecosystems (Rewald and Leusch-
ner 2009). Since MRs can estimate root biomass and distri-
bution, they are capable to assess the degree of competition 
(Jose et al. 2001; Båth et al. 2008). Mostly the studies are 
restricted to tree–crop interactions (Campbell et al. 1994; 
Gillespie et al. 2000; Gandullo et al. 2020) due to difficulties 
in distinguishing roots of different species in situ. In addition 
to root competition, below-ground parasitic interactions can 
also be studied by MRs (Eizenberg et al. 2005). This tech-
nique is successfully used for in situ monitoring of the early 
stages of the root parasite establishment and interaction with 
plant roots (Table 2).

Applications of non‑invasive techniques in root 
phenotyping

Cereal and herbs

The non-invasive techniques were less explored in RSA stud-
ies in cereals and plants of commercial importance. How-
ever, by using these emerging techniques, we can explore the 
realistic and natural growth of root systems in cereal crops. 
Non-invasive techniques such as X-ray CT, minirhizotron, 
and MRI are very popular in root studies. Recently, a high-
throughput non-invasive X-ray CT time scan analysis of up 
to 28 days old seedling of rice was conducted successfully, 
this technique enabled the detection of primary root and 
crown roots development within a pot with a diameter up 
to 20 cm (Teramoto 2020). X-ray CT is also used for the 
in-depth understanding of rice seed development within its 
panicle in a non-invasive manner in a real-time manner. The 
observations made were not possible with traditional meth-
ods of grain development using manual removal of panicle 
layers. More interestingly, results obtained during X-CT of 
rice panicles at different stages showed a direct correlation Ta
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with seed dry matter, another important commercial aspect 
of studying non-invasive methods of RSA for rice. With the 
help of this wonderful technique plant breeders and farmers 
can decide the precise crop harvesting time for rice. Moreo-
ver, this simple and non-invasive approach has opened a 
window for agronomists to select root-specific traits which 
can be directly correlated to crop yield (Jhala and Thaker 
2015). Recently, Zhao et al. (2020) constructed a 3D model 
of maize root system under in-situ conditions through X-ray 
CT, thus providing a geometric morphology of the maize 
root system. In another study, X-ray CT enabled to study 
RSA in wheat (Triticum aestivum) seedlings at different time 
points under high and low nitrogen concentrations. The 4D 
X-ray CT scanned images under soil were captured and 
image analysis proved that lateral root traits showed greater 
variation under low nitrogen conditions when compared to 
control conditions. This technique has helped to explore root 
responsive traits related to specific nutrient conditions (Grif-
fiths 2022).

Another important non-invasive technology applied in 
root phenomics is MRI, though quite expensive compared 
to X-ray CT, this technique has better resolution in the detec-
tion of seminal and lateral roots in wheat plants. In this tech-
nique wheat seedlings were grown in natural soil; an MRI 
scan was conducted at different time points to note RSA 
variability among the different genotypes. Important traits 
measured through this technique were root and shoot emer-
gence times, total root length, angle, and depth (Pflugfelder 
et al. 2022). Thus, MRI provided the natural and unique 
automated 4D images of the RSA in wheat plants and also 
showcased its application in other crops such as tomato, 
mustard, rice etc. Besides, X-ray CT and MRI, another non-
invasive method is minirhizotron (MR), equipment that is 
portable, economical, and extensively used in root phenotyp-
ing studies under field conditions. For instance, MR is used 
to explore maize root growth, distribution and root density 
at different developmental stages from three to twelve leaf 
stages. Observations obtained from MR images have shown 
that root density has increased with depth maximally at 
25 cm and reduced at greater depths (Liedgens and Richner 
2001). Similarly, Lu et al. (2019) calculated non-invasively 
root traits i.e. root length, root surface area root volume, 
lateral root density, etc. in pepper root using the MR tech-
nique. From the above evidence, it may be proposed that 
deep learning algorithms and approaches to object recogni-
tion can be set up in order to identify monocot and dicot root 
systems (Yu et al. 2020).

