
ADOpy: A Python Package for Adaptive Design Optimization

Jaeyeong Yang1, Mark A. Pitt2, Woo-Young Ahn1,*, Jay I. Myung2,*

1Department of Psychology, Seoul National University, Seoul, Korea

2Department of Psychology, Ohio State University, Columbus, Ohio

Abstract

Experimental design is fundamental to research, but formal methods to identify good designs

are lacking. Advances in Bayesian statistics and machine learning offer algorithm-based ways to

identify good experimental designs. Adaptive design optimization (ADO; Cavagnaro, Myung, Pitt,

& Kujala, 2010; Myung, Cavagnaro, & Pitt, 2013) is one such method. It works by maximizing

the informativeness and efficiency of data collection, thereby improving inference. ADO is a

general-purpose method for conducting adaptive experiments on the fly and can lead to rapid

accumulation of information about the phenomenon of interest with the fewest number of trials.

The nontrivial technical skills required to use ADO have been a barrier to its wider adoption. To

increase its accessibility to experimentalists at large, we introduce an open-source Python package,

ADOpy, that implements ADO for optimizing experimental design. The package, available on

GitHub, is written using high-level modular-based commands such that users do not have to

understand the computational details of the ADO algorithm. In this paper, we first provide a

tutorial introduction to ADOpy and ADO itself, and then illustrate its use in three walk-through

examples: psychometric function estimation, delay discounting, and risky choice. Simulation

data are also provided to demonstrate how ADO designs compare with other designs (random,

staircase).

Keywords

cognitive modeling; Bayesian adaptive experimentation; optimal experimental design;
psychometric function estimation; delay discounting; risky choice

Terms of use and reuse: academic research for non-commercial purposes, see here for full terms. http://www.springer.com/gb/open-
access/authors-rights/aam-terms-v1
*Corresponding authors (wahn55@snu.ac.kr, myung.1@osu.edu).

Publisher's Disclaimer: This Author Accepted Manuscript is a PDF file of a an unedited peer-reviewed manuscript that has been
accepted for publication but has not been copyedited or corrected. The official version of record that is published in the journal is kept
up to date and so may therefore differ from this version.
2The probability density function (PDF) for a continuous response variable, or the probability mass function (PMF) for a discrete
response variable, refers to the probability of observing a response outcome given a fixed parameter value and is therefore a function
defined over the set of possible outcomes.
3The likelihood function represents the “likeliness” of the parameter given a fixed specific response outcome as a function over the
set of possible parameter values. Specifically, the likelihood function is obtained from the same equation as the probability density
function (PDF) by reversing the roles of y and θ.

HHS Public Access
Author manuscript
Behav Res Methods. Author manuscript; available in PMC 2022 July 29.

Published in final edited form as:
Behav Res Methods. 2021 April ; 53(2): 874–897. doi:10.3758/s13428-020-01386-4.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

http://www.springer.com/gb/open-access/authors-rights/aam-terms-v1
http://www.springer.com/gb/open-access/authors-rights/aam-terms-v1

1 Introduction

A main goal of psychological research is to gain knowledge about brain and behavior.

Scientific discovery is guided in part by statistical inference, and the strength of any

inference depends on the quality of the data collected. Because human data always contain

various types of noise, researchers need to design experiments so that the signal of interest

(experimental manipulations) is amplified while unintended influences from uncontrolled

variables (noise) are still present. The design space, the stimulus set that arises from

decisions about the independent variable (number of variables, number of levels of each

variable) is critically important for creating a high-signal experiment.

A similarly important consideration is the stimulus presentation schedule during the

experiment. This issue is often guided by two competing goals: efficiency and precision.

How much data must be collected to be confident that differences between conditions could

be found? This question is similar to that asked when performing a power analysis, but is

focused on the performance of the participant during the experiment itself. Too few trials

yield poor precision (low signal-to-noise ratio); there are simply not enough data to make

an inference, for or against a prediction, with confidence. Adding more trials can increase

precision along with practice effects. However, it may not be efficient to add too many

trials, especially with a clinical population where time is really of the essence and when

participants can easily get fatigued or bored. What then is the optimal number of trials that

will provide the most precise performance estimates? A partial answer lies in recognizing

that not all stimuli are equally informative. By optimizing stimulus selection in the design

space, efficiency and precision can be balanced.

Methods of optimizing efficiency and precision have been developed for some experimental

paradigms. The most widely used one is the staircase procedure for estimating a threshold

(Cornsweet, 1962; Feeny et al., 1966; Rose et al., 1970), such as when measuring hearing or

visual acuity. Stimuli differ along a one-dimensional continuum (intensity). The procedure

operates by a simple heuristic rule, of which there are a handful of variants: The stimulus to

present on one trial is determined by the response on the previous trial. Intensity is increased

if the stimulus was not detected, decreased if it was. The experiment is stopped after a given

number of reversals in direction has been observed. The staircase method is efficient because

the general region of the threshold is identified after a relatively small number of trials, after

which the remaining trials concentrate on obtaining a precise threshold estimate. Its ease

of implementation and generally good results have made it a popular method across many

fields in psychology.

Formal approaches to achieving these same ends (good efficiency and precision) have also

been developed. They originated in the fields of optimal experimental design in statistics

(Lindley, 1956; Atkinson and Donev, 1992) and active learning in machine learning (Cohn

et al., 1994; Settles, 2009). In psychology, the application of these methods began in visual

psychophysics (e.g., Kontsevich and Tyler, 1999), but has since expanded into other content

areas (neuroscience, memory, decision making) and beyond. Common among them is the

use of a Bayesian decision theoretic framework. The approach is intended to improve upon

the staircase method by using not only the participant’s responses to guide the choice of the

Yang et al. Page 2

Behav Res Methods. Author manuscript; available in PMC 2022 July 29.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

stimulus on the next trial, but also a mathematical model that is assumed to describe the

psychological process of interest (discussed more fully below). The model-based algorithm

integrates information from both sources (model predictions and participants’ responses) to

present what it identifies as the stimulus that should be most informative on the next trial.

The method developed in our lab, adaptive design optimization (ADO), has been shown to

be efficient and precise. For example, in visual psychophysics, contrast sensitivity functions

(i.e., thresholds) can be estimated so precisely in 50 trials that small changes in luminance

(brightness) can be differentiated (Gu et al., 2016; Hou et al., 2016). In delayed discounting,

precise estimation of the k parameter of the hyperbolic model (a measure of impulsivity)

can be obtained in fewer than 20 trials, and the estimate is 3-5 times more precise than the

staircase method (Ahn et al., 2019). Other applications of ADO can be found in several

areas of psychology such as retention memory (Cavagnaro et al., 2010, 2011), risky choice

decision (Cavagnaro et al., 2013a,b; Aranovich et al., 2017), and in neuroscience (Lewi et

al., 2009; DiMattina and Zhang, 2008, 2011; Lorenz et al., 2016).

The technical expertise required to implement the ADO algorithm is nontrivial, posing a

hurdle to its wider use. In this paper, we introduce an open-source Python package, dubbed

ADOpy, that is intended to make the technology available to researchers who have limited

background in Bayesian statistics or cognitive modeling (e.g., the hBayesDM package, Ahn

et al., 2017). Only a working knowledge of Python programming is assumed.1 For an

in-depth, comprehensive treatment of Bayesian cognitive modeling, the reader is directed

to the following excellent sources written for psychologists (Lee and Wagenmakers, 2014;

Farrell and Lewandowsky, 2018; Vandekerckhove et al., 2018). ADO is implemented in

three two-choice tasks: psychometric function estimation, the delay discounting task (Green

and Myerson, 2004) and the choice under risk and ambiguity (CRA) task (Levy et al., 2010).

ADOpy easily interfaces with Python code running one of these tasks, requiring only a

few definitions and one function call. Most model parameters have default values, but a

simulation mode is provided for users to assess the consequences of changing parameter

values. As we discuss below, this is a useful step that we encourage researchers to use to

ensure the algorithm is optimized for their test situation.

The algorithm underlying ADO is illustrated in Figure 1. It consists of three steps that are

executed on each trial of an experiment: (1) design optimization; (2) experimentation; and

(3) Bayesian updating. In the first step, we identify the optimal design (e.g., stimulus) of all

possible designs, the choice of which is intended to provide the most information about the

quantity to be inferred (e.g., model parameters). In Step 2, an experiment is carried out with

the chosen experimental design. In Step 3, the participant’s response is used to update the

belief about the informativeness of all designs. This revised (updated) knowledge is used to

repeat the ADO cycle on the next trial of the experiment.

The following section provides a short technical introduction to the ADO algorithm.

Subsequent sections introduce the package and demonstrate how to use ADOpy

for optimizing experimental design with walk-through examples from three domains:

1ADOpy is available at https://github.com/adopy/adopy.

Yang et al. Page 3

Behav Res Methods. Author manuscript; available in PMC 2022 July 29.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

https://github.com/adopy/adopy

psychometric function estimation, delay discounting, and risky choice. Readers who prefer

to concentrate on the practical application of the algorithm rather than its technicalities

should skip Section 2 and jump directly to Section 3.

2 Adaptive Design Optimization (ADO)

ADO follows in the tradition of optimal experimental design in statistics (Lindley, 1956;

Atkinson and Donev, 1992) and active learning in machine learning (Cohn et al., 1994;

Settles, 2009). ADO is a model-based approach to optimization in the sense that it requires

a quantitative (statistical, cognitive) model that predicts experimental outcomes based on

the model’s parameters and design variables (e.g., experimentally controllable independent

variables). Statistically speaking, a model is defined in terms of the probability density
function (PDF)2, a parametric family of probability distributions indexed by its parameters,

denoted by p(y∣θ,d), where y represents a vector of experimental outcomes, θ is the

parameter vector, and finally, d is the vector of design variables.

ADO is formulated in a Bayesian framework of optimal experimental design (Chaloner and

Verdinelli, 1995; Müller, 1999; Müller et al., 2004; Amzal et al., 2006). On each ADO trial,

we seek to identify the optimal design d* that maximizes some real-valued function U (d)

that represents the utility or usefulness of design d. Formally, the “global” utility function U
(d) (Chaloner and Verdinelli, 1995) is defined as:

U(d) = ∬ u(d, θ, y) p(y ∣ θ, d) p(θ) dydθ, (1)

where p(θ) is the prior distribution. In the above equation, u(d, θ, y), called the “local”

utility function, measures the utility of a hypothetical experiment carried out with design

d when the model outputs an outcome y given the parameter value θ. Note that the global

utility U (d), which is a function of design d, represents the mean of the local utility u(d, θ,

y) calculated across all possible outcomes and parameter values, weighted by the likelihood
function3 p(y∣θ, d) and the prior p(θ).

As is typically done in ADO, the ADOpy package adopts an information theoretic

framework in which the optimal design is defined as the one that is maximally informative

about the unknown quantity of interest, i.e., the values of the parameter θ in our case.

Specifically, by using Shannon’s entropy, a particular local utility function is defined as

u(d, θ, y) = log p(θ ∣ y, d)
p(θ) . The global utility function in Equation (1) becomes the mutual

information between the outcome random variable Y (d) and the parameter random variable

Θ conditional on design d (Cover and Thomas, 1991):

U(d) = H(Y (d)) − H(Y (d) ∣ Θ), (2)

where H(Y(d)) is the marginal entropy (i.e., overall uncertainty) of the outcome event and

H(Y(d)∣Θ) is the conditional entropy of the outcome event given the knowledge of the

parameter θ.4 Accordingly, the optimal design d* that maximizes the mutual information

4See Step 1 in Figure 2 for specific equations defining the entropy measures in Equation (2).

Yang et al. Page 4

Behav Res Methods. Author manuscript; available in PMC 2022 July 29.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

in Equation (2) is the one that maximally reduces the uncertainty about the parameters of

interest.

Once the optimal design d* is identified, we then conduct an actual experiment on the

current trial with the optimal design and observe an experimental outcome yobs. The

prior distribution p(θ) is updated via Bayes rule with this new observation to obtain the

posterior distribution p(θ∣yobs), which in turn becomes the new prior on the next trial, i.e., by

replacing p(θ) with p(θ∣yobs) in Equation (1). This “trilogy scheme” of design optimization,

experimentation, and Bayesian updating, depicted in Figure 1, is applied successively on

each ADO trial until the end of the experiment.

Finding the optimal design d* that maximizes U (d) in Equation (1) is computationally

non-trivial as it involves solving a high dimensional maximization and integration problem.

As such, obtaining an analytic form solution for the problem is generally not possible;

instead, approximate solutions must be sought numerically. For this purpose, the ADOpy

package implements a grid-based algorithm for both the design optimization and Bayesian

updating steps in Figure 1. Implementation of the algorithm requires the discretization of

both the continuous parameter and design spaces. That is, each element of the parameter

vector θ and the design vector d is represented as a one-dimensional discretized line with

a finite number of grid points. Further, the local utility function u(d, θ, y), the likelihood

function p(y∣θ,d), and the prior p(θ) are all represented numerically as vectors defined on the

grid points.

Figure 2 describes the grid-based ADO algorithm implemented in the ADOpy package in

four steps, which is adapted from Bayesian adaptive estimation algorithms in psychophysics

(Kontsevich and Tyler, 1999; Kujala and Lukka, 2006; Lesmes et al., 2006). In Step 0, which

is performed once at the start of the experiment, the algorithm first creates and stores in

memory a look-up table of various functions over all possible (discretized) outcomes and

parameter values. This involves pre-computation of the likelihood function p(y∣θ,d) and the

entropy H(Y(d)∣θ) for all possible values for response y, parameter θ, and design d. Also,

the prior knowledge for model parameter p0(θ) is initialized based on researchers’ beliefs,

typically from a uniform distribution. The use of pre-computed look-up tables makes it

possible to run ADO-based experiments on the fly without additional computational time

on each trial. The three steps of the ADO trilogy scheme illustrated in Figure 1 are then

executed.

In brief, users can find an optimal experimental design with ADO that maximizes

information gain. To use it efficiently in an experiment, grid-based ADO discretizes the

possible design and parameter spaces and generates pre-computed look-up tables. For a

more thorough description of the algorithm, see Cavagnaro et al. (2010) and Myung et al.

(2013).

3 ADOpy

In this section, we provide a step-by-step guide on how to use the ADOpy package to

compute optimal designs adaptively with walk-through examples. It is assumed that readers

Yang et al. Page 5

Behav Res Methods. Author manuscript; available in PMC 2022 July 29.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

are familiar with Python programming and have written experiment scripts using Python or

some other language. For further information, the detailed guide on how to use the ADOpy

package is also provided on the official documentation (https://docs.adopy.org).

3.1 Overview

ADOpy is designed in a modular fashion to ensure functional flexibility and code

readability. At the core of the package are three classes: Task, Model, and Engine. The

Task class is used to define design variables of a task. The Model class is used to

define model parameters and the probability density (or mass) function that specifies the

probability of responses given parameters and designs (e.g., Myung, 2003; Farrell and

Lewandowsky, 2018). The Engine class is used for implementing design optimization and

Bayesian updating.

The general workflow of these classes is illustrated in Figure 3. After loading the three

classes, users should initialize each object, with the engine requiring the most parameters.

The for-loop is an experiment itself divided into three parts: 1) obtain the design (stimulus)

for the next trials and present the stimulus to the participant; 2) obtain a response from the

participant, which would come from a keyboard or mouse, as defined by the experimenter;

3) update the ADO engine using the participant response together with the design.

ADOpy implements a grid-search algorithm in which the design space and parameter space

are discretized as sets of grid points. How to set grid points and the range of each grid

dimension is described in detail in Section 3.5.

Owing to the modular structure of ADOpy, users do not have to concern themselves with

how the Engine works, other than defining the Task and the Model classes. Consequently,

ADOpy dramatically reduces the amount of coding, and the likelihood of coding errors,

when implementing ADO.

3.2 Prerequisites

Before installing ADOpy, users should install Python (version 3.5 or higher). Using the

Anaconda distribution (https://www.anaconda.com) is recommended because it ensures

compatibility among dependencies.

ADOpy depends on several core packages for scientific computing: NumPy, SciPy, and

Pandas. Since ADOpy uses high dimensional matrices to compute optimal designs, it is

strongly recommended to install linear algebra libraries (e.g., Intel Math Kernel Library,

LAPACK, BLAS) to make the operations fast. If the Anaconda distribution is used, the Intel

Math Kernel Library will be used as the default.

3.3 Installation

The ADOpy package is available from the Python Package Index (PyPI) and GitHub. The

easiest way to install ADOpy is from PyPI using pip as follows:

 pip install adopy

Yang et al. Page 6

Behav Res Methods. Author manuscript; available in PMC 2022 July 29.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

https://docs.adopy.org/
https://www.anaconda.com/

To install the developmental version, users can install it from GitHub. However, it can be

unstable, so use it with caution.

 git clone https://github.com/adopy/adopy.git

cd adopy

git checkout develop

pip install.

To check that ADOpy was installed successfully, run the following code at the Python

prompt. As of now, the latest version is 0.3.1.

import adopy

adopy.__version__ # ‘0.3.1’

3.4 Module structure

Inside the ADOpy package, the two most important modules are adopy.base and

adopy.tasks. The module adopy.base contains three basic classes: Task, Model, and Engine

(see more details in Section 3.5). Using these classes, users can apply the ADO procedure

into their tasks and models. For convenience, users can load these classes directly from

adopy itself as follows:

Load three classes from ADOpy

from adopy import Task, Model, Engine

The other module, adopy.tasks, contains three pre-implemented tasks and models

(see Section 4 and Table 1). The three tasks are psychometric function estimation

(adopy.tasks.psi), the delay discounting task (adopy.tasks.ddt), and the choice under risk

and ambiguity task (adopy.tasks.cra).

3.5 Basic usage

Implementation of ADOpy requires execution of the four steps shown in Figure 3, the

most important and complex of which is the Initialization step, in which ADOpy objects

to be used in the subsequent steps are defined. The Initialization step itself comprises four

sub-steps: defining a task, defining a model, defining grids, and initializing an ADO engine.

In this section, we explain the coding involved in each of these sub-steps using the delay

discounting task as an example.

Yang et al. Page 7

Behav Res Methods. Author manuscript; available in PMC 2022 July 29.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

https://github.com/adopy/adopy.git

Defining a task—The Task class is for defining the experimental task. Using the Task

class, a task object is initialized by specifying three types of information: the name of the

task (name), the design variables (designs), and the response variable (responses).

Delay discounting (DD; the task is depicted in Figure 4), refers to the well-established

finding that animals, including humans, tend to discount the value of a delayed reward such

that the discount progressively increases as a function of the receipt delay (e.g., Green and

Myerson, 2004; Vincent, 2016). The delay discounting task has been widely used to assess

individual differences in temporal impulsivity and is a strong candidate endophenotype for

addiction (Green and Myerson, 2004; Bickel, 2015). In a typical DD task, a participant

is asked to indicate his/her preference between two options, a smaller-sooner (SS) option

(e.g., 8 dollars now) and a larger-later (LL) option (e.g., 50 dollars in a month). Let us

use a formal expression (RSS,tSS) to denote the SS option where RSS represents the reward

amount, and tSS represents the receipt delay. Similarly, (RLL,tLL) denotes the LL option. By

definition, the following constraints are imposed on the reward amounts and the delay times:

RSS < RLL and tSS < tLL for a given pair of options. The choice response is recorded as

either y = 1 (LL option) or y = 0 (SS option).

The DD task therefore has four design variables, i.e., d = (tSS,tLL,RSS,RLL), with a binary

response on each trial (i.e., 0 or 1). As such, we define a Task object for the DD task as

follows:

from adopy import Task

task = Task(name=‘Delay discounting task’,

 designs=[‘t_ss’, ‘t_ll’, ‘r_ss’, ‘r_ll’],

 responses=[0, 1])

where the four symbols (t_ss, t_ll, r_ss, r_ll) denote short notations for the respective design

variables (tSS,tLLRSS,RLL). Note that designs argument should be specified as labels for

design variables, while responses argument should be given as possible values of responses.

With the task object defined, the information passed into the object can be accessed by

task.name, task.designs, and task.responses, respectively:

task.name # ‘Delay discounting task’

task.designs # [‘t_ss’, ‘t_ll’, ‘r_ss’, ‘r_ll’]

task.responses # [0, 1]

Defining a model: Before making a model object, users should define a function that

describes how to compute the response probability given design variables and model

parameters. For example, the hyperbolic model for the delay discounting task is defined

with the following set of equations:

Yang et al. Page 8

Behav Res Methods. Author manuscript; available in PMC 2022 July 29.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

D(t) = 1
1 + kt

V LL = RLL ⋅ D(tLL)

V SS = RSS ⋅ D(tSS)

P (LLoverSS) = 1
1 + exp[− τ(V LL − V SS)]

(3)

where P(LL over SS) denotes the probability of choosing the LL option over the SS option,

and VLL and VSS denote subjective value estimates for the LL and SS options respectively.

There are two model parameters: k represents the discounting rate and τ represents the

inverse temperature that measures the consistency or stability in choice responses. For

further details about the above model, the reader is referred to Section 4.2.

Based on the above model, the following Python snippet computes the response probability:

import numpy as np

def compute_likelihood(t_ss, t_ll, r_ss, r_ll, k, tau):

 v_ss = r_ss * np.divide(1, 1 + t_ss * k)

 v_ll = r_ll * np.divide(1, 1 + t_ll * k)

 p_obs = np.divide(1, np.exp(−tau * (v_ll – v_ss)))

 return p_obs

The argument names for design variables in the above function definition must be the

same as those used in the task definition (i.e., t_ss, r_ss, t_ll, r_ll). We also recommend

using NumPy functions for the definition, given that it can vectorize basic mathematical

operations.

Specification of a mathematical model is performed by the Model class. Four arguments are

required: the name of the model (name), a task object related to the model (task), labels of

model parameters (params), and the response probability of the model (func), which in the

current case is defined by the function compute_likelihood(). In terms of these arguments, a

model object is defined as below:

from adopy import Model

model = Model(name=‘Hyperbolic model’,

 task=task,

 params=[‘k’, ‘tau’],

 func=compute_likelihood)

As in the task object, the information passed into the model object can be accessed by

model.name, model.task, and model.params:

Yang et al. Page 9

Behav Res Methods. Author manuscript; available in PMC 2022 July 29.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

model.name # ‘Hyperbolic model’

model.task # Task(‘Delay discounting task’, …)

model.params # [‘k’, ‘tau’]

Further, users can run the response probability passed into the model object by

model.compute(), which uses the same arguments that are used for the compute_likelihood()

function, as follows:

model.compute(t_ss, t_ll, r_ss, r_ll, k, tau)

Defining grids: As mentioned earlier, ADOpy implements a grid-based algorithm that

requires the discretization of both parameter and design spaces. As such, before running

ADO using model and task objects, users must specify the grid resolution to be used for the

design optimization and Bayesian updating steps in Figure 1. This amounts to defining the

number and spacing of grid points on each dimension of the design and parameter variables.

The grid passed to the ADO engine determines (1) the range of values in design variables

that the ADO engine can suggest and (2) the range of the model parameters over which the

computations will be carried out.

It is important to note that the number of grid points affects the efficiency and reliability of

parameter estimation. The more sparse the grid, the more efficient but less precise parameter

estimation will be; the denser the grid, the more precise but less efficient parameter

estimation will be. Specifically, sparse grids can lead to poorly estimated model parameters

whereas dense grids can require large amounts of memory and long computing times. Thus,

before conducting an ADO-based experiment with participants, it is worth identifying the

optimal grid resolution for each parameter/design variable. A simulation mode provided

with ADOpy can help facilitate this process.

A grid object for ADOpy can be defined as a Python dictionary object by using the name of

a variable as its key and a list of the grid points as its values. If a design variable or model

parameter needs to be fixed to a single value, users would simply assign a single grid point

for the variable. Also, to restrict the values of a variable, users can manually make a matrix

in which each column vector indicates possible values for the variable, then pass it as a value

with a key of the column labels. Example codes below illustrate various ways of defining the

grids for two design variables, t_ss and t_ll:

A grid object for two design variables, t_ss and t_ll.

grid_design = {‘t_ss’: [1, 2, 3], ‘t_ll’: [1, 2, 3]}

One variable can be fixed to a single value as below:

grid_design = {‘t_ss’: [0], ‘t_ll’: [1, 2, 3]}

Constrain the grid by using a joint matrix.