Tree species

The RSA analysis in tree species is least explored because 
of the complex root system and its wider distribution in 
soil. However, some non-invasive RSA studies on root 

phenotyping of tree species have been conducted success-
fully using a newly developed electrical current source 
approach in the Citrus plant. In this approach a drift of 
the electric current in the root system is related to the path-
ways of water and solutes, thus providing information on the 
root architecture and its functioning (Peruzzo et al. 2020). 
The PhenoRoots has been used to assess the variability of 
the RSA in cotton and has shown variation in root attrib-
utes at different soil profiles and soil depths (Martins et al. 
2019). Further, the MR technique has been extended to tree 
RSA through improved computational algorithms. More 
recently, a modified version of the MR technique has been 
patented for non-invasive root phenotyping in small-sized 
trees (Moore et al. 2022). This latest technique has better 
resolution in capturing the root attributes in a real-time man-
ner (Moore et al. 2022). In tree species applications of X-CT 
and MR are limited and require modifications in terms of 
portability and sensor development then only these tech-
niques could be applied for higher plant root studies.

Conclusions and future explorations

The RSA trait identification plays a pivotal role in crop 
improvement programs. In-depth analysis of RSA is an 
urgent need to use the latest molecular technologies, to col-
laborate the knowledge of root studies and breeding pro-
grams. Some interesting RSA traits viz. water use efficiency 
and nitrogen use efficiency are highly desired for the genera-
tion of super crops. Aerial and below-ground plant pheno-
typing in combination will allow the selection of specific 
genotype and practices on farms to enhance productivity 
gain. However, this requires a paradigm shift in the develop-
ment of new approaches, timelines and intensity of research 
work programs related to RSA phenotyping. The present 
article highlights the advantages and discrepancies of avail-
able systems developed for plant root phenotyping. For 
instance, hydroponics does not permit precise and practi-
cal relevant root quantification, despite 2D-rhizotron being 
particularly suitable for root traits quantification, root-shoot 
physiological relations, and root system responses to local 
soil conditions. The rhizoslide method allows studying the 
root growth of crown roots and seminal roots independently 
under heterogeneous environmental conditions. The GLO 
Roots enable studies of root architecture and gene expression 
patterns in soil-grown and light-shielded roots. Further 3D 
imaging by X-ray CT and MRI techniques provides the most 
applicable and practical relevance for quantifying RSA traits. 
Non-invasive study of RSA (X-ray CT, MRI, Minirhizotron) 
is one of the greatest challenges in tracing the important con-
tributing root traits under different environmental stimuli. 
This review has presented the latest developments in the 
field of RSA studies. A comparison of different methods 
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available to date will also help to understand the shortcom-
ings of the methods/experiments in practice (Table 2). From 
every point of concern, X- ray computed tomography may 
be used to capture high-throughput images, but economical 
design, flexibility, and portability remain challenging task 
for its wider application. Further, there is a need to explore 
sensor-based techniques viz. thermal imaging sensor and 
ultrasound in exploring the interactions of different environ-
mental stimuli with RSA.

Data resources utilized in the review process

An in-depth literature survey was carried to understand the 
recent methods of RSA studies. A comparison of X-Ray CT, 
GLO-Root, minirhizotron, MRI, rhizoponics, rhizoslide, 
and transparent containers is shown in Tables 2. An exten-
sive search has been carried out in peer-reviewed publica-
tions, field guides, books, conference proceedings, project 
reports, and other information available on the internet. 
Numerous software packages (ImageJ: IJ-Rhizo (Pierret 
et al. 2013) and SmartRoot software (Lobet et al. 2011) were 
analyzed in extracting quantitative root traits from captured 
images. Several online websites with dedicated software’s 
viz.https:// github. com/ st707 311g/ RSAtr ace3D, https:// www. 
quant itati vepla nt. org/ softw are/ root- vis, https:// www. quant 
itati ve- plant. org/ softw are/ giaro ots are available for analyz-
ing the RSA of plants of commercial importance.
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