Yang et al. Page 10

Behav Res Methods. Author manuscript; available in PMC 2022 July 29.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

t_joint = []

for t_ss in [1, 2, 3]:

 for t_ll in [1, 2, 3]:

 if t_ss <= t_ll: # Use design pairs in which t_ss <= t_ll

 t_joint.append([t_ss, t_ll])

[[1, 1], [1, 2], [1, 3], [2, 2], [2, 3], [3, 3]]

grid_design = {(‘t_ss’, ‘t_ll’): t_joint}

In much the same way, users can also define a grid for model parameters. For example, a

grid for the two parameters of the delay discounting model in Equation (3), k and tau, can be

defined as:

grid_param = {

 ‘k’: np.logspace(−5, 0, 20), # 20 points within [10^–5, 10^0] in a log

scale

 ‘tau’: np.linspace(0, 5, 20)

}

The reader is directed to Appendix A for more examples for defining grids for the delay

discounting task.

Initializing an ADO engine: With the defined Model and Task classes and grids for design

and parameter variables, users are now ready to load an Engine for ADO computation. It

requires four arguments: (1) the task object (task); (2) the model object (model); (3) a grid

for design variables (grid_design); and (4) a grid for model parameters (grid_param):

from adopy import Engine

engine = Engine(model=model, task=task,

 grid_design=grid_design, grid_param=grid_param)

When initializing an instance of Engine, it pre-computes response probabilities and mutual

information for a given sets of designs and parameters. This step may take a while, with

linearly increasing computing time in proportion to the number and resolution of the grids.

For the three examples provided here, compute time is usually less than two seconds on an

average Mac or Windows computer.

Once the engine object is in place, users can access its task objects: the exhaustive list

of task objects is (engine.task), its model object (engine.model), the number of possible

pairs on design variables (engine.num_design), the number of possible pairs on model

parameters (engine.num_param), the grid matrix of design variables (engine.grid_design),

the grid matrix of model parameters (engine.grid_param), the prior distribution on the grid

matrix of model parameters (engine.prior), the posterior distribution on the grid matrix

Yang et al. Page 11

Behav Res Methods. Author manuscript; available in PMC 2022 July 29.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

of model parameters (engine.post), the posterior mean (engine.post_mean), the covariance

matrix of the posterior (engine.post_cov), and the standard deviations of the posterior

(engine.post_sd).

Two functions are available in ADOpy for the engine object: engine.get_design() and

engine.update(). The engine.get_design() provides a set of designs on each trial of the

experiment given a specified design type. With an argument of design_type, users can

indicate the type of design to use. There are two possible values: ‘optimal’ and ‘random’.

The value ‘optimal’ refers to the optimal design calculated by the ADO algorithm, and the

value ‘random’ to a uniformly sampled design from the given design grid. The output of this

function call is a dictionary that contains key-value pairs for each design variable and its

optimal or random value.

Provides the optimal design

design = engine.get_design(‘optimal’)

Provides a randomly chosen design from the design grid

design = engine.get_design(‘random’)

If no argument is given for design_type, the optimal design is returned by default:

design = engine.get_design ()

The other important use of the engine object is engine.update(). Here, ADOpy first performs

the Bayesian updating step described in Figures 1 and 2 based on a participant’s response

given the design, and then computes a new optimal design for the next trial using the

updated posterior distributions of model parameters. It takes two arguments: the design used

on the given trial (design), and the corresponding response on that trial (response). For

example, from the observation that a participant selects the SS option (response = 0) or the

LL option (response = 1) on the current trial, users can update the posterior as follows:

engine.update(design, response)

Simulating responses: ADOpy can be run in the simulation mode to assess design quality

and experiment efficiency (see next section). The design itself, the model chosen, and the

grid resolution of the design space. and model parameters all affect how ADO performs.

Simulation mode can be useful to fine-tune the aforementioned variables. Using the engine

object of the ADOpy package, users can generate simulated responses given true parameters.

As a concrete example, let us run the simulation with true parameter values of k = 0.12 and

tau = 1.5 of the delay discounting model described in Equation (3). To acquire a simulated

response, we use the Bernoulli probability distribution for a binary choice response as

described below:

Yang et al. Page 12

Behav Res Methods. Author manuscript; available in PMC 2022 July 29.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

from scipy.stats import bernoulli

def get_simulated_response(model, design):

 '''Simulate a response using tau = 1.5 and k = 0.04.'''

 # Compute the probability of choosing the LL option

 p_obs = model.compute(t_ss=design[‘t_ss’], t_ll=design[‘t_ll’],

 r_ss=design[‘r_ss’], r_ll=design[‘r_ll’],

 k=0.12, tau=1.5)

Compute a random binary choice response using Bernoulli

return bernoulli.rvs(p_obs)

With the functions and objects defined as above, we can now run the simulations with a code

block like this:

NUM_TRIALS = 108 # number of trials for the simulation

for trial in range(NUM_TRIALS):

 design = engine.get_design(‘optimal’) # Design optimization

 response = get_simulated_response(model, design) # Experiment

 engine.update(design, response) # Bayesian updating

Note that the above code block contains the by-now familiar trilogy: design optimization,

experimentation, and Bayesian updating, in the same way done in an actual ADO-based

experiment as described in Figure 1.

3.6 Practical issues

Users should carefully consider several practical issues when using ADOpy. Grid-based

ADO, which is what is used here, may demand a lot of memory. While pre-computing a

look-up table lessens repeated calculation between trials, it requires more and more memory

as the grid size increases. Thus, users are advised to first determine the proper number of

grid points on each dimension of the model parameters and design variables and to check if

computation time with the settings is suitable (i.e., fast enough to prevent boredom between

trials). For example, by varying grid resolution, users can assess the trade-off in estimation

accuracy and the computational cost of that resolution. Another option is to use a dynamic

gridding algorithm, in which the grid space is dynamically adjusted and grid points near

posterior means are more finely spaced. Adaptive mesh refinement (AMR: e.g., Berger,

1984) is one such method. ADOpy does not currently support dynamic-gridding; it may in

the future..

A related practical issue is the computation time required to complete Step 0 in Figure 2,

in which initial lookup tables need to be created for the likelihood function and the entropy

for all possible values of the response, parameter, and design variables. As noted above, it

has been our experience that this step usually takes no more than a few seconds on standard

Yang et al. Page 13

Behav Res Methods. Author manuscript; available in PMC 2022 July 29.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

laptops and PCs. To be concrete, for the delay discounting task, it takes ~ 0.5 seconds on an

iMac and 1 ~ 2 seconds on a Windows PC to execute the pre-computation step. However,

this step can become progressively time-inefficient as the dimensionality of the experimental

task increases. In such a case, we recommend to use the pickle module of Python for saving

the lookup tables and then loading them back at the start of an experiment with each new

participant. Other means of ensuring sufficiently fast computation are using linear algebra

libraries (e.g., Intel MKL, LAPACK, or BLAS), which are highly efficient and can take

advantage of multi-core CPUs, or using a remote server or a cloud computing system, where

optimal designs are computed asynchronously.

ADOpy will eventually start to select the same or similar design on consecutive trials. This

is a sign that not much more can be learned from the experiment (e.g., parameter estimation

is quite good). This will happen toward the end of an experiment if there are sufficient trials.

One option to address the issue is to dilute their presence by using filler trials, showing

randomly chosen or predetermined designs for a trial when ADO picks the same design

twice or more in a sequence. Another option is to run the experiment in a “self-terminating

mode”; stop the experiment once a specific criterion (e.g., efficiency) is reached, e.g., the

standard deviations of posterior distributions fall below certain predetermined values.

The focus of this tutorial is on using ADOpy for univariate and discrete responses. One

might wonder how to extend it to multivariate and continuous responses, e.g., reaction times

in a lexical decision task. Implementation is much the same as in the univariate continuous

case. That is, given a multivariate continuous response vector y = (y1,y2,…,ym), first

discretize each response variable yi into finite grids, and then pre-compute the likelihood

function p(y∣θ,d) for all discretized values of yi’s, θ, and d in the pre-computation Step

0 in Figure 2. From there, the remaining steps of the ADO algorithm are the same and

straightforward.

4 Tasks and Models implemented in ADOpy

Currently, three tasks are implemented in the ADOpy package; they are listed in

Table 1: Psychometric function estimation (adopy.tasks.psi), the delay discounting task

(adopy.tasks.dd), the choice under risk and ambiguity task (adopy.tasks.cra). At least two

models are available for each task.

In this section, we describe these tasks and illustrate how to use each task/model in

ADOpy and how ADO performs compared to traditional non-ADO (e.g., staircase, random)

methods, along with simulated results for the three tasks. In addition, we provide and

discuss a complete and full Python script for simulating psychometric function estimation in

ADOpy.

4.1 Psychometric function estimation

Psychometric function estimation is one of the first modeling problems in the psychological

sciences in which a Bayesian adaptive framework was applied to improve the efficiency of

psychophysical testing and analysis (Watson and Pelli, 1983; King-Smith et al., 1994; Kujala

and Lukka, 2006; Lesmes et al., 2006). The problem involves a 2-alternative forced choice

Yang et al. Page 14

Behav Res Methods. Author manuscript; available in PMC 2022 July 29.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

(2AFC) task in which the participant decides whether a psychophysical stimulus, visual or

auditory, is present or absent while the stimulus intensity is varied from trial to trial to assess

perceptual sensitivity.

The psychometric function that defines the probability of correct detection given stimulus

intensity x is given as the following general form (Garcia-Perez, 1998; Wichmann and Hill,

2001):

Ψ(x ∣ α, β, γ, δ) = γ + (1 − γ − δ) F (x; α, β) (4)

The participant’s response in the psychophysical task is recorded in either y = 1 (correct)

or y = 0 (incorrect). The two-parameter sigmoid function F (x; α, β) that characterizes

the relationship between the response probability and the stimulus intensity is typically

assumed to follow the logistic, cumulative normal, or cumulative log Weibull form (see, e.g.,

Wichmann and Hill, 2001, for further details). The parameter vector θ = (α, β, γ, δ) of the

psychometric function consists of α (threshold), β (slope), γ (guess rate) and δ (lapse rate),

as depicted in Figure 5. Note that design variable is stimulus intensity, i.e., d = x.

The module ‘adopy.tasks.psi’ included in the ADOpy package provides classes for

psychometric function estimation in the 2AFC experimental paradigm (see Table 1). In the

module, Task2AFC is pre-defined for 2AFC tasks with a single design variable (stimulus)

and binary responses (0 for incorrect or 1 for correct). Without passing any arguments, users

can utilize the pre-defined Task2AFC class as below:

from adopy.tasks.psi import Task2AFC

task = Task2AFC()

task.designs # [‘stimulus’]

task.responses # [0, 1]

For the task, users can specify the form of the two parameter sigmoid psychometric function

F (x; α, β) as in Equation (4) from three classes: a logistic function (ModelLogistic), a

log Weibull CDF (ModelWeibull), and a normal CDF (ModelProbit). Here, assume that the

psychometric function has a logistic form which computes correct detection as:

Ψ(x ∣ α, β, γ, δ) = γ + (1 − γ − δ) ⋅ 1
1 + exp[− β(x − α)] . (5)

Based on Equation (5), the ModelLogistic class in the adopy.tasks.psi provides the

equivalent model with four parameters (threshold α, slope β, guess_rate γ, lapse_rate

δ).

from adopy.tasks.psi import ModelLogistic

model = ModelLogistic()

Yang et al. Page 15

Behav Res Methods. Author manuscript; available in PMC 2022 July 29.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

model.params # [‘threshold’, ‘slope’, ‘guess_rate’, ‘lapse_rate’]

As grid resolutions for the task and model, we provide an example code while fixing guess

rate to 0.5 and lapse rate to 0.04 as described below. Especially for stimulus and threshold,

users should define them within appropriate ranges for their tasks of interest.

import numpy as np

grid_design = {

 ‘stimulus’: np.linspace(20 * np.log10(.05), 20 * np.log10(400), 100)

}

grid_param = {

 ‘guess rate’: [0.5],

 ‘lapse rate’: [0.04],

 ‘threshold’: np.linspace(20 * np.log10(.1), 20 * np.log10(200), 100),

 ‘slope’: np.linspace(0, 10, 100)

}

Based on the task object, model object, and grids, adopy.tasks.psi provides an Engine class,

called EnginePsi, pre-implemented for psychometric function estimation. The EnginePsi

class not only provides an optimal design or randomly chosen design, but also computes

a design using the staircase method. The staircase method is probably the most commonly

used procedure in adaptive estimation of the psychometric function (e.g., Garcia-Perez,

1998) in which stimulus intensity is adjusted by a fixed and pre-determined amount based

on a participant’s response on the current stimulus. The following code initializes the engine

and computes designs:

from adopy.tasks.psi import EnginePsi

engine = EnginePsi(model, grid_design, grid_param)

engine.get_design(‘optimal’) # Returns the optimal design.

engine.get_design(‘random’) # Returns a randomly chosen design.

engine.get_design(‘staircase’) # Returns a design using the staircase method.

where EnginePsi requires only three arguments (model, designs, and params) since the task

is fixed to the psychometric function estimation.

The particular up/down scheme of the staircase method implemented in ‘EnginePsi’ is as

follows5:

5For those interested, see https://www.psychopy.org/api/data.html for other implementations of staircase algorithms in PsychoPy
(Peirce, 2007, 2009).

Yang et al. Page 16

Behav Res Methods. Author manuscript; available in PMC 2022 July 29.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

https://www.psychopy.org/api/data.html

xt + 1 =
xt − Δ if yt = 1
xt + 2Δ otherwise (if yt = 0) (6)

where Δ is a certain amount of change for every trial. EnginePsi has a property called d_step

to compute Δ, which means the number of steps for an index on the design grid. In other

words, the denser the design grid is, the smaller Δ becomes. Initially, d_step is set to 1 by

default, but users can use a different value as described below:

engine.d_step # Returns 1.

engine.d_step = 3 # Update d_step to 3.

Having defined and initialized the required task, model, grids, and engine objects, we are

now in a position to generate simulated binary responses. This is achieved by using the

module scipy.stats.bernoulli. Here, the data-generating parameter values are set to guess_rate

= 0.5, lapse_rate = 0.04, threshold = 20, and slope = 1.5:

from scipy.stats import bernoulli

def get_simulated_response(model, design):

 # Compute a probability to respond positively.

 p_obs = model.compute(stimulus=design[‘stimulus’], \

 guess_rate=0.5, lapse_rate=0.04, threshold=20, slope=1.5)

 # Sample a binary response using Bernoulli distribution.

 return bernoulli.rvs(p_obs)

Finally, the following example code runs 60 simulation trials:

num_trials = 60 # number of trials to simulate

design_type = ‘optimal’ # or ‘random’ or ‘staircase’

for i in range(num_trials):

 # Compute a design for the current trial

 design = engine.get_design(design_type)

 # Get a simulated response using the design

 response = get_simulated_response(model, design)

 # Update posterior in the engine

 engine.update(design, response)

 # Print the trial number and posterior means and standard deviations

 print(‘Trial’, i + 1, ‘−’, engine.post_mean, ‘/’, engine.post_sd)

Yang et al. Page 17

Behav Res Methods. Author manuscript; available in PMC 2022 July 29.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

We conclude this section with a brief presentation of simulation results, comparing

performance among three design conditions: ADO, staircase, and random (see Appendix

B.1 for the details of the simulation setup). The simulation results are summarized in Figure

6. As shown in Figure 6A, for all three conditions, the estimation of the threshold parameter

α, as measured by root mean square error (RMSE), converges toward the ground truth, with

ADO designs exhibiting clearly superior performance over staircase and random designs.

As for the slope parameter β, the convergence is much slower (ADO and staircase) or

even virtually zero (random). Essentially the same patterns of results are observed when

performance is measured by the posterior standard deviation (Figure 6B). In short, the

simulation demonstrates the advantage of using ADO designs in psychometric function

estimation.

4.2 Delay discounting task

There exists a sizable literature on computational modeling of delay discounting (e.g., Green

and Myerson, 2004; Van-DenBos and McClure, 2013; Cavagnaro et al., 2016). As described

earlier in Section 3.5, preferential choices between two options, SS (smaller-sooner) and

LL (larger-later), are made based on the subjective value of each option, which takes the

following form:

V = R ⋅ D(t) (7)

where V is the value of an option, R and t are the amount of reward and delay of the option

respectively, and D(t) is the discounting factor assumed to be a monotonically decreasing

function of delay t.

Various models for the specific form of D(t) have been proposed and evaluated, including

the ones below:

Hyperbolic: D(t) = 1
1 + kt

Exponential: D(t) = e−kt

Hyperboloid: D(t) = 1
(1 + kt)s

Constant Sensitivity: D(t) = e−(kt)s

(8)

where the parameter k is a discounting rate and the parameter s reflects the subjective,

nonlinear scaling of time (Green and Myerson, 2004). Based on subjective values of options,

it is assumed that preferential choices are made stochastically depending on the difference

between the subjective values, according to Equation (3). In summary, the models for the

delay discounting task assume at most three parameters with θ = (k, s, τ), and there are four

design variables that can be optimized, i.e., d = (tSS,tLLRSS,RLL). The participant’s choice

response on each trial is binary in y = 1 (LL option) or 0 (SS option).

Yang et al. Page 18

Behav Res Methods. Author manuscript; available in PMC 2022 July 29.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

The module ‘adopy.tasks.dd’ included in the ADOpy package provides classes for the delay

discounting task (see Table 1). TaskDD represents the DD task with four design variables

(t_ss, t_ll, r_ss, and r_ll) with a binary choice response.

from adopy.tasks.dd import TaskDD

task = TaskDD()

task.designs # [‘t_ss’, ‘t_ll’, ‘r_ss’, ‘r_ll’]

task.responses # [0, 1]

In addition, the same module ‘adopy.tasks.dd’ includes six models (see Table 1):

Exponential model (Samuelson, 1937), Hyperbolic model (Mazur, 1987), Hyperboloid

model (Green and Myerson, 2004), Constant Sensitivity model (Ebert and Prelec, 2007),

Quasi-Hyperbolic model (Laibson, 1997), and Double Exponential model (McClure et al.,

2007). Here, we demonstrate the Hyperbolic model which has two model parameters (k and

tau) and computes the discounting factor as in Equation (8):

from adopy.tasks.dd import ModelHyp

model = ModelHyp()

model.params # [‘k’, ‘tau’]

A simulation experiment like that for Psychometric function estimation was carried out with

the hyperbolic model, and the results from three designs (ADO, staircase, and random).

See Appendix B.2 for the details of the simulation setup and the Python scripts used.

The simulation results are presented in Figure 7. As the trial progresses, the discounting

rate parameter k converges toward the ground truth for all three design conditions, with

the swiftest (almost immediate) convergence with ADO. On the other hand, the inverse

temperature parameter τ showed a much slower or even no convergence (staircase), probably

due to the relatively small sample size (i.e., 42). In short, the simulation results, taken

together, demonstrated the superiority of ADO designs over non-ADO designs.

4.3 Choice under risk and ambiguity task

The choice under risk and ambiguity (CRA) task (Levy et al., 2010) is designed to assess

how individuals make decisions under two different types of uncertainty: risk and ambiguity.

Example stimuli of the CRA task are shown in Figure 8.

The task involves preferential choice decisions in which the participant is asked to indicate

a preference between two options: (1) winning either a fixed amount of reward denoted by

RF with a probability of 0.5 or winning none otherwise; and (2) winning a varying amount

of reward (RV) with a varying probability (pV) or winning none otherwise. Further, the

variable option comes in two types: (a) risky type in which the winning probabilities are

fully known to the participant; and (b) ambiguous type in which the winning probabilities

Yang et al. Page 19

Behav Res Methods. Author manuscript; available in PMC 2022 July 29.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

are only partially known to the participant. The level of ambiguity (AV) in the latter type

is varied between 0 (no ambiguity and thus fully known) and 1 (total ambiguity and thus

fully unknown). As a concrete example, the CRA task of Levy et al. (2010) employed the

following values: RF = 5 (reference option); RV ∈ {5,9.5,18,34,65}, pV ∈ {0.13,0.25,0.38}

and AV = 0 (variable options on risky trials); and finally, RV ∈ {5,9.5,18,34,65}, pV = 0.5

and AV ∈ {0.25,0.5,0.75} (variable options on ambiguity trials).

The linear model (Levy et al., 2010) for the CRA task assumes that choices are based on

subjective values of the two options. The subjective values are computed using the following

form:

UF = 0.5 ⋅ (RF)α

UV = pV − β AV
2 ⋅ (RV)α (9)

where UF and UV are subjective values for fixed and variable options respectively, α is the

risk attitude parameter, β is the ambiguity attitude parameter. RF and RV are the amounts of

reward for fixed and variable options, AV and pV are the ambiguity level and the probability

to win for a variable option. Both choices are made stochastically based on the difference

between the subjective values according to the softmax choice rule:

P (V overF) = 1
1 + exp[− γ(UV − UF)] . (10)

where P(V over F) represents the probability of choosing the variable option over the fixed

one, and the parameter γ represents the inverse temperature that captures the participant’s

response consistency.

To summarize, the CRA model assumes three parameters, θ = (α, β, γ), of α (risk attitude),

β (ambiguity attitude), and γ (response consistency). There are four design variables to be

optimized: d = (RF,RV,AV,pV) where RF > 0, RV > 0, 0 < AV < 1, and 0 < pV < 1 is

made up of RF (reward amount for fixed option), RV (reward amount for variable option),

AV (ambiguity level) and pV (winning probability for variable option). The participant’s

preferential choice on each trial is recorded in either y = 1 (variable option) or y = 0 (fixed

option).

The module ‘adopy.tasks.cra’ in the ADOpy package provides classes for the choice under

risk and ambiguity task (see Table 1). TaskCRA represents the CRA task with four design

variables denoted by p_var (pV), a_var (AV), r_var (RV), and r_fix (RF), and a binary choice

response.

from adopy.tasks.cra import TaskCRA

task = TaskCRA()

task.designs # [‘p_var’, ‘a_var’, ‘r_var’, ‘r_fix’]

task.responses # [0, 1]

Yang et al. Page 20

Behav Res Methods. Author manuscript; available in PMC 2022 July 29.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

ADOpy currently implements two models of the CRA task: Linear model (Levy et al., 2010)

and Exponential model (Hsu et al., 2005). For the linear model in Equation 9, users can

define and initialize the model with ModelLinear as:

from adopy.tasks.cra import ModelLinear

model = ModelLinear()

model.params # [‘alpha’, ‘beta’, ‘gamma’]

Now, we briefly discuss results of simulated experiments using the linear model with

three design conditions: ADO, fixed, and random design. The fixed design refers to those

originally used by Levy et al. (2010). See Appendix B.3 for the details of the simulation

setup and code. The results summarized in Figure 9 indicate that two parameters, α (risk

attitude) and β (ambiguity attitude), converged to their respective ground truth most rapidly

under the ADO condition. On the other hand, the inverse temperature parameter (γ) showed

little, if any, convergence for any of the designs, probably due to the relatively small sample

size (i.e., 60).

5 Integrating ADOpy with experiments

In this section we describe how to integrate ADOpy into a third-party Python package for

conducting psychological experiments, such as PsychoPy (Peirce, 2007, 2009), OpenSesame
(Mathôt et al., 2012), or Expyriment (Krause and Lindemann, 2014). Integration is

accomplished following a two-step procedure described below.

First, users should create and initialize an ADOpy Engine object. This corresponds to the

initialization step illustrated in Figure 3. Users can create their own task and model as

described in Section 3 or use pre-implemented tasks and models in ADOpy (see Section 4).

Remember that the number of design variables, model parameters, and the grid sizes affect

the computation time, so users should ensure the appropriateness of their choice of grid

sizes, for example, by running simulations as described in Section 3.6.

Second, users should integrate this code into the code for a running experiment. The

interface between the two requires collecting observations from a participant using a

computed optimal design and updating the engine on each trial with the collected response.

‘run_trial(design)’ is an experimenter-created function for data collection. It takes as

arguments the given design values on each trial, and then returns the participant’s response:

def run_trial(design):

 … # Collect a response from the participant using the given design

 return response # Return the response from a participant

Yang et al. Page 21

Behav Res Methods. Author manuscript; available in PMC 2022 July 29.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

This function, ‘run_trial(design)’, can be used for both simulated and real data. Users can

also run run_trial(design) within a for-loop to conduct an ADO experiment in multiple trials

as shown below:

for trial in range(NUM_TRIAL):

 design = engine.get_design() # Design optimization

 response = run_trial(design) # Experiment

 engine.update(design, response) # Bayesian updating

Note that the three lines inside the for-loop correspond to the three steps in Figure 1.

In what follows, we elaborate and illustrate how to run ADOpy in the DD task, using a

fully worked-out annotated Python script (Appendix C). Users new to ADO will find the

PsychoPy program in the appendix without any modification of the code after installing

ADOpy and PsychoPy. The program runs the DD task using optimal designs computed by

ADOpy. A short description for the ADO-powered DD task is provided below, while the

non-ADO version is available on the Github repository of ADOpy6.

To utilize ADO on the program, we first need to load the ADOpy classes (line 58–61), the

DD task and the model of our choice (hyperbolic in this case). We could have chosen a

different model or defined one by ourselves and used it:

58 # Import the basic Engine class of the ADOpy package and pre-implemented

59 # Task and Model classes for the delay discounting task.

60 from adopy import Engine

61 from adopy.tasks.dd import TaskDD, ModelHyp

To run the DD task, we define a function run_trial(design) (lines 250–288 in Appendix C)

that conducts an experiment using a given design on a single trial. Then, for the initialization

step, Task, Model and Engine objects should be initialized. As in Section 4.2, users can use

the implemented task and models for the DD task (lines 329–357 in Appendix C).

329 # Create Task and Model for the delay discounting task.

330 task = TaskDD()

331 model = ModelHyp()

332

333 # Define a grid for 4 design variables of the delay discounting task:

334 # ‘t_ss’, ‘t_ll’, ‘r_ss’, and ‘r_ll’.

335 # ‘t_ss’ and ‘r_ll’ are fixed to ‘right now’ (0) and $800.

336 # ‘t_ll’ can vary from 3 days (0.43) to 10 years (520).

337 # ‘r ss’ can vary from $12.5 to $787.5 with an increment of $12.5.

6 https://github.com/adopy/adopy/tree/master/examples

Yang et al. Page 22

Behav Res Methods. Author manuscript; available in PMC 2022 July 29.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

https://github.com/adopy/adopy/tree/master/examples

338 # All the delay values are converted in a weekly unit.

339 grid_design = {

340 ‘t_ss’: [0],

341 ‘t_ll’: [0.43, 0.714, 1, 2, 3, 4.3, 6.44, 8.6, 10.8, 12.9,

342 17.2, 21.5, 26, 52, 104, 156, 260, 520],

343 ‘r_ss’: np.arange(12.5, 800, 12.5), # [12.5, 25, …, 787.5]

344 ‘r_ll’: [800]

345 }

346

347 # Define a grid for 2 model parameters of the hyperbolic model:

348 # ‘k’ and ‘tau’.

349 # ‘k’ is chosen as 50 grid points between 10^–5 and 1 in a log scale.

350 # ‘tau’ is chosen as 50 grid points between 0 and 5 in a linear scale.

351 grid_param = {

352 ‘k’: np.logspace(−5, 0, 50),

353 ‘tau’: np.linspace(0, 5, 50)

354 }

355

356 # Initialize the ADOpy engine with the task, model, and grids defined

above.

357 engine = Engine(task, model, grid_design, grid_param)

Once the engine is created, the code to run the ADO-based version is actually simpler than

the non-ADO version (lines 420–429 in Appendix C; see lines 435–460 for the non-ADO

version on the Github repository). Using the Engine class of the ADOpy package, it finds the

optimal design and updates itself from observation with a single line of code for each.

420 # Run the main task

421 for trial in range(n_trial):

422 # Get a design from the ADOpy Engine

423 design = engine.get_design()

424

425 # Run a trial using the design

426 is_ll_on_left, key_left, response, rt = run_trial(design)

427

428 # Update the engine

429 engine.update(design, response)

6 Conclusion

ADOpy is a toolbox for optimizing design selection on each trial in real time so as to

maximize the informativeness and efficiency of data collection. The package implements

Bayesian adaptive parameter estimation for three behavioral tasks: psychometric function

estimation, delay discounting, and choice under risk and ambiguity. Each task can be run

Yang et al. Page 23

Behav Res Methods. Author manuscript; available in PMC 2022 July 29.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

in an ADO-based mode or a non-ADO-based mode (random, fixed, staircase depending on

the task). Default parameter and design values can be used, or the user can customize these

settings, including the number of trials, the parameter ranges, and the grid resolution (i.e.,

number of grid points on each parameter/design dimension). Furthermore, in addition to

conducting an actual experiment with participants, the package can be used to run parameter

recovery simulations to assess ADO’s performance. Is it likely to be superior (i.e., more

precise and efficient) to random and other (staircase, fixed) designs? By performing a

comparison as described in the preceding section, a question like this one can be answered.

Causes for unsatisfactory performance can be evaluated, such as altering grid resolution or

the number of trials. More advanced users can conduct Bayesian sensitivity analysis on the

choice of priors.

The need to tune ADO to a given experimental setup might make readers leery of the

methodology. Shouldn’t it be more robust and work flawlessly in any setting without such

fussing? Like any machine-learning method, use of ADO requires parameter tuning to

maximize performance. ADOpy’s simulation mode is an easy and convenient way to explore

how changes in the design and grid resolution alter ADO’s performance. Experimenter-

informed decisions about the properties of the design space will result in the greatest gains

in an ADO experiment.

Use of ADOpy is not limited to the models that come with the package. Users can define

their own model using the Model class. Specification of the model’s probability density (or

mass) function is all that is required along with the parameters, including any changes to

the design space, as mentioned above. For example, it would be straightforward to create

ADO-based experiments for other behavioral tasks, such as the balloon analog risk task

(BART: Lejuez et al., 2002; Wallsten et al., 2005) for assessing risk-taking propensity.

The ADOpy package, as currently implemented, has several limitations. ADOpy cannot

optimize the selection of design variables that are not expressed in the probability density

(or mass) function of the model. For example, if a researcher is interested in learning how

degree of distractibility (low or high level of background noise) impacts decision making,

unless this construct were factored into the model as a design variable, ADOpy would not

optimize on this dimension. This limitation does not prevent ADO from being used by

the researcher; it just means that the experiment will not be optimized on that stimulus

dimension. Another limitation that users must be sensitive to is the memory demands of

the algorithm. As discussed earlier, the algorithm creates a pre-computed look-up table

of all possible discretized combinations of the outcome variable, the parameters, and the

design variables. For example, for 100 grid points defined on each outcome variable, three

parameters, and three design variables, the total memory demand necessary to store the

look-up table would be 1014 bytes (= 1001+3+3), i.e., 100 terabytes, assuming one byte

allotted for storing each data point. This is clearly well beyond what most desktops or

servers can handle. In short, as the dimensionality of the ADO problem increases linearly,

the memory demand of the grid-based ADO algorithm grows exponentially, sooner or later

hitting a hardware limitation. Grid-based ADO does not scale up well, technically speaking.

The good news is that there is a scalable algorithm that does not tax memory. It is known

Yang et al. Page 24

Behav Res Methods. Author manuscript; available in PMC 2022 July 29.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

as sequential Monte Carlo (SMC) or particle filter in machine learning (Doucet et al., 2001;

Andrieu et al., 2003; Cappe et al., 2007).

In conclusion, the increasing use of computational methods for analyzing and modeling

data is improving how science is practiced. ADOPy is a novel and promising tool that has

the potential to improve the quality of inference in experiments. This is accomplished by

exploiting the predictive precision of computational modeling in conjunction with the power

of statistical and machine learning algorithms to perform better inference. It is our hope that

ADOpy will empower more researchers to harness this technology, one outcome of which

should be more informative and efficient experiments that collectively accelerate advances in

psychological science and beyond.

Acknowledgements

The research was supported by National Institute of Health Grant R01-MH093838 to M.A.P. and J.I.M, and
the Basic Science Research Program through the National Research Foundation (NRF) of Korea funded by
the Ministry of Science, ICT, & Future Planning (NRF-2018R1C1B3007313 and NRF-2018R1A4A1025891) to
W.-Y.A. Portions of this paper are published in the Proceedings of the 41st Annual Meeting of the Cognitive
Science Society held in July, 2019.

Appendices

A Defining Grids for Delay Discounting Task

As the first example, suppose that the delay discounting task has two constraints on its

designs: the delay of SS option should be smaller than that of LL option (t_ss < t_ll), and

the amount of reward of SS option should be smaller than that of LL option (r_ss < r_ll).

Considering seven delays (i.e., right now, two weeks, a month, six months, a year, three

years, and ten years) and 79 possible rewards (from $12.5 to $787.5 with an increment of

$12.5), users can make a grid for design variables by executing the following lines:

 1 # Initialize the possible values of delay and reward variables

 2

 3 # Delays in a weekly unit

 4 tval = [0, 2, 4.3, 26, 52, 104, 520]

 5

 6 # [12.5, 25, … , 775, 787.5] as reward values

 7 rval = np.arange(12.5, 800, 12.5)

 8

 9 # Make a 2d matrix with rows of [t_ss, t_ll]

10 t_joint = []

11 for t_ss in tval:

12 for t_ll in tval:

13 if t_ss < t_ll:

14 t_joint.append([t_ss, t_ll])

15 t_joint = np.array(t_joint)

16

Yang et al. Page 25

Behav Res Methods. Author manuscript; available in PMC 2022 July 29.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

17 # Make a 2d matrix with rows of [r_ss, r_ll]

18 r_joint = []

19 for r_ss in rval:

20 for r_ll in rval:

21 if r_ss < r_ll:

22 r_joint.append([r_ss, r_ll])

23 r_joint = np.array(r_joint)

24

25 grid_design = {(‘t_ss’, ‘t_ll’): t_joint, (‘r_ss’, ‘r_ll’): r_joint}

As an another example, if users want to use the amount of reward of the SS option (r_ss)

and the delay of the LL option (t_ll) while fixing t_ss to 0 and r_ll to $800, define a grid as

shown below:

 1 grid_design = {

 2 # t_ss: [Now]

 3 ‘t_ss’: [0],

 4 # t_ll: [2 weeks, 1 month, 6 months,

 5 # 1 year, 2 years, 10 years] in a weekly unit

 6 ‘t_ll’: [2, 4.3, 26, 52, 104, 520],

 7 # r_ss: [$12.5, $25, … $775, $787.5]

 8 ‘r_ss’: np.arange (12.5, 800, 12.5),

 9 # r_ll: $800

10 ‘r_ll’: [800]

11 }

For model parameters, users should define a grid object containing grid points on a proper

range for each parameter. For example, a grid for the hyperbolic model (Mazur, 1987) with

two parameters (k and τ) can be defined as follows:

1 grid_param = {

2 # k: 20 points on [10^−5, 1] in a log scale

3 ‘k’: np.logspace(−5, 0, 20),

4 # tau: 20 points on [0, 5] in a linear scale

5 ‘tau’: np.linspace(0, 5, 20)

6 }

B ADOpy Simulations

B.1 Psychometric function estimation

Simulations for psychometric function estimation were conducted for a simple 2-alternative

forced choice (2AFC) task with one design variable. With an assumption that the

psychometric function has a logistic function shape, we ran 1,000 simulations for three

Yang et al. Page 26

Behav Res Methods. Author manuscript; available in PMC 2022 July 29.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

designs: (a) ADO design, (b) staircase design, and (c) randomly chosen design. For

each simulation, responses were simulated for a total of 60 trials, using Task2AFC and

ModelLogistic in the module adopy.tasks.psi.

Simulated responses were generated with true parameter values of threshold α = 20, slope

β = 1.5, guess rate γ = 0.5, and lapse rate δ = 0.04. The simulation for psychometric

function estimation used 100 grid points for the design variable (stimulus) and two model

parameters (threshold and slope) each, and the guess and lapse rates were fixed to 0.5 and

0.04, respectively. The grid settings were given as follows:

Design variable

• stimulus: 100 grid points from 20log100.05 to 20log10400 in a log scale.

Model parameters

• threshold: 100 grid points from 20log100.1 to 20log10200 in a log scale.

• slope: 100 grid points from 0 to 10 in a linear scale.

• guess_rate: fixed to 0.5.

• lapse_rate: fixed to 0.04.

B.2 Delay discounting task

Assuming the hyperbolic model, simulations for the delay discounting (DD) task were

conducted using TaskDD and ModelHyp in the module adopy.tasks.dd. We compared three

designs: (a) ADO design, (b) staircase design, and (c) randomly chosen design. The staircase

method runs 6 trials for each delay to estimate the discounting rate. While tSS is fixed to 0, it

starts with RSS of $400 and RLL of $800. If a participant chooses the SS option, the staircase

method increases RSS by 50%; if the participant chooses the LL option, it decreases RSS by

50%. After repeating this 5 times, it proceeds to another delay value.

One thousand independent simulations were performed for each design condition, each for a

total of 108 trials. Simulated data were generated using the true parameter values of k = 0.12

and τ = 1.5. Grid resolutions used for the simulations were as follows:

Design variables

• t_ss: fixed to 0, which means ‘right now’.

• t_ll: 18 delays (3 days, 5 days, 1 week, 2 weeks, 3 weeks, 1 month, 6 weeks, 2

months, 10 weeks, 3 months, 4 months, 5 months, 6 months, 1 year, 2 years, 3

years, 5 years, 10 years) in a unit of a week.

• r_ss: 63 points from $12.5 to $787.5 with an increment of $12.5.

• r_ll: fixed to $800.

Model parameters

• k (discounting rate): 20 grid points from 10−5 to 1 in a log scale.

Yang et al. Page 27

Behav Res Methods. Author manuscript; available in PMC 2022 July 29.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

• tau (inverse temperature): 20 grid points from 0 to 5 in a linear scale.

B.3 Choice under risk and ambiguity task

In simulating this CRA task, we assume the linear model and considered three methods for

experimental designs in the simulation study: (a) ADO design, (b) ‘fixed’ design of Levy et

al. (2010), and (c) random design.

The fixed design was set as follow. The the reward of the fixed option (RF) to 5 and the

rewards of the variable option (RV) to 5, 9.5, 18, 34, 65. In risky trials, ambiguity (AV) is

set to 0 but the probability of winning for the variable option (PV) is chosen among 0.13,

0.25, and 0.38. On the other hand, in ambiguous trials, the probability pV is set to 0.5 but the

ambiguity AV is chosen from 0.25, 0.5, and 0.75. The total number of combinations is 30:

15 of which are for risky trials, and the rest of which are for ambiguous trials.

Grid settings for the four design variables and the three model parameters were set as

follows:

Design variables

• p_var and a_var in risky trials: there are 9 probabilities to win for p_var (0.05,

0.10, 0.15, 0.20, 0.25, 0.30, 0.35, 0.40, 0.45), and a_var was fixed to 0.

• p_var and a_var in ambiguous trials: there are 6 levels of ambiguity for a_var

(0.125, 0.25, 0.375, 0.5, 0.625, 0.75), and p_var was fixed to 0.5.

• r_var and r_fix: based on 10 reward values (10, 15, 21, 31, 45, 66, 97, 141, 206,

300), rewards pairs such that r_var > r_fix were used.

Model parameters

• alpha (risk attitude parameter): 11 grid points from 0 to 3 in a linear scale.

• beta (ambiguity attitude parameter): 11 grid points from −3 to 3 in a linear scale.

• gamma (inverse temperature): 11 grid points from 0 to 5 in a linear scale.

One thousand independent simulations were performed for each design condition, each for a

total of 60 trials, with 30 risky and 30 ambiguous trials. Simulated data were generated using

the true parameter values of α = 0.66, β = 0.67, and γ = 3.5 based on Levy et al. (2010).

C Fully Worked-Out Python Script for Delay Discounting Task

 1 #!/usr/bin/env python3

 2 """

 3 Delay discounting task implementation using ADO designs

 4 ===

 5

 6 This is the PsychoPy-based implementation of the delay discounting task

Yang et al. Page 28

Behav Res Methods. Author manuscript; available in PMC 2022 July 29.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

using

 7 ADOpy. Delay discounting (DD) task is one of the widely used

psychological

 8 tasks that measures individual differences in temporal impulsivity

 9 (e.g., Green & Myerson, 2004; Vincent, 2016). In a typical DD task,

 10 a participant is asked to indicate his/her preference between two

options,

 11 a smaller-sooner (SS) option or stimulus (e.g., 8 dollars now) and

 12 a larger-later (LL) option (e.g., 50 dollars in a month).

 13 The DD task contains four design variables: ‘t_ss’ (delay for SS option),

 14 ‘t_ll’ (delay for LL option), ‘r_ss’ (reward for SS option), and ‘r_ll’

 15 (reward for LL option). By the definition, ‘t_ss’ should be sooner than

‘t_ll’,

 16 while ‘r_ss’ should be smaller than ‘r_ll’.

 17 To make the task design simpler, ‘t_ss’ and ‘r_ll’ are fixed to 0 (right

now)

 18 and $800, respectively; only two design variables (‘r_ss’ and ‘t_ll’)

vary

 19 throughout this implementation.

 20

 21 In each trial, given two options, a participant chooses one;

 22 the response is coded as ‘0’ for choosing SS option and ‘1’ for choosing

LL

 23 option. In this implementation, the hyperbolic model is used to estimate

the

 24 discounting rate underlying participants’ behaviors. The model contains

two

 25 parameters: ‘k’ (discounting rate) and ‘tau’ (choice sensitivity).

 26

 27 Using ADOpy, this code utilizes ADO designs that maximizes information

gain

 28 for estimating these model parameters. Also, using grid-based algorithm,

 29 ADOpy provides the mean and standard deviation of the posterior

distribution

 30 for each parameter in every trial. Trial-by-trial information throughout

 31 the task is be saved to the subdirectory ‘task’ of the current working

 32 directory.

 33

 34 Prerequisites

 35 -------------

 36 * Python 3.5 or above

 37 * Numpy

 38 * Pandas

 39 * PsychoPy

Yang et al. Page 29

Behav Res Methods. Author manuscript; available in PMC 2022 July 29.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

 40 * Piglet 1.3.2

 41 * ADOpy 0.3.1

 42 """

 43

 44

###

##

 45 # Load depandancies

 46

###

##

 47

 48 # To handle paths for files and directories

 49 from pathlib import Path

 50

 51 # Fundamental packages for handling vectors, matrices, and dataframes

 52 import numpy as np

 53 import pandas as pd

 54

 55 # An open-source Python package for experiments in neuroscience &

psychology

 56 from psychopy import core, visual, event, data, gui

 57

 58 # Import the basic Engine class of the ADOpy package and pre-implemented

 59 # Task and Model classes for the delay discounting task.

 60 from adopy import Engine

 61 from adopy.tasks.dd import TaskDD, ModelHyp

 62

 63

###

##

 64 # Global variables

 65

###

##

 66

 67 # Path to save the output data. Currently set to the subdirectory ‘data’

of the

 68 # current working directory.

 69 PATH_DATA = Path(‘./data’)

 70

 71 # Variables for size and position of an option box in which a reward and

a

 72 # delay are shown. BOX_W means the width of a box; BOX_H means the

Yang et al. Page 30

Behav Res Methods. Author manuscript; available in PMC 2022 July 29.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

height of

 73 # a box; DIST_BTWN means the distance between two boxes.

 74 BOX_W = 6

 75 BOX_H = 6

 76 DIST_BTWN = 8

 77

 78 # Configurations for text. TEXT_FONT means a font to use on text;

TEXT_SIZE

 79 # means the size of text.

 80 TEXT_FONT = ‘Arial’

 81 TEXT_SIZE = 2

 82

 83 # Keys for response. KEYS_LEFT and KEYS_RIGHT contains a list of keys to

 84 # indicate that a participant wants to choose the left or right option.

 85 # KEYS_CONT represents a list of keys to continue to the next screen.

 86 KEYS_LEFT = [‘left’, ‘z’, ‘f’]

 87 KEYS_RIGHT = [‘right’, ‘slash’, ‘j’]

 88 KEYS_CONT = [‘space’]

 89

 90 # Instruction strings. Each group of strings is show on a separate

screen.

 91 INSTRUCTION = [

 92 # 0 - intro

 93 """

 94 This task is the delay discounting task.

 95

 96 On every trial, two options will be presented on the screen.

 97

 98 Each option has a possible reward you can earn and

 99

100 a delay to obtain the reward.

101

102

103 Press <space> to proceed.

104 """,

105 # 1 - intro

106 """

107 You should choose what you prefer between two options

108

109 by pressing <f> (left option) or <j> (right option).

110

111

112 Press <space> to proceed.

113 """,

Yang et al. Page 31

Behav Res Methods. Author manuscript; available in PMC 2022 July 29.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

114 # 2 - intro

115 """

116 Let’s do some practices to check if you understand the task.

117

118

119 Press <space> to start practices.

120 """,

121 ’# 3 - intermission

122 """

123 Great job. Now, Let’s get into the main task.

124

125 Press <space> to start a main game.

126 """,

127 ’# 4 - last

128 """

129 You completed all the game.

130

131 Thanks for your participation.

132

133

134 Press <space> to end.

135 """,

136]

137

138

139

###

##

140 # Functions for the delay discounting task

141

###

##

142

143

144 def convert_delay_to_str(delay):

145 """Convert a delay value in a weekly unit into a human-readable

string."""

146 tbl_conv = {

147 0: ‘Now’,

148 0.43: ‘In 3 days’,

149 0.714: ‘In 5 days’,

150 1: ‘In 1 week’,

151 2: ‘In 2 weeks’,

152 3: ‘In 3 weeks’,

Yang et al. Page 32

Behav Res Methods. Author manuscript; available in PMC 2022 July 29.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

153 4.3: ‘In 1 month’,

154 6.44: ‘In 6 weeks’,

155 8.6: ‘In 2 months’,

156 10.8: ’In 10 weeks’,

157 12.9: ‘In 3 months’,

158 17.2: ‘In 4 months’,

159 21.5: ‘In 5 months’,

160 26: ‘In 6 months’,

161 52: ‘In 1 year’,

162 104: ‘In 2 years’,

163 156: ‘In 3 years’,

164 260: ‘In 5 years’,

165 520: ‘In 10 years’

166 }

167 mv, ms = None, None

168 for (v, s) in tbl_conv.items():

169 if mv is None or np.square(delay - mv) > np.square(delay - v):

170 mv, ms = v, s

171 return ms

172

173

174 def show_instruction(inst):

175 """

176 Show a given instruction text to the screen and wait until the

177 participant presses any key in KEYS_CONT.

178 """

179 global window

180

181 text = visual.TextStim(window, inst, font=TEXT_FONT,

182 pos=(0, 0), bold=True, height=0.7,

wrapWidth=30)

183 text.draw()

184 window.flip()

185

186 _ = event.waitKeys(keyList=KEYS_CONT)

187

188

189 def show_countdown():

190 """Count to three before starting the main task."""

191 global window

192

193 text1 = visual.TextStim(window, text=‘1’, pos=(0., 0.), height=2)

194 text2 = visual.TextStim(window, text=‘2’, pos=(0., 0.), height=2)

195 text3 = visual.TextStim(window, text=‘3’, pos=(0., 0.), height=2)

Yang et al. Page 33

Behav Res Methods. Author manuscript; available in PMC 2022 July 29.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

196

197 text3.draw()

198 window.flip()

199 core.wait(1)

200

201 text2.draw()

202 window.flip()

203 core.wait(1)

204

205 text1.draw()

206 window.flip()

207 core.wait(1)

208

209

210 def draw_option(delay, reward, direction, chosen=False):

211 """Draw an option with a given delay and reward value."""

212 global window

213

214 pos_x_center = direction * DIST_BTWN

215 pos_x_left = pos_x_center - BOX_W

216 pos_x_right = pos_x_center + BOX_W

217 pos_y_top = BOX_H / 2

218 pos_y_bottom = -BOX_H / 2

219

220 fill_color = ‘darkgreen’ if chosen else None

221

222 # Show the option box

223 box = visual.ShapeStim(window,

224 lineWidth=8,

225 lineColor=‘white’,

226 fillColor=fill_color,

227 vertices=((pos_x_left, pos_y_top),

228 (pos_x_right, pos_y_top),

229 (pos_x_right, pos_y_bottom),

230 (pos_x_left, pos_y_bottom)))

231 box.draw()

232

233 # Show the reward

234 text_a = visual.TextStim(window,

235 ‘${:,.0f}’.format(reward),

236 font=TEXT_FONT,

237 pos=(pos_x_center, 1))

238 text_a.size = TEXT_SIZE

239 text_a.draw()

Yang et al. Page 34

Behav Res Methods. Author manuscript; available in PMC 2022 July 29.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

240

241 # Show the delay

242 text_d = visual.TextStim(window,

243 convert_delay_to_str(delay),

244 font=TEXT_FONT,

245 pos=(pos_x_center, −1))

246 text_d.size = TEXT_SIZE

247 text_d.draw()

248

249

250 def run_trial(design):

251 """ Run one trial for the delay discounting task using PsychoPy."""

252 # Use the PsychoPy window object defined in a global scope.

253 global window

254

255 # Direction: −1 (Left - LL / Right - SS) or

256 # +1 (Left - SS / Right - LL)

257 direction = np.random.randint(0, 2) * 2 – 1 # Return −1 or 1

258 is_ll_on_left = int(direction == −1)

259

260 # Draw SS and LL options using the predefined function ‘draw_option’.

261 draw_option(design[‘t_ss’], design[‘r_ss’], −1 * direction)

262 draw_option(design[‘t_ll’], design[‘r_ll’], 1 * direction)

263 window.flip()

264

265 # Wait until the participant responds and get the response time.

266 timer = core.Clock()

267 keys = event.waitKeys(keyList=KEYS_LEFT + KEYS_RIGHT)

268 rt = timer.getTime()

269

270 # Check if the pressed key is for the left option.

271 key_left = int(keys[0] in KEYS_LEFT)

272

273 # Check if the obtained response is for SS option (0) or LL option

(1).

274 response = int((key_left and is_ll_on_left) or

275 (not key_left and not is_ll_on_left)) #

LL option

276

277 # Draw two options while highlighting the chosen one.

278 draw_option(design[‘t_ss’], design[‘r_ss’], −1 * direction, response

== 0)

279 draw_option (design [‘t_ll’], design [‘ r_ll’], 1 * direction,

response == 1)

Yang et al. Page 35

Behav Res Methods. Author manuscript; available in PMC 2022 July 29.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

280 window.flip()

281 core.wait(1)

282

283 # Show an empty screen for one second.

284 window.flip()

285 core.wait(1)

286

287 return is_ll_on_left, key_left, response, rt

288

289

290

###

##

291 # PsychoPy configurations

292

###

##

293

294 # Show an information dialog for task settings. You can set default

values for

295 # number of practices or trials in the main task in the ‘info’ object.

296 info = {

297 ‘Number of practices’: 5,

298 ‘Number of trials’: 20,

299 }

300 dialog = gui.DlgFromDict(info, title=‘Task settings’)

301 if not dialog.OK:

302 core.quit()

303

304 # Process the given information from the dialog.

305 n_trial = int(info[‘Number of trials’])

306 n_prac = int(info[‘Number of practices’])

307

308 # Timestamp for the current task session, e.g. 202001011200.

309 timestamp = data.getDateStr(‘%Y%m%d%H%M’)

310

311 # Make a filename for the output data.

312 filename_output = ‘ddt_{}.csv’.format(timestamp)

313

314 # Create the directory to save output data and store the path as

path_output

315 PATH_DATA.mkdir(exist_ok=True)

316 path_output = PATH_DATA / filename_output

317

Yang et al. Page 36

Behav Res Methods. Author manuscript; available in PMC 2022 July 29.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

318 # Open a PsychoPy window to show the task.

319 window = visual.Window(size=[1440, 900], units=‘deg’,

monitor=‘testMonitor’,

320 color=‘#333’, screen=0, allowGUI=True,

fullscr=False)

321

322 # Assign the escape key for a shutdown of the task

323 event.globalKeys.add(key=‘escape’, func=core.quit, name=‘shutdown’)

324

325

###

##

326 # ADOpy Initialization

327

###

##

328

329 # Create Task and Model for the delay discounting task.

330 task = TaskDD()

331 model = ModelHyp()

332

333 # Define a grid for 4 design variables of the delay discounting task:

334 # ‘t_ss’, ‘t_ll’, ‘r_ss’, and ‘r_ll’.

335 # ‘t_ss’ and ‘r_ll’ are fixed to ‘right now’ (0) and $800.

336 # ‘t_ll’ can vary from 3 days (0.43) to 10 years (520).

337 # ‘r_ss’ can vary from $12.5 to $787.5 with an increment of $12.5.

338 # All the delay values are converted in a weekly unit.

339 grid_design = {

340 ‘t_ss’: [0],

341 ‘t_ll’: [0.43, 0.714, 1, 2, 3, 4.3, 6.44, 8.6, 10.8, 12.9,

342 17.2, 21.5, 26, 52, 104, 156, 260, 520],

343 ‘r_ss’: np.arange(12.5, 800, 12.5), # [12.5, 25, …, 787.5]

344 ‘r_ll’: [800]

345 }

346

347 # Define a grid for 2 model parameters of the hyperbolic model:

348 # ‘k’ and ‘tau’.

349 # ‘k’ is chosen as 50 grid points between 10^-5 and 1 in a log scale.

350 # ‘tau’ is chosen as 50 grid points between 0 and 5 in a linear scale.

351 grid_param = {

352 ‘k’: np.logspace(−5, 0, 50),

353 ‘tau’: np.linspace (0, 5, 50)

354 }

355

Yang et al. Page 37

Behav Res Methods. Author manuscript; available in PMC 2022 July 29.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

356 # Initialize the ADOpy engine with the task, model, and grids defined

above.

357 engine = Engine(task, model, grid_design, grid_param)

358

359

###

##

360 # Main codes

361

###

##

362

363 # Make an empty DataFrame ‘df_data’ to store trial-by-trial information,

364 # with given column labels as the ‘columns’ object.

365 columns = [

366 ‘block’, ‘trial’,

367 ‘t_ss’, ‘t_ll’, ‘r_ss’, ‘r_ll’,

368 ‘is_ll_on_left’, ‘key_left’, ‘response’, ‘rt’,

369 ‘mean_k’, ‘mean_tau’

370]

371 df_data = pd.DataFrame(None, columns=columns)

372

373

#--

--

374 # Practice block (using randomly chosen designs)

375

#--

--

376

377 # Show instruction screens (0 - 2)

378 show_instruction(INSTRUCTION[0])

379 show_instruction(INSTRUCTION[1])

380 show_instruction(INSTRUCTION[2])

381

382 # Show countdowns for the practice block

383 show_countdown()

384

385 # Run practices

386 for trial in range(n_prac):

387 # Get a randomly chosen design for the practice block

388 design = engine.get_design(‘random’)

389

390 # Run a trial using the design

Yang et al. Page 38

Behav Res Methods. Author manuscript; available in PMC 2022 July 29.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

391 is_ll_on_left, key_left, response, rt = run_trial(design)

392

393 # Append the current trial into the DataFrame

394 df_data = df_data.append(pd.Series({

395 ‘block’: ‘prac’,

396 ‘trial’: trial + 1,

397 ‘t_ss’: design[‘t_ss’],

398 ‘t_ll’: design[‘t_ll’],

399 ‘r_ss’: design[‘r_ss’],

400 ‘r_ll’: design[‘r_ll’],

401 ‘is_ll_on_left’: is_ll_on_left,

402 ‘key_left’: key_left,

403 ‘response’: response,

404 ‘rt’: rt,

405 }), ignore_index=True)

406

407 # Save the current data into a file

408 df_data.to_csv(path_output, index=False)

409

410

#--

--

411 # Main block (using ADO designs)

412

#--

--

413

414 # Show an instruction screen (3)

415 show_instruction(INSTRUCTION[3])

416

417 # Show countdowns for the main block

418 show_countdown()

419

420 # Run the main task

421 for trial in range(n_trial):

422 # Get a design from the ADOpy Engine

423 design = engine.get_design()

424

425 # Run a trial using the design

426 is_ll_on_left, key_left, response, rt = run_trial(design)

427

428 # Update the engine

429 engine.update(design, response)

430

Yang et al. Page 39

Behav Res Methods. Author manuscript; available in PMC 2022 July 29.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

431 # Append the current trial into the DataFrame

432 df_data = df_data.append(pd.Series({

433 ‘block’: ‘main’,

434 ‘trial’: trial + 1,

435 ‘t_ss’: design[‘t_ss’],

436 ‘t_ll’: design[‘t_ll’],

437 ‘r_ss’: design[‘r_ss’],

438 ‘r_ll’: design[‘r_ll’],

439 ‘is_ll_on_left’: is_ll_on_left,

440 ‘key_left’: key_left,

441 ‘response’: response,

442 ‘rt’: rt,

443 ‘mean_k’: engine.post_mean[0],

444 ‘mean_tau’: engine.post_mean[1],

445 ‘sd_k’: engine.post_sd[0],

446 ‘sd_tau’: engine.post_sd[1],

447 }), ignore_index=True)

448

449 # Save the current data in a file

450 df_data.to_csv(path_output, index=False)

451

452 # Show the last instruction screen (4)

453 show_instruction(INSTRUCTION[4])

454

455 # Close the PsychoPy window

456 window.close ()

Bibliography

Ahn W-Y, Gu H, Shen Y, Haines N, Hahn H, Teater JE, Myung JI, and Pitt MA (2019). Rapid, precise,
and reliable phenotyping of delay discounting using a Bayesian learning algorithm. bioRxiv.

Ahn W-Y, Haines N, and Zhang L (2017). Revealing neurocomputational mechanisms of
reinforcement learning and decision-making with the hbayesdm package. Computational Psychiatry,
1:24–57. [PubMed: 29601060]

Amzal B, Bois FY, Parent E, and Robert CP (2006). Bayesian-optimal design via interacting particle
systems. Journal of the American Statistical Association, 101(474):773–785.

Andrieu C, DeFreitas N, Doucet A, and Jornan MJ (2003). An introduction to MCMC for machine
learning. Machine Learning, 50:5–43.

Aranovich GJ, Cavagnaro DR, Pitt MA, Myung JI, and Mathews CA (2017). A model-based
analysis of decision making under risk in obsessive-compulsive and hoarding disorders. Journal
of Psychiatric Research, 90:126–132. [PubMed: 28279877]

Atkinson A and Donev A (1992). Optimum Experimental Designs. Oxford University Press.

Berger MJ (1984). Adaptive mesh refinement for hyperbolic partial differential equations. Journal of
Computational Physics, 53:484–512.

Bickel WK (2015). Discounting of delayed rewards as an endophenotype. Biological psychiatry,
77(10):846–847. [PubMed: 25925716]

Cappe O, Godsill SJ, and Moulines E (2007). An overview of existing methods and recent advances in
sequential Monte Carlo. Proceedings of the IEEE, 95(5):899–924.

Yang et al. Page 40

Behav Res Methods. Author manuscript; available in PMC 2022 July 29.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Cavagnaro DR, Aranovich GJ, McClure SM, Pitt MA, and Myung JI (2016). On the functional form
of temporal discounting: An optimized adaptive test. Journal of Risk & Uncertainty, 52:233–254.
[PubMed: 29332995]

Cavagnaro DR, Gonzalez R, Myung JI, and Pitt MA (2013a). Optimal decision stimuli for risky choice
experiments: An adaptive approach. Management Science, 59(2):358–375. [PubMed: 24532856]

Cavagnaro DR, Myung JI, Pitt MA, and Kujala JV (2010). Adaptive design optimization: A mutual
information based approach to model discrimination in cognitive science. Neural Computation,
22(4):887–905. [PubMed: 20028226]

Cavagnaro DR, Pitt MA, Gonzalez R, and Myung JI (2013b). Discriminating among probability
weighting functions using adaptive design optimization. Journal of Risk and Uncertainty, 47:255–
289. [PubMed: 24453406]

Cavagnaro DR, Pitt MA, and Myung JI (2011). Model discrimination through adaptive
experimentation. Psychonomic Bulletin & Review, 18(1):204–210. [PubMed: 21327352]

Chaloner K and Verdinelli I (1995). Bayesian experimental design: A review. Statistical Science,
10(3):273–304.

Cohn D, Atlas L, and Ladner R (1994). Improving generalization with active learning. Machine
Learning, 15(2):201–221.

Cornsweet TN (1962). The staircase-method in psychophysics. The American Journal of Psychology,
75(3):485–491. [PubMed: 13881416]

Cover TM and Thomas JA (1991). Elements of Information Theory. John Wiley & Sons, Inc.,
Hoboken, New Jersey.

DiMattina C and Zhang K (2008). How optimal stimuli for sensory neurons are constrained by
network architecture. Neural Computation, 20:668–708. [PubMed: 18045019]

DiMattina C and Zhang K (2011). Active data collection for efficient estimation and comparison of
nonlinear neural models. Neural Computation, 23:2242–2288. [PubMed: 21671794]

Doucet A, de Freitas N, and Gordon N (2001). Sequential Monte Carlo Methods in Practice. Springer.

Ebert JE and Prelec D (2007). The fragility of time: Time-insensitivity and valuation of the near and
far future. Management science, 53(9):1423–1438.

Farrell S and Lewandowsky S (2018). Computational Modeling of Cognition and Behavior. Cambridge
University Press, Cambridge, UK.

Feeny S, Kaiser PK, and Thomas JP (1966). An analysis of data gathered by the staircase-method. The
American Journal of Psychology, 79(4):652–654.

Garcia-Perez MA (1998). Forced-choice staircases with fixed step sizes: asymptotic and small-samples
properties. Vision Research, 38:1861–1881. [PubMed: 9797963]

Green L and Myerson J (2004). A discounting framework for choice with delayed and probabilistic
rewards. Psychological Bulletin, 130:769–792. [PubMed: 15367080]

Gu H, Kim W, Hou F, Lesmes L, Pitt MA, Lu Z-L, and Myung JI (2016). A hierarchical Bayesian
approach to adaptive vision testing: A case study with the contrast sensitivity function. Journal of
Vision, 16(6):15, 1–17.

Hou F, Lesmes L, Kim W, Gu H, Pitt MA, Myung JI, and Lu Z-L (2016). Evaluating the performance
of the quick CSF method in detecting contrast sensitivity function changes. Journal of Vision,
16(6):18, 1–19.

Hsu M, Bhatt M, Adolphs R, Tranel D, and Camerer CF (2005). Neural systems responding to degrees
of uncertainty in human decision-making. Science, 310(5754):1680–1683. [PubMed: 16339445]

King-Smith PE, Grigsby SS, Vingrys AJ, Benes SC, and Supowit A (1994). Efficient and unbiased
modifications of the quest threshold method: Theory, simulations, experimental evaluation and
practical implementation. Vision Research, 34:885–912. [PubMed: 8160402]

Kontsevich LL and Tyler CW (1999). Bayesian adaptive estimation of psychometric slope and
threshold. Vision Research, 39:2729–2737. [PubMed: 10492833]

Krause F and Lindemann O (2014). Expyriment: A python library for cognitive and neuroscientific
experiments. Behavior Research Methods, 46(2):416–428. [PubMed: 24142834]

Kujala JV and Lukka TJ (2006). Bayesian adaptive estimation: The next dimension. Journal of
Mathematical Psychology, 50(4):369–389.

Yang et al. Page 41

Behav Res Methods. Author manuscript; available in PMC 2022 July 29.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Laibson D (1997). Golden eggs and hyperbolic discounting. The Quarterly Journal of Economics,
112(2):443–478.

Lee MD and Wagenmakers E-J (2014). Bayesian Cognitive Modeling: A Practical Course. Cambridge
University Press, Cambridge, U.K.

Lejuez CW, Read JP, Kahler CW, Ramsey JB, Stuart GL, and et al. (2002). Evaluation of a behavioral
measure of risk-taking: the balloon analogue risk task (bart). Journal of Experimental Psychology:
Applied, 8(2):75–85. [PubMed: 12075692]

Lesmes LA, Jeon S-T, Lu Z-L, and Dosher BA (2006). Bayesian adaptive estimation of threshold
versus contrast external noise functions: The quick TvC method. Vision Research, 46:3160–3176.
[PubMed: 16782167]

Levy I, Snell J, Nelson AJ, Rustichini A, and Glimcher PW (2010). Neural representation of
subjective value under risk and ambiguity. Journal of Neurophysiology, 103:1036–2047. [PubMed:
20032238]

Lewi J, Butera R, and Paninski L (2009). Sequential optimal design of neurophysiology experiments.
Neural Computation, 21:619–687. [PubMed: 18928364]

Lindley DV (1956). On a measure of the information provided by an experiment. Annals of
Mathematical Statistics, 27(4):986–1005.

Lorenz R, Pio-Monti R, Violante IR, Anagnostopoulos C, Faisal AA, Montana G, and Leech R (2016).
The automatic neuroscientist: a framework for optimizing experimental design with closed-loop
real-time fmri. Neuroimage, 129:320–334. [PubMed: 26804778]

Mathôt S, Schreij D, and Theeuwes J (2012). Opensesame: An open-source, graphical experiment
builder for the social sciences. Behavior research methods, 44(2):314–324. [PubMed: 22083660]

Mazur JE (1987). An adjusting procedure for studying delayed reinforcement. Commons ML; Mazur
JE; Nevin JA, pages 55–73.

McClure SM, Ericson KM, Laibson DI, Loewenstein G, and Cohen JD (2007). Time discounting for
primary rewards. Journal of neuroscience, 27(21):5796–5804. [PubMed: 17522323]

Müller P (1999). Simulation-based optimal design. In Berger JO, Dawid AP, and Smith AFM, editors,
Bayesian Statistics, volume 6, pages 459–474, Oxford, UK. Oxford University Press.

Müller P, Sanso B, and De Iorio M (2004). Optimal Bayesian design by inhomogeneous Markov chain
simulation. Journal of the American Statistical Association, 99(467):788–798.

Myung IJ (2003). Tutorial on maximum likelihood estimation. Journal of Mathematical Psychology,
47:90–100.

Myung JI, Cavagnaro DR, and Pitt MA (2013). A tutorial on adaptive design optimization. Journal of
Mathematical Psychology, 57:53–67. [PubMed: 23997275]

Peirce JW (2007). Psychopy—psychophysics software in python. Journal of neuroscience methods,
162(1-2):8–13. [PubMed: 17254636]

Peirce JW (2009). Generating stimuli for neuroscience using psychopy. Frontiers in neuroinformatics,
2:10. [PubMed: 19198666]

Rose RM, Teller DY, and Rendleman P (1970). Statistical properties of staircase estimates. Perception
& Psychophysics, 8(4):199–204.

Samuelson PA (1937). A note on measurement of utility. The review of economic studies, 4(2):155–
161.

Settles B (2009). Active learning literature survey. University of Wisconsin-Madison Computer
Sciences Technical Report TR1648 (http://digital.library.wisc.edu/1793/60660).

Van-DenBos W and McClure SE (2013). Towards a general model of temporal discounting. Journal of
the Experimental Analysis of Behavior, 99:58–73. [PubMed: 23344988]

Vandekerckhove J, Rouder JN, and Krushke JK (2018). Editorial: Bayesian methods for advancing
psychological science. Psychonomic Bulletin & Review, 25:1–4. [PubMed: 29450790]

Vincent BT (2016). Hierarchical Bayesian estimation and hypothesis testing for delay discounting
tasks. Behavior Research Methods, 48:1608–1620. [PubMed: 26542975]

Wallsten TS, Pleskac TJ, and Lejuez CW (2005). Modeling behavior in a clinically diagnostic
sequential risk-taking task. Psychological Review, 112(4):862–880. [PubMed: 16262471]

Yang et al. Page 42

Behav Res Methods. Author manuscript; available in PMC 2022 July 29.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

http://digital.library.wisc.edu/1793/60660

Watson AB and Pelli DG (1983). Quest: A Bayesian adaptive psychometric method. Perception &
Psychophysics, 33(2):113–120. [PubMed: 6844102]

Wichmann FA and Hill NJ (2001). The psychometric function: I. fitting, sampling, and goodness of fit.
Perception & Psychophysics, 63(8):1293–1313. [PubMed: 11800458]

Yang et al. Page 43

Behav Res Methods. Author manuscript; available in PMC 2022 July 29.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Fig. 1:
Schematic diagram illustrating the three iterative steps of adaptive design optimization

(ADO).

Yang et al. Page 44

Behav Res Methods. Author manuscript; available in PMC 2022 July 29.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Fig. 2:
Three steps of a grid-based ADO algorithm with an initial step for pre-computation.

Yang et al. Page 45

Behav Res Methods. Author manuscript; available in PMC 2022 July 29.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Fig. 3:
ADOpy workflow. Each function call above is described in greater detail in Section 3.5.

Note that ADOpy itself is soley the engine for stimulus selection and does not include code

to conduct an experiment (e.g., present the stimuli or collect responses, save the data); the

user must program these steps.

Yang et al. Page 46

Behav Res Methods. Author manuscript; available in PMC 2022 July 29.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Fig. 4:
Illustrated scheme of the delay discounting (DD) task. On each trial, a participant is asked to

choose between two options, a smaller-sooner (SS) option on the left and a larger-later (LL)

option on the right. The dotted lines and arrows indicate the design variables of the task to

be optimized.

Yang et al. Page 47

Behav Res Methods. Author manuscript; available in PMC 2022 July 29.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Fig. 5:
The psychometric function and its parameters defined in Equation (4).

Yang et al. Page 48

Behav Res Methods. Author manuscript; available in PMC 2022 July 29.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Fig. 6:
Comparison of ADO, staircase, and random designs in the simulation of psychometric

function estimation. Simulations were conducted using the logistic model with parameter

values of threshold α = 20, slope β = 1.5, guess rate γ = 0.5, and lapse rate δ = 0.04.

The three designed are compared with root mean squared errors (RMSE; Panel A) and

standard deviations of the posterior distribution (Panel B). RMSE represents the discrepancy

between true and estimated parameters in that the lower RMSE, the better estimation

performance. Standard deviations of the posterior distribution indicate the certainty of a

belief on the distribution for model parameters, i.e., the lower the standard deviations is, the

higher certainty on the model parameters. Each curve represents an average across 1,000

independent simulation runs.

Yang et al. Page 49

Behav Res Methods. Author manuscript; available in PMC 2022 July 29.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Fig. 7:
Comparison of ADO, staircase, and random designs in the simulation of the delay

discounting task. Simulations were conducted using the hyperbolic model with parameter

values of k = 0.12 and τ = 1.5. The three designs are compared with root mean squared

errors (RMSE; Panel A) and standard deviations of the posterior distribution (Panel B). Each

curve represents an average across 1,000 independent simulation runs.

Yang et al. Page 50

Behav Res Methods. Author manuscript; available in PMC 2022 July 29.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Fig. 8:
Illustrated scheme of the choice under risk and ambiguity (CRA) task. The participant

chooses one of two options on either a risky trial (left) or an ambiguous trial (right). A risky

option has the amount of reward and a probability of winning the reward indicated by the

upper, brown proportion of the box. For an ambiguous option, the probability to win is not

explicitly shown but partially blocked by a gray box. On each trial, a risk or ambiguous

option is always paired with a fixed (reference) option whose probability of winning the

reward is set to 0.5. .

Yang et al. Page 51

Behav Res Methods. Author manuscript; available in PMC 2022 July 29.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Fig. 9:
Comparison of ADO, fixed, and random designs in the simulation of the choice under

risk and ambiguity task. The fixed design was pre-determined according to Levy et al.

(2010). Simulations were conducted using the linear model with parameter values of α =

0.66, β = 0.67, and γ = 3.5. Three designed are compared with root mean squared errors

(RMSE; Panel A) and standard deviations of the posterior distribution (Panel B). Each curve

represents an average across 1,000 independent simulation runs.

Yang et al. Page 52

Behav Res Methods. Author manuscript; available in PMC 2022 July 29.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Yang et al. Page 53

Table 1:

Tasks and models implemented in the ADOpy package (alphabetized order). For detailed information, see the

documentation website for ADOpy (https://github.com/adopy/adopy).

Module
Task Model

Engine
Class Designs Class Model name Parameters

Choice under
risk & ambiguity
(adopy.tasks.cra)

TaskCRA p_var, a_var,
r_var, r_fix

ModelLinear Linear
alpha, beta, gamma EngineCRA

ModelExp Exponential

Delay discounting
(adopy.tasks.dd) TaskDD t_ss, t_ll, r_ss,

r_ll

ModelExp Exponential tau, r

EngineDD

ModelHyp Hyperbolic tau, k

ModelHPB Hyperboloid tau, k, s

ModelCOS Constant
Sensitivity tau, r, s

ModelQH Quasi-
Hyperbolic tau, beta, delta

ModelDE Double
Exponential tau, omega, r, s

Psychometric
function estimation

(adopy.tasks.psi)
Task2AFC stimulus

ModelLogistic Logistic function

guess rate, lapse_rate,
threshold, slope EnginePsiModelWeibull Log-Weibull

CDF

ModelProbit Normal CDF

Behav Res Methods. Author manuscript; available in PMC 2022 July 29.

https://github.com/adopy/adopy

	Abstract
	Introduction
	Adaptive Design Optimization (ADO)
	ADOpy
	Overview
	Prerequisites
	Installation
	Module structure
	Basic usage
	Defining a task
	Defining a model
	Defining grids
	Initializing an ADO engine
	Simulating responses

	Practical issues

	Tasks and Models implemented in ADOpy
	Psychometric function estimation
	Delay discounting task
	Choice under risk and ambiguity task

	Integrating ADOpy with experiments
	Conclusion
	Appendices
	References
	Fig. 1:
	Fig. 2:
	Fig. 3:
	Fig. 4:
	Fig. 5:
	Fig. 6:
	Fig. 7:
	Fig. 8:
	Fig. 9:
	Table 1:

