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Abstract

Experimental design is fundamental to research, but formal methods to identify good designs 

are lacking. Advances in Bayesian statistics and machine learning offer algorithm-based ways to 

identify good experimental designs. Adaptive design optimization (ADO; Cavagnaro, Myung, Pitt, 

& Kujala, 2010; Myung, Cavagnaro, & Pitt, 2013) is one such method. It works by maximizing 

the informativeness and efficiency of data collection, thereby improving inference. ADO is a 

general-purpose method for conducting adaptive experiments on the fly and can lead to rapid 

accumulation of information about the phenomenon of interest with the fewest number of trials. 

The nontrivial technical skills required to use ADO have been a barrier to its wider adoption. To 

increase its accessibility to experimentalists at large, we introduce an open-source Python package, 

ADOpy, that implements ADO for optimizing experimental design. The package, available on 

GitHub, is written using high-level modular-based commands such that users do not have to 

understand the computational details of the ADO algorithm. In this paper, we first provide a 

tutorial introduction to ADOpy and ADO itself, and then illustrate its use in three walk-through 

examples: psychometric function estimation, delay discounting, and risky choice. Simulation 

data are also provided to demonstrate how ADO designs compare with other designs (random, 

staircase).
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1 Introduction

A main goal of psychological research is to gain knowledge about brain and behavior. 

Scientific discovery is guided in part by statistical inference, and the strength of any 

inference depends on the quality of the data collected. Because human data always contain 

various types of noise, researchers need to design experiments so that the signal of interest 

(experimental manipulations) is amplified while unintended influences from uncontrolled 

variables (noise) are still present. The design space, the stimulus set that arises from 

decisions about the independent variable (number of variables, number of levels of each 

variable) is critically important for creating a high-signal experiment.

A similarly important consideration is the stimulus presentation schedule during the 

experiment. This issue is often guided by two competing goals: efficiency and precision. 

How much data must be collected to be confident that differences between conditions could 

be found? This question is similar to that asked when performing a power analysis, but is 

focused on the performance of the participant during the experiment itself. Too few trials 

yield poor precision (low signal-to-noise ratio); there are simply not enough data to make 

an inference, for or against a prediction, with confidence. Adding more trials can increase 

precision along with practice effects. However, it may not be efficient to add too many 

trials, especially with a clinical population where time is really of the essence and when 

participants can easily get fatigued or bored. What then is the optimal number of trials that 

will provide the most precise performance estimates? A partial answer lies in recognizing 

that not all stimuli are equally informative. By optimizing stimulus selection in the design 

space, efficiency and precision can be balanced.

Methods of optimizing efficiency and precision have been developed for some experimental 

paradigms. The most widely used one is the staircase procedure for estimating a threshold 

(Cornsweet, 1962; Feeny et al., 1966; Rose et al., 1970), such as when measuring hearing or 

visual acuity. Stimuli differ along a one-dimensional continuum (intensity). The procedure 

operates by a simple heuristic rule, of which there are a handful of variants: The stimulus to 

present on one trial is determined by the response on the previous trial. Intensity is increased 

if the stimulus was not detected, decreased if it was. The experiment is stopped after a given 

number of reversals in direction has been observed. The staircase method is efficient because 

the general region of the threshold is identified after a relatively small number of trials, after 

which the remaining trials concentrate on obtaining a precise threshold estimate. Its ease 

of implementation and generally good results have made it a popular method across many 

fields in psychology.

Formal approaches to achieving these same ends (good efficiency and precision) have also 

been developed. They originated in the fields of optimal experimental design in statistics 

(Lindley, 1956; Atkinson and Donev, 1992) and active learning in machine learning (Cohn 

et al., 1994; Settles, 2009). In psychology, the application of these methods began in visual 

psychophysics (e.g., Kontsevich and Tyler, 1999), but has since expanded into other content 

areas (neuroscience, memory, decision making) and beyond. Common among them is the 

use of a Bayesian decision theoretic framework. The approach is intended to improve upon 

the staircase method by using not only the participant’s responses to guide the choice of the 
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stimulus on the next trial, but also a mathematical model that is assumed to describe the 

psychological process of interest (discussed more fully below). The model-based algorithm 

integrates information from both sources (model predictions and participants’ responses) to 

present what it identifies as the stimulus that should be most informative on the next trial.

The method developed in our lab, adaptive design optimization (ADO), has been shown to 

be efficient and precise. For example, in visual psychophysics, contrast sensitivity functions 

(i.e., thresholds) can be estimated so precisely in 50 trials that small changes in luminance 

(brightness) can be differentiated (Gu et al., 2016; Hou et al., 2016). In delayed discounting, 

precise estimation of the k parameter of the hyperbolic model (a measure of impulsivity) 

can be obtained in fewer than 20 trials, and the estimate is 3-5 times more precise than the 

staircase method (Ahn et al., 2019). Other applications of ADO can be found in several 

areas of psychology such as retention memory (Cavagnaro et al., 2010, 2011), risky choice 

decision (Cavagnaro et al., 2013a,b; Aranovich et al., 2017), and in neuroscience (Lewi et 

al., 2009; DiMattina and Zhang, 2008, 2011; Lorenz et al., 2016).

The technical expertise required to implement the ADO algorithm is nontrivial, posing a 

hurdle to its wider use. In this paper, we introduce an open-source Python package, dubbed 

ADOpy, that is intended to make the technology available to researchers who have limited 

background in Bayesian statistics or cognitive modeling (e.g., the hBayesDM package, Ahn 

et al., 2017). Only a working knowledge of Python programming is assumed.1 For an 

in-depth, comprehensive treatment of Bayesian cognitive modeling, the reader is directed 

to the following excellent sources written for psychologists (Lee and Wagenmakers, 2014; 

Farrell and Lewandowsky, 2018; Vandekerckhove et al., 2018). ADO is implemented in 

three two-choice tasks: psychometric function estimation, the delay discounting task (Green 

and Myerson, 2004) and the choice under risk and ambiguity (CRA) task (Levy et al., 2010). 

ADOpy easily interfaces with Python code running one of these tasks, requiring only a 

few definitions and one function call. Most model parameters have default values, but a 

simulation mode is provided for users to assess the consequences of changing parameter 

values. As we discuss below, this is a useful step that we encourage researchers to use to 

ensure the algorithm is optimized for their test situation.

The algorithm underlying ADO is illustrated in Figure 1. It consists of three steps that are 

executed on each trial of an experiment: (1) design optimization; (2) experimentation; and 

(3) Bayesian updating. In the first step, we identify the optimal design (e.g., stimulus) of all 

possible designs, the choice of which is intended to provide the most information about the 

quantity to be inferred (e.g., model parameters). In Step 2, an experiment is carried out with 

the chosen experimental design. In Step 3, the participant’s response is used to update the 

belief about the informativeness of all designs. This revised (updated) knowledge is used to 

repeat the ADO cycle on the next trial of the experiment.

The following section provides a short technical introduction to the ADO algorithm. 

Subsequent sections introduce the package and demonstrate how to use ADOpy 

for optimizing experimental design with walk-through examples from three domains: 

1ADOpy is available at https://github.com/adopy/adopy.
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psychometric function estimation, delay discounting, and risky choice. Readers who prefer 

to concentrate on the practical application of the algorithm rather than its technicalities 

should skip Section 2 and jump directly to Section 3.

2 Adaptive Design Optimization (ADO)

ADO follows in the tradition of optimal experimental design in statistics (Lindley, 1956; 

Atkinson and Donev, 1992) and active learning in machine learning (Cohn et al., 1994; 

Settles, 2009). ADO is a model-based approach to optimization in the sense that it requires 

a quantitative (statistical, cognitive) model that predicts experimental outcomes based on 

the model’s parameters and design variables (e.g., experimentally controllable independent 

variables). Statistically speaking, a model is defined in terms of the probability density 
function (PDF)2, a parametric family of probability distributions indexed by its parameters, 

denoted by p(y∣θ,d), where y represents a vector of experimental outcomes, θ is the 

parameter vector, and finally, d is the vector of design variables.

ADO is formulated in a Bayesian framework of optimal experimental design (Chaloner and 

Verdinelli, 1995; Müller, 1999; Müller et al., 2004; Amzal et al., 2006). On each ADO trial, 

we seek to identify the optimal design d* that maximizes some real-valued function U (d) 

that represents the utility or usefulness of design d. Formally, the “global” utility function U 
(d) (Chaloner and Verdinelli, 1995) is defined as:

U(d) = ∬ u(d, θ, y) p(y ∣ θ, d) p(θ) dydθ, (1)

where p(θ) is the prior distribution. In the above equation, u(d, θ, y), called the “local” 

utility function, measures the utility of a hypothetical experiment carried out with design 

d when the model outputs an outcome y given the parameter value θ. Note that the global 

utility U (d), which is a function of design d, represents the mean of the local utility u(d, θ, 

y) calculated across all possible outcomes and parameter values, weighted by the likelihood 
function3 p(y∣θ, d) and the prior p(θ).

As is typically done in ADO, the ADOpy package adopts an information theoretic 

framework in which the optimal design is defined as the one that is maximally informative 

about the unknown quantity of interest, i.e., the values of the parameter θ in our case. 

Specifically, by using Shannon’s entropy, a particular local utility function is defined as 

u(d, θ, y) = log p(θ ∣ y, d)
p(θ) . The global utility function in Equation (1) becomes the mutual 

information between the outcome random variable Y (d) and the parameter random variable 

Θ conditional on design d (Cover and Thomas, 1991):

U(d) = H(Y (d)) − H(Y (d) ∣ Θ), (2)

where H(Y(d)) is the marginal entropy (i.e., overall uncertainty) of the outcome event and 

H(Y(d)∣Θ) is the conditional entropy of the outcome event given the knowledge of the 

parameter θ.4 Accordingly, the optimal design d* that maximizes the mutual information 

4See Step 1 in Figure 2 for specific equations defining the entropy measures in Equation (2).
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in Equation (2) is the one that maximally reduces the uncertainty about the parameters of 

interest.

Once the optimal design d* is identified, we then conduct an actual experiment on the 

current trial with the optimal design and observe an experimental outcome yobs. The 

prior distribution p(θ) is updated via Bayes rule with this new observation to obtain the 

posterior distribution p(θ∣yobs), which in turn becomes the new prior on the next trial, i.e., by 

replacing p(θ) with p(θ∣yobs) in Equation (1). This “trilogy scheme” of design optimization, 

experimentation, and Bayesian updating, depicted in Figure 1, is applied successively on 

each ADO trial until the end of the experiment.

Finding the optimal design d* that maximizes U (d) in Equation (1) is computationally 

non-trivial as it involves solving a high dimensional maximization and integration problem. 

As such, obtaining an analytic form solution for the problem is generally not possible; 

instead, approximate solutions must be sought numerically. For this purpose, the ADOpy 

package implements a grid-based algorithm for both the design optimization and Bayesian 

updating steps in Figure 1. Implementation of the algorithm requires the discretization of 

both the continuous parameter and design spaces. That is, each element of the parameter 

vector θ and the design vector d is represented as a one-dimensional discretized line with 

a finite number of grid points. Further, the local utility function u(d, θ, y), the likelihood 

function p(y∣θ,d), and the prior p(θ) are all represented numerically as vectors defined on the 

grid points.

Figure 2 describes the grid-based ADO algorithm implemented in the ADOpy package in 

four steps, which is adapted from Bayesian adaptive estimation algorithms in psychophysics 

(Kontsevich and Tyler, 1999; Kujala and Lukka, 2006; Lesmes et al., 2006). In Step 0, which 

is performed once at the start of the experiment, the algorithm first creates and stores in 

memory a look-up table of various functions over all possible (discretized) outcomes and 

parameter values. This involves pre-computation of the likelihood function p(y∣θ,d) and the 

entropy H(Y(d)∣θ) for all possible values for response y, parameter θ, and design d. Also, 

the prior knowledge for model parameter p0(θ) is initialized based on researchers’ beliefs, 

typically from a uniform distribution. The use of pre-computed look-up tables makes it 

possible to run ADO-based experiments on the fly without additional computational time 

on each trial. The three steps of the ADO trilogy scheme illustrated in Figure 1 are then 

executed.

In brief, users can find an optimal experimental design with ADO that maximizes 

information gain. To use it efficiently in an experiment, grid-based ADO discretizes the 

possible design and parameter spaces and generates pre-computed look-up tables. For a 

more thorough description of the algorithm, see Cavagnaro et al. (2010) and Myung et al. 

(2013).

3 ADOpy

In this section, we provide a step-by-step guide on how to use the ADOpy package to 

compute optimal designs adaptively with walk-through examples. It is assumed that readers 
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are familiar with Python programming and have written experiment scripts using Python or 

some other language. For further information, the detailed guide on how to use the ADOpy 

package is also provided on the official documentation (https://docs.adopy.org).

3.1 Overview

ADOpy is designed in a modular fashion to ensure functional flexibility and code 

readability. At the core of the package are three classes: Task, Model, and Engine. The 

Task class is used to define design variables of a task. The Model class is used to 

define model parameters and the probability density (or mass) function that specifies the 

probability of responses given parameters and designs (e.g., Myung, 2003; Farrell and 

Lewandowsky, 2018). The Engine class is used for implementing design optimization and 

Bayesian updating.

The general workflow of these classes is illustrated in Figure 3. After loading the three 

classes, users should initialize each object, with the engine requiring the most parameters. 

The for-loop is an experiment itself divided into three parts: 1) obtain the design (stimulus) 

for the next trials and present the stimulus to the participant; 2) obtain a response from the 

participant, which would come from a keyboard or mouse, as defined by the experimenter; 

3) update the ADO engine using the participant response together with the design.

ADOpy implements a grid-search algorithm in which the design space and parameter space 

are discretized as sets of grid points. How to set grid points and the range of each grid 

dimension is described in detail in Section 3.5.

Owing to the modular structure of ADOpy, users do not have to concern themselves with 

how the Engine works, other than defining the Task and the Model classes. Consequently, 

ADOpy dramatically reduces the amount of coding, and the likelihood of coding errors, 

when implementing ADO.

3.2 Prerequisites

Before installing ADOpy, users should install Python (version 3.5 or higher). Using the 

Anaconda distribution (https://www.anaconda.com) is recommended because it ensures 

compatibility among dependencies.

ADOpy depends on several core packages for scientific computing: NumPy, SciPy, and 

Pandas. Since ADOpy uses high dimensional matrices to compute optimal designs, it is 

strongly recommended to install linear algebra libraries (e.g., Intel Math Kernel Library, 

LAPACK, BLAS) to make the operations fast. If the Anaconda distribution is used, the Intel 

Math Kernel Library will be used as the default.

3.3 Installation

The ADOpy package is available from the Python Package Index (PyPI) and GitHub. The 

easiest way to install ADOpy is from PyPI using pip as follows:

  pip install adopy
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To install the developmental version, users can install it from GitHub. However, it can be 

unstable, so use it with caution.

  git clone https://github.com/adopy/adopy.git

cd adopy

git checkout develop

pip install.

To check that ADOpy was installed successfully, run the following code at the Python 

prompt. As of now, the latest version is 0.3.1.

import adopy

adopy.__version__ # ‘0.3.1’

3.4 Module structure

Inside the ADOpy package, the two most important modules are adopy.base and 

adopy.tasks. The module adopy.base contains three basic classes: Task, Model, and Engine 

(see more details in Section 3.5). Using these classes, users can apply the ADO procedure 

into their tasks and models. For convenience, users can load these classes directly from 

adopy itself as follows:

# Load three classes from ADOpy

from adopy import Task, Model, Engine

The other module, adopy.tasks, contains three pre-implemented tasks and models 

(see Section 4 and Table 1). The three tasks are psychometric function estimation 

(adopy.tasks.psi), the delay discounting task (adopy.tasks.ddt), and the choice under risk 

and ambiguity task (adopy.tasks.cra).

3.5 Basic usage

Implementation of ADOpy requires execution of the four steps shown in Figure 3, the 

most important and complex of which is the Initialization step, in which ADOpy objects 

to be used in the subsequent steps are defined. The Initialization step itself comprises four 

sub-steps: defining a task, defining a model, defining grids, and initializing an ADO engine. 

In this section, we explain the coding involved in each of these sub-steps using the delay 

discounting task as an example.
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Defining a task—The Task class is for defining the experimental task. Using the Task 

class, a task object is initialized by specifying three types of information: the name of the 

task (name), the design variables (designs), and the response variable (responses).

Delay discounting (DD; the task is depicted in Figure 4), refers to the well-established 

finding that animals, including humans, tend to discount the value of a delayed reward such 

that the discount progressively increases as a function of the receipt delay (e.g., Green and 

Myerson, 2004; Vincent, 2016). The delay discounting task has been widely used to assess 

individual differences in temporal impulsivity and is a strong candidate endophenotype for 

addiction (Green and Myerson, 2004; Bickel, 2015). In a typical DD task, a participant 

is asked to indicate his/her preference between two options, a smaller-sooner (SS) option 

(e.g., 8 dollars now) and a larger-later (LL) option (e.g., 50 dollars in a month). Let us 

use a formal expression (RSS,tSS) to denote the SS option where RSS represents the reward 

amount, and tSS represents the receipt delay. Similarly, (RLL,tLL) denotes the LL option. By 

definition, the following constraints are imposed on the reward amounts and the delay times: 

RSS < RLL and tSS < tLL for a given pair of options. The choice response is recorded as 

either y = 1 (LL option) or y = 0 (SS option).

The DD task therefore has four design variables, i.e., d = (tSS,tLL,RSS,RLL), with a binary 

response on each trial (i.e., 0 or 1). As such, we define a Task object for the DD task as 

follows:

from adopy import Task

task = Task(name=‘Delay discounting task’,

            designs=[‘t_ss’, ‘t_ll’, ‘r_ss’, ‘r_ll’],

            responses=[0, 1])

where the four symbols (t_ss, t_ll, r_ss, r_ll) denote short notations for the respective design 

variables (tSS,tLLRSS,RLL). Note that designs argument should be specified as labels for 

design variables, while responses argument should be given as possible values of responses.

With the task object defined, the information passed into the object can be accessed by 

task.name, task.designs, and task.responses, respectively:

task.name # ‘Delay discounting task’

task.designs # [‘t_ss’, ‘t_ll’, ‘r_ss’, ‘r_ll’]

task.responses # [0, 1]

Defining a model: Before making a model object, users should define a function that 

describes how to compute the response probability given design variables and model 

parameters. For example, the hyperbolic model for the delay discounting task is defined 

with the following set of equations:
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D(t) = 1
1 + kt

V LL = RLL ⋅ D(tLL)

V SS = RSS ⋅ D(tSS)

P (LLoverSS) = 1
1 + exp[ − τ(V LL − V SS)]

(3)

where P(LL over SS) denotes the probability of choosing the LL option over the SS option, 

and VLL and VSS denote subjective value estimates for the LL and SS options respectively. 

There are two model parameters: k represents the discounting rate and τ represents the 

inverse temperature that measures the consistency or stability in choice responses. For 

further details about the above model, the reader is referred to Section 4.2.

Based on the above model, the following Python snippet computes the response probability:

import numpy as np

def compute_likelihood(t_ss, t_ll, r_ss, r_ll, k, tau):

    v_ss = r_ss * np.divide(1, 1 + t_ss * k)

    v_ll = r_ll * np.divide(1, 1 + t_ll * k)

    p_obs = np.divide(1, np.exp(−tau * (v_ll – v_ss)))

    return p_obs

The argument names for design variables in the above function definition must be the 

same as those used in the task definition (i.e., t_ss, r_ss, t_ll, r_ll). We also recommend 

using NumPy functions for the definition, given that it can vectorize basic mathematical 

operations.

Specification of a mathematical model is performed by the Model class. Four arguments are 

required: the name of the model (name), a task object related to the model (task), labels of 

model parameters (params), and the response probability of the model (func), which in the 

current case is defined by the function compute_likelihood(). In terms of these arguments, a 

model object is defined as below:

from adopy import Model

model = Model(name=‘Hyperbolic model’,

              task=task,

              params=[‘k’, ‘tau’],

              func=compute_likelihood)

As in the task object, the information passed into the model object can be accessed by 

model.name, model.task, and model.params:
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model.name # ‘Hyperbolic model’

model.task # Task(‘Delay discounting task’, …)

model.params # [‘k’, ‘tau’]

Further, users can run the response probability passed into the model object by 

model.compute(), which uses the same arguments that are used for the compute_likelihood() 

function, as follows:

model.compute(t_ss, t_ll, r_ss, r_ll, k, tau)

Defining grids: As mentioned earlier, ADOpy implements a grid-based algorithm that 

requires the discretization of both parameter and design spaces. As such, before running 

ADO using model and task objects, users must specify the grid resolution to be used for the 

design optimization and Bayesian updating steps in Figure 1. This amounts to defining the 

number and spacing of grid points on each dimension of the design and parameter variables. 

The grid passed to the ADO engine determines (1) the range of values in design variables 

that the ADO engine can suggest and (2) the range of the model parameters over which the 

computations will be carried out.

It is important to note that the number of grid points affects the efficiency and reliability of 

parameter estimation. The more sparse the grid, the more efficient but less precise parameter 

estimation will be; the denser the grid, the more precise but less efficient parameter 

estimation will be. Specifically, sparse grids can lead to poorly estimated model parameters 

whereas dense grids can require large amounts of memory and long computing times. Thus, 

before conducting an ADO-based experiment with participants, it is worth identifying the 

optimal grid resolution for each parameter/design variable. A simulation mode provided 

with ADOpy can help facilitate this process.

A grid object for ADOpy can be defined as a Python dictionary object by using the name of 

a variable as its key and a list of the grid points as its values. If a design variable or model 

parameter needs to be fixed to a single value, users would simply assign a single grid point 

for the variable. Also, to restrict the values of a variable, users can manually make a matrix 

in which each column vector indicates possible values for the variable, then pass it as a value 

with a key of the column labels. Example codes below illustrate various ways of defining the 

grids for two design variables, t_ss and t_ll:

# A grid object for two design variables, t_ss and t_ll.

grid_design = {‘t_ss’: [1, 2, 3], ‘t_ll’: [1, 2, 3]}

# One variable can be fixed to a single value as below:

grid_design = {‘t_ss’: [0], ‘t_ll’: [1, 2, 3]}

# Constrain the grid by using a joint matrix.
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t_joint = []

for t_ss in [1, 2, 3]:

    for t_ll in [1, 2, 3]:

        if t_ss <= t_ll: # Use design pairs in which t_ss <= t_ll

            t_joint.append([t_ss, t_ll])

# [[1, 1], [1, 2], [1, 3], [2, 2], [2, 3], [3, 3]]

grid_design = {(‘t_ss’, ‘t_ll’): t_joint}

In much the same way, users can also define a grid for model parameters. For example, a 

grid for the two parameters of the delay discounting model in Equation (3), k and tau, can be 

defined as:

grid_param = {

    ‘k’: np.logspace(−5, 0, 20), # 20 points within [10^–5, 10^0] in a log 

scale

    ‘tau’: np.linspace(0, 5, 20)

}

The reader is directed to Appendix A for more examples for defining grids for the delay 

discounting task.

Initializing an ADO engine: With the defined Model and Task classes and grids for design 

and parameter variables, users are now ready to load an Engine for ADO computation. It 

requires four arguments: (1) the task object (task); (2) the model object (model); (3) a grid 

for design variables (grid_design); and (4) a grid for model parameters (grid_param):

from adopy import Engine

engine = Engine(model=model, task=task,

                grid_design=grid_design, grid_param=grid_param)

When initializing an instance of Engine, it pre-computes response probabilities and mutual 

information for a given sets of designs and parameters. This step may take a while, with 

linearly increasing computing time in proportion to the number and resolution of the grids. 

For the three examples provided here, compute time is usually less than two seconds on an 

average Mac or Windows computer.

Once the engine object is in place, users can access its task objects: the exhaustive list 

of task objects is (engine.task), its model object (engine.model), the number of possible 

pairs on design variables (engine.num_design), the number of possible pairs on model 

parameters (engine.num_param), the grid matrix of design variables (engine.grid_design), 

the grid matrix of model parameters (engine.grid_param), the prior distribution on the grid 

matrix of model parameters (engine.prior), the posterior distribution on the grid matrix 
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of model parameters (engine.post), the posterior mean (engine.post_mean), the covariance 

matrix of the posterior (engine.post_cov), and the standard deviations of the posterior 

(engine.post_sd).

Two functions are available in ADOpy for the engine object: engine.get_design() and 

engine.update(). The engine.get_design() provides a set of designs on each trial of the 

experiment given a specified design type. With an argument of design_type, users can 

indicate the type of design to use. There are two possible values: ‘optimal’ and ‘random’. 

The value ‘optimal’ refers to the optimal design calculated by the ADO algorithm, and the 

value ‘random’ to a uniformly sampled design from the given design grid. The output of this 

function call is a dictionary that contains key-value pairs for each design variable and its 

optimal or random value.

# Provides the optimal design

design = engine.get_design(‘optimal’)

# Provides a randomly chosen design from the design grid

design = engine.get_design(‘random’)

If no argument is given for design_type, the optimal design is returned by default:

design = engine.get_design ()

The other important use of the engine object is engine.update(). Here, ADOpy first performs 

the Bayesian updating step described in Figures 1 and 2 based on a participant’s response 

given the design, and then computes a new optimal design for the next trial using the 

updated posterior distributions of model parameters. It takes two arguments: the design used 

on the given trial (design), and the corresponding response on that trial (response). For 

example, from the observation that a participant selects the SS option (response = 0) or the 

LL option (response = 1) on the current trial, users can update the posterior as follows:

engine.update(design, response)

Simulating responses: ADOpy can be run in the simulation mode to assess design quality 

and experiment efficiency (see next section). The design itself, the model chosen, and the 

grid resolution of the design space. and model parameters all affect how ADO performs. 

Simulation mode can be useful to fine-tune the aforementioned variables. Using the engine 

object of the ADOpy package, users can generate simulated responses given true parameters. 

As a concrete example, let us run the simulation with true parameter values of k = 0.12 and 

tau = 1.5 of the delay discounting model described in Equation (3). To acquire a simulated 

response, we use the Bernoulli probability distribution for a binary choice response as 

described below:
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from scipy.stats import bernoulli

def get_simulated_response(model, design):

    '''Simulate a response using tau = 1.5 and k = 0.04.'''

    # Compute the probability of choosing the LL option

    p_obs = model.compute(t_ss=design[‘t_ss’], t_ll=design[‘t_ll’],

                          r_ss=design[‘r_ss’], r_ll=design[‘r_ll’],

                          k=0.12, tau=1.5)

# Compute a random binary choice response using Bernoulli

return bernoulli.rvs(p_obs)

With the functions and objects defined as above, we can now run the simulations with a code 

block like this:

NUM_TRIALS = 108 # number of trials for the simulation

for trial in range(NUM_TRIALS):

    design = engine.get_design(‘optimal’) # Design optimization

    response = get_simulated_response(model, design) # Experiment

    engine.update(design, response) # Bayesian updating

Note that the above code block contains the by-now familiar trilogy: design optimization, 

experimentation, and Bayesian updating, in the same way done in an actual ADO-based 

experiment as described in Figure 1.

3.6 Practical issues

Users should carefully consider several practical issues when using ADOpy. Grid-based 

ADO, which is what is used here, may demand a lot of memory. While pre-computing a 

look-up table lessens repeated calculation between trials, it requires more and more memory 

as the grid size increases. Thus, users are advised to first determine the proper number of 

grid points on each dimension of the model parameters and design variables and to check if 

computation time with the settings is suitable (i.e., fast enough to prevent boredom between 

trials). For example, by varying grid resolution, users can assess the trade-off in estimation 

accuracy and the computational cost of that resolution. Another option is to use a dynamic 

gridding algorithm, in which the grid space is dynamically adjusted and grid points near 

posterior means are more finely spaced. Adaptive mesh refinement (AMR: e.g., Berger, 

1984) is one such method. ADOpy does not currently support dynamic-gridding; it may in 

the future..

A related practical issue is the computation time required to complete Step 0 in Figure 2, 

in which initial lookup tables need to be created for the likelihood function and the entropy 

for all possible values of the response, parameter, and design variables. As noted above, it 

has been our experience that this step usually takes no more than a few seconds on standard 

Yang et al. Page 13

Behav Res Methods. Author manuscript; available in PMC 2022 July 29.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



laptops and PCs. To be concrete, for the delay discounting task, it takes ~ 0.5 seconds on an 

iMac and 1 ~ 2 seconds on a Windows PC to execute the pre-computation step. However, 

this step can become progressively time-inefficient as the dimensionality of the experimental 

task increases. In such a case, we recommend to use the pickle module of Python for saving 

the lookup tables and then loading them back at the start of an experiment with each new 

participant. Other means of ensuring sufficiently fast computation are using linear algebra 

libraries (e.g., Intel MKL, LAPACK, or BLAS), which are highly efficient and can take 

advantage of multi-core CPUs, or using a remote server or a cloud computing system, where 

optimal designs are computed asynchronously.

ADOpy will eventually start to select the same or similar design on consecutive trials. This 

is a sign that not much more can be learned from the experiment (e.g., parameter estimation 

is quite good). This will happen toward the end of an experiment if there are sufficient trials. 

One option to address the issue is to dilute their presence by using filler trials, showing 

randomly chosen or predetermined designs for a trial when ADO picks the same design 

twice or more in a sequence. Another option is to run the experiment in a “self-terminating 

mode”; stop the experiment once a specific criterion (e.g., efficiency) is reached, e.g., the 

standard deviations of posterior distributions fall below certain predetermined values.

The focus of this tutorial is on using ADOpy for univariate and discrete responses. One 

might wonder how to extend it to multivariate and continuous responses, e.g., reaction times 

in a lexical decision task. Implementation is much the same as in the univariate continuous 

case. That is, given a multivariate continuous response vector y = (y1,y2,…,ym), first 

discretize each response variable yi into finite grids, and then pre-compute the likelihood 

function p(y∣θ,d) for all discretized values of yi’s, θ, and d in the pre-computation Step 

0 in Figure 2. From there, the remaining steps of the ADO algorithm are the same and 

straightforward.

4 Tasks and Models implemented in ADOpy

Currently, three tasks are implemented in the ADOpy package; they are listed in 

Table 1: Psychometric function estimation (adopy.tasks.psi), the delay discounting task 

(adopy.tasks.dd), the choice under risk and ambiguity task (adopy.tasks.cra). At least two 

models are available for each task.

In this section, we describe these tasks and illustrate how to use each task/model in 

ADOpy and how ADO performs compared to traditional non-ADO (e.g., staircase, random) 

methods, along with simulated results for the three tasks. In addition, we provide and 

discuss a complete and full Python script for simulating psychometric function estimation in 

ADOpy.

4.1 Psychometric function estimation

Psychometric function estimation is one of the first modeling problems in the psychological 

sciences in which a Bayesian adaptive framework was applied to improve the efficiency of 

psychophysical testing and analysis (Watson and Pelli, 1983; King-Smith et al., 1994; Kujala 

and Lukka, 2006; Lesmes et al., 2006). The problem involves a 2-alternative forced choice 
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(2AFC) task in which the participant decides whether a psychophysical stimulus, visual or 

auditory, is present or absent while the stimulus intensity is varied from trial to trial to assess 

perceptual sensitivity.

The psychometric function that defines the probability of correct detection given stimulus 

intensity x is given as the following general form (Garcia-Perez, 1998; Wichmann and Hill, 

2001):

Ψ(x ∣ α, β, γ, δ) = γ + (1 − γ − δ) F (x; α, β) (4)

The participant’s response in the psychophysical task is recorded in either y = 1 (correct) 

or y = 0 (incorrect). The two-parameter sigmoid function F (x; α, β) that characterizes 

the relationship between the response probability and the stimulus intensity is typically 

assumed to follow the logistic, cumulative normal, or cumulative log Weibull form (see, e.g., 

Wichmann and Hill, 2001, for further details). The parameter vector θ = (α, β, γ, δ) of the 

psychometric function consists of α (threshold), β (slope), γ (guess rate) and δ (lapse rate), 

as depicted in Figure 5. Note that design variable is stimulus intensity, i.e., d = x.

The module ‘adopy.tasks.psi’ included in the ADOpy package provides classes for 

psychometric function estimation in the 2AFC experimental paradigm (see Table 1). In the 

module, Task2AFC is pre-defined for 2AFC tasks with a single design variable (stimulus) 

and binary responses (0 for incorrect or 1 for correct). Without passing any arguments, users 

can utilize the pre-defined Task2AFC class as below:

from adopy.tasks.psi import Task2AFC

task = Task2AFC()

task.designs # [‘stimulus’]

task.responses # [0, 1]

For the task, users can specify the form of the two parameter sigmoid psychometric function 

F (x; α, β) as in Equation (4) from three classes: a logistic function (ModelLogistic), a 

log Weibull CDF (ModelWeibull), and a normal CDF (ModelProbit). Here, assume that the 

psychometric function has a logistic form which computes correct detection as:

Ψ(x ∣ α, β, γ, δ) = γ + (1 − γ − δ) ⋅ 1
1 + exp[ − β(x − α)] . (5)

Based on Equation (5), the ModelLogistic class in the adopy.tasks.psi provides the 

equivalent model with four parameters (threshold α, slope β, guess\_rate γ, lapse\_rate 

δ).

from adopy.tasks.psi import ModelLogistic

model = ModelLogistic()

Yang et al. Page 15

Behav Res Methods. Author manuscript; available in PMC 2022 July 29.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



model.params # [‘threshold’, ‘slope’, ‘guess_rate’, ‘lapse_rate’]

As grid resolutions for the task and model, we provide an example code while fixing guess 

rate to 0.5 and lapse rate to 0.04 as described below. Especially for stimulus and threshold, 

users should define them within appropriate ranges for their tasks of interest.

import numpy as np

grid_design = {

    ‘stimulus’: np.linspace(20 * np.log10(.05), 20 * np.log10(400), 100)

}

grid_param = {

    ‘guess rate’: [0.5],

    ‘lapse rate’: [0.04],

    ‘threshold’: np.linspace(20 * np.log10(.1), 20 * np.log10(200), 100),

    ‘slope’: np.linspace(0, 10, 100)

}

Based on the task object, model object, and grids, adopy.tasks.psi provides an Engine class, 

called EnginePsi, pre-implemented for psychometric function estimation. The EnginePsi 

class not only provides an optimal design or randomly chosen design, but also computes 

a design using the staircase method. The staircase method is probably the most commonly 

used procedure in adaptive estimation of the psychometric function (e.g., Garcia-Perez, 

1998) in which stimulus intensity is adjusted by a fixed and pre-determined amount based 

on a participant’s response on the current stimulus. The following code initializes the engine 

and computes designs:

from adopy.tasks.psi import EnginePsi

engine = EnginePsi(model, grid_design, grid_param)

engine.get_design(‘optimal’) # Returns the optimal design.

engine.get_design(‘random’) # Returns a randomly chosen design.

engine.get_design(‘staircase’) # Returns a design using the staircase method.

where EnginePsi requires only three arguments (model, designs, and params) since the task 

is fixed to the psychometric function estimation.

The particular up/down scheme of the staircase method implemented in ‘EnginePsi’ is as 

follows5:

5For those interested, see https://www.psychopy.org/api/data.html for other implementations of staircase algorithms in PsychoPy 
(Peirce, 2007, 2009).
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xt + 1 =
xt − Δ if yt = 1
xt + 2Δ otherwise (if yt = 0) (6)

where Δ is a certain amount of change for every trial. EnginePsi has a property called d_step 

to compute Δ, which means the number of steps for an index on the design grid. In other 

words, the denser the design grid is, the smaller Δ becomes. Initially, d_step is set to 1 by 

default, but users can use a different value as described below:

engine.d_step # Returns 1.

engine.d_step = 3 # Update d_step to 3.

Having defined and initialized the required task, model, grids, and engine objects, we are 

now in a position to generate simulated binary responses. This is achieved by using the 

module scipy.stats.bernoulli. Here, the data-generating parameter values are set to guess_rate 

= 0.5, lapse_rate = 0.04, threshold = 20, and slope = 1.5:

from scipy.stats import bernoulli

def get_simulated_response(model, design):

    # Compute a probability to respond positively.

    p_obs = model.compute(stimulus=design[‘stimulus’], \

            guess_rate=0.5, lapse_rate=0.04, threshold=20, slope=1.5)

    # Sample a binary response using Bernoulli distribution.

    return bernoulli.rvs(p_obs)

Finally, the following example code runs 60 simulation trials:

num_trials = 60 # number of trials to simulate

design_type = ‘optimal’ # or ‘random’ or ‘staircase’

for i in range(num_trials):

    # Compute a design for the current trial

    design = engine.get_design(design_type)

    # Get a simulated response using the design

    response = get_simulated_response(model, design)

    # Update posterior in the engine

    engine.update(design, response)

    # Print the trial number and posterior means and standard deviations

    print(‘Trial’, i + 1, ‘−’, engine.post_mean, ‘/’, engine.post_sd)
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We conclude this section with a brief presentation of simulation results, comparing 

performance among three design conditions: ADO, staircase, and random (see Appendix 

B.1 for the details of the simulation setup). The simulation results are summarized in Figure 

6. As shown in Figure 6A, for all three conditions, the estimation of the threshold parameter 

α, as measured by root mean square error (RMSE), converges toward the ground truth, with 

ADO designs exhibiting clearly superior performance over staircase and random designs. 

As for the slope parameter β, the convergence is much slower (ADO and staircase) or 

even virtually zero (random). Essentially the same patterns of results are observed when 

performance is measured by the posterior standard deviation (Figure 6B). In short, the 

simulation demonstrates the advantage of using ADO designs in psychometric function 

estimation.

4.2 Delay discounting task

There exists a sizable literature on computational modeling of delay discounting (e.g., Green 

and Myerson, 2004; Van-DenBos and McClure, 2013; Cavagnaro et al., 2016). As described 

earlier in Section 3.5, preferential choices between two options, SS (smaller-sooner) and 

LL (larger-later), are made based on the subjective value of each option, which takes the 

following form:

V = R ⋅ D(t) (7)

where V is the value of an option, R and t are the amount of reward and delay of the option 

respectively, and D(t) is the discounting factor assumed to be a monotonically decreasing 

function of delay t.

Various models for the specific form of D(t) have been proposed and evaluated, including 

the ones below:

Hyperbolic: D(t) = 1
1 + kt

Exponential: D(t) = e−kt

Hyperboloid: D(t) = 1
(1 + kt)s

Constant Sensitivity: D(t) = e−(kt)s

(8)

where the parameter k is a discounting rate and the parameter s reflects the subjective, 

nonlinear scaling of time (Green and Myerson, 2004). Based on subjective values of options, 

it is assumed that preferential choices are made stochastically depending on the difference 

between the subjective values, according to Equation (3). In summary, the models for the 

delay discounting task assume at most three parameters with θ = (k, s, τ), and there are four 

design variables that can be optimized, i.e., d = (tSS,tLLRSS,RLL). The participant’s choice 

response on each trial is binary in y = 1 (LL option) or 0 (SS option).
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The module ‘adopy.tasks.dd’ included in the ADOpy package provides classes for the delay 

discounting task (see Table 1). TaskDD represents the DD task with four design variables 

(t_ss, t_ll, r_ss, and r_ll) with a binary choice response.

from adopy.tasks.dd import TaskDD

task = TaskDD()

task.designs # [‘t_ss’, ‘t_ll’, ‘r_ss’, ‘r_ll’]

task.responses # [0, 1]

In addition, the same module ‘adopy.tasks.dd’ includes six models (see Table 1): 

Exponential model (Samuelson, 1937), Hyperbolic model (Mazur, 1987), Hyperboloid 

model (Green and Myerson, 2004), Constant Sensitivity model (Ebert and Prelec, 2007), 

Quasi-Hyperbolic model (Laibson, 1997), and Double Exponential model (McClure et al., 

2007). Here, we demonstrate the Hyperbolic model which has two model parameters (k and 

tau) and computes the discounting factor as in Equation (8):

from adopy.tasks.dd import ModelHyp

model = ModelHyp()

model.params # [‘k’, ‘tau’]

A simulation experiment like that for Psychometric function estimation was carried out with 

the hyperbolic model, and the results from three designs (ADO, staircase, and random). 

See Appendix B.2 for the details of the simulation setup and the Python scripts used. 

The simulation results are presented in Figure 7. As the trial progresses, the discounting 

rate parameter k converges toward the ground truth for all three design conditions, with 

the swiftest (almost immediate) convergence with ADO. On the other hand, the inverse 

temperature parameter τ showed a much slower or even no convergence (staircase), probably 

due to the relatively small sample size (i.e., 42). In short, the simulation results, taken 

together, demonstrated the superiority of ADO designs over non-ADO designs.

4.3 Choice under risk and ambiguity task

The choice under risk and ambiguity (CRA) task (Levy et al., 2010) is designed to assess 

how individuals make decisions under two different types of uncertainty: risk and ambiguity. 

Example stimuli of the CRA task are shown in Figure 8.

The task involves preferential choice decisions in which the participant is asked to indicate 

a preference between two options: (1) winning either a fixed amount of reward denoted by 

RF with a probability of 0.5 or winning none otherwise; and (2) winning a varying amount 

of reward (RV) with a varying probability (pV) or winning none otherwise. Further, the 

variable option comes in two types: (a) risky type in which the winning probabilities are 

fully known to the participant; and (b) ambiguous type in which the winning probabilities 
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are only partially known to the participant. The level of ambiguity (AV) in the latter type 

is varied between 0 (no ambiguity and thus fully known) and 1 (total ambiguity and thus 

fully unknown). As a concrete example, the CRA task of Levy et al. (2010) employed the 

following values: RF = 5 (reference option); RV ∈ {5,9.5,18,34,65}, pV ∈ {0.13,0.25,0.38} 

and AV = 0 (variable options on risky trials); and finally, RV ∈ {5,9.5,18,34,65}, pV = 0.5 

and AV ∈ {0.25,0.5,0.75} (variable options on ambiguity trials).

The linear model (Levy et al., 2010) for the CRA task assumes that choices are based on 

subjective values of the two options. The subjective values are computed using the following 

form:

UF = 0.5 ⋅ (RF)α

UV = pV − β AV
2 ⋅ (RV )α (9)

where UF and UV are subjective values for fixed and variable options respectively, α is the 

risk attitude parameter, β is the ambiguity attitude parameter. RF and RV are the amounts of 

reward for fixed and variable options, AV and pV are the ambiguity level and the probability 

to win for a variable option. Both choices are made stochastically based on the difference 

between the subjective values according to the softmax choice rule:

P (V overF ) = 1
1 + exp[ − γ(UV − UF)] . (10)

where P(V over F) represents the probability of choosing the variable option over the fixed 

one, and the parameter γ represents the inverse temperature that captures the participant’s 

response consistency.

To summarize, the CRA model assumes three parameters, θ = (α, β, γ), of α (risk attitude), 

β (ambiguity attitude), and γ (response consistency). There are four design variables to be 

optimized: d = (RF,RV,AV,pV) where RF > 0, RV > 0, 0 < AV < 1, and 0 < pV < 1 is 

made up of RF (reward amount for fixed option), RV (reward amount for variable option), 

AV (ambiguity level) and pV (winning probability for variable option). The participant’s 

preferential choice on each trial is recorded in either y = 1 (variable option) or y = 0 (fixed 

option).

The module ‘adopy.tasks.cra’ in the ADOpy package provides classes for the choice under 

risk and ambiguity task (see Table 1). TaskCRA represents the CRA task with four design 

variables denoted by p_var (pV), a_var (AV), r_var (RV), and r_fix (RF), and a binary choice 

response.

from adopy.tasks.cra import TaskCRA

task = TaskCRA()

task.designs # [‘p_var’, ‘a_var’, ‘r_var’, ‘r_fix’]

task.responses # [0, 1]
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ADOpy currently implements two models of the CRA task: Linear model (Levy et al., 2010) 

and Exponential model (Hsu et al., 2005). For the linear model in Equation 9, users can 

define and initialize the model with ModelLinear as:

from adopy.tasks.cra import ModelLinear

model = ModelLinear()

model.params # [‘alpha’, ‘beta’, ‘gamma’]

Now, we briefly discuss results of simulated experiments using the linear model with 

three design conditions: ADO, fixed, and random design. The fixed design refers to those 

originally used by Levy et al. (2010). See Appendix B.3 for the details of the simulation 

setup and code. The results summarized in Figure 9 indicate that two parameters, α (risk 

attitude) and β (ambiguity attitude), converged to their respective ground truth most rapidly 

under the ADO condition. On the other hand, the inverse temperature parameter (γ) showed 

little, if any, convergence for any of the designs, probably due to the relatively small sample 

size (i.e., 60).

5 Integrating ADOpy with experiments

In this section we describe how to integrate ADOpy into a third-party Python package for 

conducting psychological experiments, such as PsychoPy (Peirce, 2007, 2009), OpenSesame 
(Mathôt et al., 2012), or Expyriment (Krause and Lindemann, 2014). Integration is 

accomplished following a two-step procedure described below.

First, users should create and initialize an ADOpy Engine object. This corresponds to the 

initialization step illustrated in Figure 3. Users can create their own task and model as 

described in Section 3 or use pre-implemented tasks and models in ADOpy (see Section 4). 

Remember that the number of design variables, model parameters, and the grid sizes affect 

the computation time, so users should ensure the appropriateness of their choice of grid 

sizes, for example, by running simulations as described in Section 3.6.

Second, users should integrate this code into the code for a running experiment. The 

interface between the two requires collecting observations from a participant using a 

computed optimal design and updating the engine on each trial with the collected response. 

‘run_trial(design)’ is an experimenter-created function for data collection. It takes as 

arguments the given design values on each trial, and then returns the participant’s response:

def run_trial(design):

    … # Collect a response from the participant using the given design

    return response # Return the response from a participant
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This function, ‘run_trial(design)’, can be used for both simulated and real data. Users can 

also run run_trial(design) within a for-loop to conduct an ADO experiment in multiple trials 

as shown below:

for trial in range(NUM_TRIAL):

    design = engine.get_design() # Design optimization

    response = run_trial(design) # Experiment

    engine.update(design, response) # Bayesian updating

Note that the three lines inside the for-loop correspond to the three steps in Figure 1.

In what follows, we elaborate and illustrate how to run ADOpy in the DD task, using a 

fully worked-out annotated Python script (Appendix C). Users new to ADO will find the 

PsychoPy program in the appendix without any modification of the code after installing 

ADOpy and PsychoPy. The program runs the DD task using optimal designs computed by 

ADOpy. A short description for the ADO-powered DD task is provided below, while the 

non-ADO version is available on the Github repository of ADOpy6.

To utilize ADO on the program, we first need to load the ADOpy classes (line 58–61), the 

DD task and the model of our choice (hyperbolic in this case). We could have chosen a 

different model or defined one by ourselves and used it:

58 # Import the basic Engine class of the ADOpy package and pre-implemented

59 # Task and Model classes for the delay discounting task.

60 from adopy import Engine

61 from adopy.tasks.dd import TaskDD, ModelHyp

To run the DD task, we define a function run_trial(design) (lines 250–288 in Appendix C) 

that conducts an experiment using a given design on a single trial. Then, for the initialization 

step, Task, Model and Engine objects should be initialized. As in Section 4.2, users can use 

the implemented task and models for the DD task (lines 329–357 in Appendix C).

329 # Create Task and Model for the delay discounting task.

330 task = TaskDD()

331 model = ModelHyp()

332

333 # Define a grid for 4 design variables of the delay discounting task:

334 #   ‘t_ss’, ‘t_ll’, ‘r_ss’, and ‘r_ll’.

335 # ‘t_ss’ and ‘r_ll’ are fixed to ‘right now’ (0) and $800.

336 # ‘t_ll’ can vary from 3 days (0.43) to 10 years (520).

337 # ‘r ss’ can vary from $12.5 to $787.5 with an increment of $12.5.

6 https://github.com/adopy/adopy/tree/master/examples 
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338 # All the delay values are converted in a weekly unit.

339 grid_design = {

340     ‘t_ss’: [0],

341     ‘t_ll’: [0.43, 0.714, 1, 2, 3, 4.3, 6.44, 8.6, 10.8, 12.9,

342                           17.2, 21.5, 26, 52, 104, 156, 260, 520],

343     ‘r_ss’: np.arange(12.5, 800, 12.5), # [12.5, 25, …, 787.5]

344     ‘r_ll’: [800]

345 }

346

347 # Define a grid for 2 model parameters of the hyperbolic model:

348 # ‘k’ and ‘tau’.

349 # ‘k’ is chosen as 50 grid points between 10^–5 and 1 in a log scale.

350 # ‘tau’ is chosen as 50 grid points between 0 and 5 in a linear scale.

351 grid_param = {

352     ‘k’: np.logspace(−5, 0, 50),

353     ‘tau’: np.linspace(0, 5, 50)

354 }

355

356 # Initialize the ADOpy engine with the task, model, and grids defined 

above.

357 engine = Engine(task, model, grid_design, grid_param)

Once the engine is created, the code to run the ADO-based version is actually simpler than 

the non-ADO version (lines 420–429 in Appendix C; see lines 435–460 for the non-ADO 

version on the Github repository). Using the Engine class of the ADOpy package, it finds the 

optimal design and updates itself from observation with a single line of code for each.

420 # Run the main task

421 for trial in range(n_trial):

422     # Get a design from the ADOpy Engine

423     design = engine.get_design()

424

425     # Run a trial using the design

426     is_ll_on_left, key_left, response, rt = run_trial(design)

427

428     # Update the engine

429     engine.update(design, response)

6 Conclusion

ADOpy is a toolbox for optimizing design selection on each trial in real time so as to 

maximize the informativeness and efficiency of data collection. The package implements 

Bayesian adaptive parameter estimation for three behavioral tasks: psychometric function 

estimation, delay discounting, and choice under risk and ambiguity. Each task can be run 
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in an ADO-based mode or a non-ADO-based mode (random, fixed, staircase depending on 

the task). Default parameter and design values can be used, or the user can customize these 

settings, including the number of trials, the parameter ranges, and the grid resolution (i.e., 

number of grid points on each parameter/design dimension). Furthermore, in addition to 

conducting an actual experiment with participants, the package can be used to run parameter 

recovery simulations to assess ADO’s performance. Is it likely to be superior (i.e., more 

precise and efficient) to random and other (staircase, fixed) designs? By performing a 

comparison as described in the preceding section, a question like this one can be answered. 

Causes for unsatisfactory performance can be evaluated, such as altering grid resolution or 

the number of trials. More advanced users can conduct Bayesian sensitivity analysis on the 

choice of priors.

The need to tune ADO to a given experimental setup might make readers leery of the 

methodology. Shouldn’t it be more robust and work flawlessly in any setting without such 

fussing? Like any machine-learning method, use of ADO requires parameter tuning to 

maximize performance. ADOpy’s simulation mode is an easy and convenient way to explore 

how changes in the design and grid resolution alter ADO’s performance. Experimenter-

informed decisions about the properties of the design space will result in the greatest gains 

in an ADO experiment.

Use of ADOpy is not limited to the models that come with the package. Users can define 

their own model using the Model class. Specification of the model’s probability density (or 

mass) function is all that is required along with the parameters, including any changes to 

the design space, as mentioned above. For example, it would be straightforward to create 

ADO-based experiments for other behavioral tasks, such as the balloon analog risk task 

(BART: Lejuez et al., 2002; Wallsten et al., 2005) for assessing risk-taking propensity.

The ADOpy package, as currently implemented, has several limitations. ADOpy cannot 

optimize the selection of design variables that are not expressed in the probability density 

(or mass) function of the model. For example, if a researcher is interested in learning how 

degree of distractibility (low or high level of background noise) impacts decision making, 

unless this construct were factored into the model as a design variable, ADOpy would not 

optimize on this dimension. This limitation does not prevent ADO from being used by 

the researcher; it just means that the experiment will not be optimized on that stimulus 

dimension. Another limitation that users must be sensitive to is the memory demands of 

the algorithm. As discussed earlier, the algorithm creates a pre-computed look-up table 

of all possible discretized combinations of the outcome variable, the parameters, and the 

design variables. For example, for 100 grid points defined on each outcome variable, three 

parameters, and three design variables, the total memory demand necessary to store the 

look-up table would be 1014 bytes (= 1001+3+3), i.e., 100 terabytes, assuming one byte 

allotted for storing each data point. This is clearly well beyond what most desktops or 

servers can handle. In short, as the dimensionality of the ADO problem increases linearly, 

the memory demand of the grid-based ADO algorithm grows exponentially, sooner or later 

hitting a hardware limitation. Grid-based ADO does not scale up well, technically speaking. 

The good news is that there is a scalable algorithm that does not tax memory. It is known 
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as sequential Monte Carlo (SMC) or particle filter in machine learning (Doucet et al., 2001; 

Andrieu et al., 2003; Cappe et al., 2007).

In conclusion, the increasing use of computational methods for analyzing and modeling 

data is improving how science is practiced. ADOPy is a novel and promising tool that has 

the potential to improve the quality of inference in experiments. This is accomplished by 

exploiting the predictive precision of computational modeling in conjunction with the power 

of statistical and machine learning algorithms to perform better inference. It is our hope that 

ADOpy will empower more researchers to harness this technology, one outcome of which 

should be more informative and efficient experiments that collectively accelerate advances in 

psychological science and beyond.
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Appendices

A Defining Grids for Delay Discounting Task

As the first example, suppose that the delay discounting task has two constraints on its 

designs: the delay of SS option should be smaller than that of LL option (t_ss < t_ll), and 

the amount of reward of SS option should be smaller than that of LL option (r_ss < r_ll). 

Considering seven delays (i.e., right now, two weeks, a month, six months, a year, three 

years, and ten years) and 79 possible rewards (from $12.5 to $787.5 with an increment of 

$12.5), users can make a grid for design variables by executing the following lines:

 1 # Initialize the possible values of delay and reward variables

 2 

 3 # Delays in a weekly unit

 4 tval = [0, 2, 4.3, 26, 52, 104, 520]

 5

 6 # [12.5, 25, … , 775, 787.5] as reward values

 7 rval = np.arange(12.5, 800, 12.5)

 8

 9 # Make a 2d matrix with rows of [t_ss, t_ll]

10 t_joint = []

11 for t_ss in tval:

12     for t_ll in tval:

13         if t_ss < t_ll:

14             t_joint.append([t_ss, t_ll])

15 t_joint = np.array(t_joint)

16
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17 # Make a 2d matrix with rows of [r_ss, r_ll]

18 r_joint = []

19 for r_ss in rval:

20     for r_ll in rval:

21         if r_ss < r_ll:

22             r_joint.append([r_ss, r_ll])

23 r_joint = np.array(r_joint)

24

25 grid_design = {(‘t_ss’, ‘t_ll’): t_joint, (‘r_ss’, ‘r_ll’): r_joint}

As an another example, if users want to use the amount of reward of the SS option (r\_ss) 

and the delay of the LL option (t\_ll) while fixing t\_ss to 0 and r\_ll to $800, define a grid as 

shown below:

 1 grid_design = {

 2     # t_ss: [Now]

 3     ‘t_ss’: [0],

 4     # t_ll: [2 weeks, 1 month, 6 months,

 5     # 1 year, 2 years, 10 years] in a weekly unit

 6     ‘t_ll’: [2, 4.3, 26, 52, 104, 520],

 7     # r_ss: [$12.5, $25, … $775, $787.5]

 8     ‘r_ss’: np.arange (12.5, 800, 12.5),

 9     # r_ll: $800

10     ‘r_ll’: [800]

11     }

For model parameters, users should define a grid object containing grid points on a proper 

range for each parameter. For example, a grid for the hyperbolic model (Mazur, 1987) with 

two parameters (k and τ) can be defined as follows:

1 grid_param = {

2     # k: 20 points on [10^−5, 1] in a log scale

3     ‘k’: np.logspace(−5, 0, 20),

4     # tau: 20 points on [0, 5] in a linear scale

5     ‘tau’: np.linspace(0, 5, 20)

6 }

B ADOpy Simulations

B.1 Psychometric function estimation

Simulations for psychometric function estimation were conducted for a simple 2-alternative 

forced choice (2AFC) task with one design variable. With an assumption that the 

psychometric function has a logistic function shape, we ran 1,000 simulations for three 
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designs: (a) ADO design, (b) staircase design, and (c) randomly chosen design. For 

each simulation, responses were simulated for a total of 60 trials, using Task2AFC and 

ModelLogistic in the module adopy.tasks.psi.

Simulated responses were generated with true parameter values of threshold α = 20, slope 

β = 1.5, guess rate γ = 0.5, and lapse rate δ = 0.04. The simulation for psychometric 

function estimation used 100 grid points for the design variable (stimulus) and two model 

parameters (threshold and slope) each, and the guess and lapse rates were fixed to 0.5 and 

0.04, respectively. The grid settings were given as follows:

Design variable

• stimulus: 100 grid points from 20log100.05 to 20log10400 in a log scale.

Model parameters

• threshold: 100 grid points from 20log100.1 to 20log10200 in a log scale.

• slope: 100 grid points from 0 to 10 in a linear scale.

• guess_rate: fixed to 0.5.

• lapse_rate: fixed to 0.04.

B.2 Delay discounting task

Assuming the hyperbolic model, simulations for the delay discounting (DD) task were 

conducted using TaskDD and ModelHyp in the module adopy.tasks.dd. We compared three 

designs: (a) ADO design, (b) staircase design, and (c) randomly chosen design. The staircase 

method runs 6 trials for each delay to estimate the discounting rate. While tSS is fixed to 0, it 

starts with RSS of $400 and RLL of $800. If a participant chooses the SS option, the staircase 

method increases RSS by 50%; if the participant chooses the LL option, it decreases RSS by 

50%. After repeating this 5 times, it proceeds to another delay value.

One thousand independent simulations were performed for each design condition, each for a 

total of 108 trials. Simulated data were generated using the true parameter values of k = 0.12 

and τ = 1.5. Grid resolutions used for the simulations were as follows:

Design variables

• t_ss: fixed to 0, which means ‘right now’.

• t_ll: 18 delays (3 days, 5 days, 1 week, 2 weeks, 3 weeks, 1 month, 6 weeks, 2 

months, 10 weeks, 3 months, 4 months, 5 months, 6 months, 1 year, 2 years, 3 

years, 5 years, 10 years) in a unit of a week.

• r_ss: 63 points from $12.5 to $787.5 with an increment of $12.5.

• r_ll: fixed to $800.

Model parameters

• k (discounting rate): 20 grid points from 10−5 to 1 in a log scale.
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• tau (inverse temperature): 20 grid points from 0 to 5 in a linear scale.

B.3 Choice under risk and ambiguity task

In simulating this CRA task, we assume the linear model and considered three methods for 

experimental designs in the simulation study: (a) ADO design, (b) ‘fixed’ design of Levy et 

al. (2010), and (c) random design.

The fixed design was set as follow. The the reward of the fixed option (RF) to 5 and the 

rewards of the variable option (RV) to 5, 9.5, 18, 34, 65. In risky trials, ambiguity (AV) is 

set to 0 but the probability of winning for the variable option (PV) is chosen among 0.13, 

0.25, and 0.38. On the other hand, in ambiguous trials, the probability pV is set to 0.5 but the 

ambiguity AV is chosen from 0.25, 0.5, and 0.75. The total number of combinations is 30: 

15 of which are for risky trials, and the rest of which are for ambiguous trials.

Grid settings for the four design variables and the three model parameters were set as 

follows:

Design variables

• p_var and a_var in risky trials: there are 9 probabilities to win for p_var (0.05, 

0.10, 0.15, 0.20, 0.25, 0.30, 0.35, 0.40, 0.45), and a_var was fixed to 0.

• p_var and a_var in ambiguous trials: there are 6 levels of ambiguity for a_var 

(0.125, 0.25, 0.375, 0.5, 0.625, 0.75), and p_var was fixed to 0.5.

• r_var and r_fix: based on 10 reward values (10, 15, 21, 31, 45, 66, 97, 141, 206, 

300), rewards pairs such that r_var > r_fix were used.

Model parameters

• alpha (risk attitude parameter): 11 grid points from 0 to 3 in a linear scale.

• beta (ambiguity attitude parameter): 11 grid points from −3 to 3 in a linear scale.

• gamma (inverse temperature): 11 grid points from 0 to 5 in a linear scale.

One thousand independent simulations were performed for each design condition, each for a 

total of 60 trials, with 30 risky and 30 ambiguous trials. Simulated data were generated using 

the true parameter values of α = 0.66, β = 0.67, and γ = 3.5 based on Levy et al. (2010).

C Fully Worked-Out Python Script for Delay Discounting Task

  1 #!/usr/bin/env python3

  2 """

  3 Delay discounting task implementation using ADO designs

  4 =======================================================

  5

  6 This is the PsychoPy-based implementation of the delay discounting task 

Yang et al. Page 28

Behav Res Methods. Author manuscript; available in PMC 2022 July 29.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



using

  7 ADOpy. Delay discounting (DD) task is one of the widely used 

psychological

  8 tasks that measures individual differences in temporal impulsivity

  9 (e.g., Green & Myerson, 2004; Vincent, 2016). In a typical DD task,

 10 a participant is asked to indicate his/her preference between two 

options,

 11 a smaller-sooner (SS) option or stimulus (e.g., 8 dollars now) and

 12 a larger-later (LL) option (e.g., 50 dollars in a month).

 13 The DD task contains four design variables: ‘t_ss’ (delay for SS option),

 14 ‘t_ll’ (delay for LL option), ‘r_ss’ (reward for SS option), and ‘r_ll’

 15 (reward for LL option). By the definition, ‘t_ss’ should be sooner than 

‘t_ll’,

 16 while ‘r_ss’ should be smaller than ‘r_ll’.

 17 To make the task design simpler, ‘t_ss’ and ‘r_ll’ are fixed to 0 (right 

now)

 18 and $800, respectively; only two design variables (‘r_ss’ and ‘t_ll’) 

vary

 19 throughout this implementation.

 20

 21 In each trial, given two options, a participant chooses one;

 22 the response is coded as ‘0’ for choosing SS option and ‘1’ for choosing 

LL

 23 option. In this implementation, the hyperbolic model is used to estimate 

the

 24 discounting rate underlying participants’ behaviors. The model contains 

two

 25 parameters: ‘k’ (discounting rate) and ‘tau’ (choice sensitivity).

 26

 27 Using ADOpy, this code utilizes ADO designs that maximizes information 

gain

 28 for estimating these model parameters. Also, using grid-based algorithm,

 29 ADOpy provides the mean and standard deviation of the posterior 

distribution

 30 for each parameter in every trial. Trial-by-trial information throughout

 31 the task is be saved to the subdirectory ‘task’ of the current working

 32 directory.

 33

 34 Prerequisites

 35 -------------

 36 * Python 3.5 or above

 37 * Numpy

 38 * Pandas

 39 * PsychoPy
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 40 * Piglet 1.3.2

 41 * ADOpy 0.3.1

 42 """

 43

 44 

#############################################################################

##

 45 # Load depandancies

 46 

#############################################################################

##

 47

 48 # To handle paths for files and directories

 49 from pathlib import Path

 50

 51 # Fundamental packages for handling vectors, matrices, and dataframes

 52 import numpy as np

 53 import pandas as pd

 54

 55 # An open-source Python package for experiments in neuroscience & 

psychology

 56 from psychopy import core, visual, event, data, gui

 57

 58 # Import the basic Engine class of the ADOpy package and pre-implemented

 59 # Task and Model classes for the delay discounting task.

 60 from adopy import Engine

 61 from adopy.tasks.dd import TaskDD, ModelHyp

 62

 63 

#############################################################################

##

 64 # Global variables

 65 

#############################################################################

##

 66

 67 # Path to save the output data. Currently set to the subdirectory ‘data’ 

of the

 68 # current working directory.

 69 PATH_DATA = Path(‘./data’)

 70

 71 # Variables for size and position of an option box in which a reward and 

a

 72 # delay are shown. BOX_W means the width of a box; BOX_H means the 
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height of

 73 # a box; DIST_BTWN means the distance between two boxes.

 74 BOX_W = 6

 75 BOX_H = 6

 76 DIST_BTWN = 8

 77

 78 # Configurations for text. TEXT_FONT means a font to use on text; 

TEXT_SIZE

 79 # means the size of text.

 80 TEXT_FONT = ‘Arial’

 81 TEXT_SIZE = 2

 82

 83 # Keys for response. KEYS_LEFT and KEYS_RIGHT contains a list of keys to

 84 # indicate that a participant wants to choose the left or right option.

 85 # KEYS_CONT represents a list of keys to continue to the next screen.

 86 KEYS_LEFT = [‘left’, ‘z’, ‘f’]

 87 KEYS_RIGHT = [‘right’, ‘slash’, ‘j’]

 88 KEYS_CONT = [‘space’]

 89

 90 # Instruction strings. Each group of strings is show on a separate 

screen.

 91 INSTRUCTION = [

 92     # 0 - intro

 93     """

 94 This task is the delay discounting task.

 95

 96 On every trial, two options will be presented on the screen.

 97

 98 Each option has a possible reward you can earn and

 99

100 a delay to obtain the reward.

101

102

103 Press <space> to proceed.

104 """,

105 # 1 - intro

106 """

107 You should choose what you prefer between two options

108

109 by pressing <f> (left option) or <j> (right option).

110

111

112 Press <space> to proceed.

113 """,
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114 # 2 - intro

115 """

116 Let’s do some practices to check if you understand the task.

117

118

119 Press <space> to start practices.

120 """,

121 ’# 3 - intermission

122 """

123 Great job. Now, Let’s get into the main task.

124

125 Press <space> to start a main game.

126 """,

127 ’# 4 - last

128 """

129 You completed all the game.

130

131 Thanks for your participation.

132

133

134 Press <space> to end.

135 """,

136 ]

137

138

139 

#############################################################################

##

140 # Functions for the delay discounting task

141 

#############################################################################

##

142

143

144 def convert_delay_to_str(delay):

145     """Convert a delay value in a weekly unit into a human-readable 

string."""

146     tbl_conv = {

147         0: ‘Now’,

148         0.43: ‘In 3 days’,

149         0.714: ‘In 5 days’,

150         1: ‘In 1 week’,

151         2: ‘In 2 weeks’,

152         3: ‘In 3 weeks’,
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153         4.3: ‘In 1 month’,

154         6.44: ‘In 6 weeks’,

155         8.6: ‘In 2 months’,

156         10.8: ’In 10 weeks’,

157         12.9: ‘In 3 months’,

158         17.2: ‘In 4 months’,

159         21.5: ‘In 5 months’,

160         26: ‘In 6 months’,

161         52: ‘In 1 year’,

162         104: ‘In 2 years’,

163         156: ‘In 3 years’,

164         260: ‘In 5 years’,

165         520: ‘In 10 years’

166     }

167     mv, ms = None, None

168     for (v, s) in tbl_conv.items():

169         if mv is None or np.square(delay - mv) > np.square(delay - v):

170             mv, ms = v, s

171     return ms

172

173

174 def show_instruction(inst):

175     """

176     Show a given instruction text to the screen and wait until the

177     participant presses any key in KEYS_CONT.

178     """

179     global window

180

181     text = visual.TextStim(window, inst, font=TEXT_FONT,

182                            pos=(0, 0), bold=True, height=0.7, 

wrapWidth=30)

183     text.draw()

184     window.flip()

185

186     _ = event.waitKeys(keyList=KEYS_CONT)

187

188

189 def show_countdown():

190     """Count to three before starting the main task."""

191     global window

192

193     text1 = visual.TextStim(window, text=‘1’, pos=(0., 0.), height=2)

194     text2 = visual.TextStim(window, text=‘2’, pos=(0., 0.), height=2)

195     text3 = visual.TextStim(window, text=‘3’, pos=(0., 0.), height=2)
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196

197     text3.draw()

198     window.flip()

199     core.wait(1)

200

201     text2.draw()

202     window.flip()

203     core.wait(1)

204

205     text1.draw()

206     window.flip()

207     core.wait(1)

208

209

210 def draw_option(delay, reward, direction, chosen=False):

211     """Draw an option with a given delay and reward value."""

212     global window

213

214     pos_x_center = direction * DIST_BTWN

215     pos_x_left = pos_x_center - BOX_W

216     pos_x_right = pos_x_center + BOX_W

217     pos_y_top = BOX_H / 2

218     pos_y_bottom = -BOX_H / 2

219

220     fill_color = ‘darkgreen’ if chosen else None

221

222     # Show the option box

223     box = visual.ShapeStim(window,

224                            lineWidth=8,

225                            lineColor=‘white’,

226                            fillColor=fill_color,

227                            vertices=((pos_x_left, pos_y_top),

228                                      (pos_x_right, pos_y_top),

229                                      (pos_x_right, pos_y_bottom),

230                                      (pos_x_left, pos_y_bottom)))

231     box.draw()

232

233     # Show the reward

234     text_a = visual.TextStim(window,

235                              ‘${:,.0f}’.format(reward),

236                              font=TEXT_FONT,

237                              pos=(pos_x_center, 1))

238     text_a.size = TEXT_SIZE

239     text_a.draw()
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240

241     # Show the delay

242     text_d = visual.TextStim(window,

243                              convert_delay_to_str(delay),

244                              font=TEXT_FONT,

245                              pos=(pos_x_center, −1))

246     text_d.size = TEXT_SIZE

247     text_d.draw()

248

249    

250 def run_trial(design):

251     """ Run one trial for the delay discounting task using PsychoPy."""

252     # Use the PsychoPy window object defined in a global scope.

253     global window

254

255     # Direction: −1 (Left - LL / Right - SS) or

256     #            +1 (Left - SS / Right - LL)

257     direction = np.random.randint(0, 2) * 2 – 1 # Return −1 or 1

258     is_ll_on_left = int(direction == −1)

259

260     # Draw SS and LL options using the predefined function ‘draw_option’.

261     draw_option(design[‘t_ss’], design[‘r_ss’], −1 * direction)

262     draw_option(design[‘t_ll’], design[‘r_ll’], 1 * direction)

263     window.flip()

264

265     # Wait until the participant responds and get the response time.

266     timer = core.Clock()

267     keys = event.waitKeys(keyList=KEYS_LEFT + KEYS_RIGHT)

268     rt = timer.getTime()

269

270     # Check if the pressed key is for the left option.

271     key_left = int(keys[0] in KEYS_LEFT)

272

273     # Check if the obtained response is for SS option (0) or LL option 

(1).

274     response = int((key_left and is_ll_on_left) or

275                                 (not key_left and not is_ll_on_left)) # 

LL option

276

277     # Draw two options while highlighting the chosen one.

278     draw_option(design[‘t_ss’], design[‘r_ss’], −1 * direction, response 

== 0)

279     draw_option (design [‘t_ll’], design [‘ r_ll’], 1 * direction, 

response == 1)
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280     window.flip()

281     core.wait(1)

282

283     # Show an empty screen for one second.

284     window.flip()

285     core.wait(1)

286

287     return is_ll_on_left, key_left, response, rt

288

289

290 

#############################################################################

##

291 # PsychoPy configurations

292 

#############################################################################

##

293

294 # Show an information dialog for task settings. You can set default 

values for

295 # number of practices or trials in the main task in the ‘info’ object.

296 info = {

297     ‘Number of practices’: 5,

298     ‘Number of trials’: 20,

299 }

300 dialog = gui.DlgFromDict(info, title=‘Task settings’)

301 if not dialog.OK:

302     core.quit()

303

304 # Process the given information from the dialog.

305 n_trial = int(info[‘Number of trials’])

306 n_prac = int(info[‘Number of practices’])

307

308 # Timestamp for the current task session, e.g. 202001011200.

309 timestamp = data.getDateStr(‘%Y%m%d%H%M’)

310 

311 # Make a filename for the output data.

312 filename_output = ‘ddt_{}.csv’.format(timestamp)

313

314 # Create the directory to save output data and store the path as 

path_output

315 PATH_DATA.mkdir(exist_ok=True)

316 path_output = PATH_DATA / filename_output

317

Yang et al. Page 36

Behav Res Methods. Author manuscript; available in PMC 2022 July 29.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



318 # Open a PsychoPy window to show the task.

319 window = visual.Window(size=[1440, 900], units=‘deg’, 

monitor=‘testMonitor’,

320                        color=‘#333’, screen=0, allowGUI=True, 

fullscr=False)

321

322 # Assign the escape key for a shutdown of the task

323 event.globalKeys.add(key=‘escape’, func=core.quit, name=‘shutdown’)

324

325 

#############################################################################

##

326 # ADOpy Initialization

327 

#############################################################################

##

328

329 # Create Task and Model for the delay discounting task.

330 task = TaskDD()

331 model = ModelHyp()

332

333 # Define a grid for 4 design variables of the delay discounting task:

334 #   ‘t_ss’, ‘t_ll’, ‘r_ss’, and ‘r_ll’.

335 # ‘t_ss’ and ‘r_ll’ are fixed to ‘right now’ (0) and $800.

336 # ‘t_ll’ can vary from 3 days (0.43) to 10 years (520).

337 # ‘r_ss’ can vary from $12.5 to $787.5 with an increment of $12.5.

338 # All the delay values are converted in a weekly unit.

339 grid_design = {

340     ‘t_ss’: [0],

341     ‘t_ll’: [0.43, 0.714, 1, 2, 3, 4.3, 6.44, 8.6, 10.8, 12.9,

342                            17.2, 21.5, 26, 52, 104, 156, 260, 520],

343     ‘r_ss’: np.arange(12.5, 800, 12.5), # [12.5, 25, …, 787.5]

344     ‘r_ll’: [800]

345 }

346

347 # Define a grid for 2 model parameters of the hyperbolic model:

348 # ‘k’ and ‘tau’.

349 # ‘k’ is chosen as 50 grid points between 10^-5 and 1 in a log scale.

350 # ‘tau’ is chosen as 50 grid points between 0 and 5 in a linear scale.

351 grid_param = {

352     ‘k’: np.logspace(−5, 0, 50),

353     ‘tau’: np.linspace (0, 5, 50)

354 }

355
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356 # Initialize the ADOpy engine with the task, model, and grids defined 

above.

357 engine = Engine(task, model, grid_design, grid_param)

358

359 

#############################################################################

##

360 # Main codes

361 

#############################################################################

##

362

363 # Make an empty DataFrame ‘df_data’ to store trial-by-trial information,

364 # with given column labels as the ‘columns’ object.

365 columns = [

366     ‘block’, ‘trial’,

367     ‘t_ss’, ‘t_ll’, ‘r_ss’, ‘r_ll’,

368     ‘is_ll_on_left’, ‘key_left’, ‘response’, ‘rt’,

369     ‘mean_k’, ‘mean_tau’

370 ]

371 df_data = pd.DataFrame(None, columns=columns)

372

373 

#----------------------------------------------------------------------------

--

374 # Practice block (using randomly chosen designs)

375 

#----------------------------------------------------------------------------

--

376

377 # Show instruction screens (0 - 2)

378 show_instruction(INSTRUCTION[0])

379 show_instruction(INSTRUCTION[1])

380 show_instruction(INSTRUCTION[2])

381

382 # Show countdowns for the practice block

383 show_countdown()

384

385 # Run practices

386 for trial in range(n_prac):

387     # Get a randomly chosen design for the practice block

388     design = engine.get_design(‘random’)

389

390     # Run a trial using the design
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391     is_ll_on_left, key_left, response, rt = run_trial(design)

392

393     # Append the current trial into the DataFrame

394     df_data = df_data.append(pd.Series({

395         ‘block’: ‘prac’,

396         ‘trial’: trial + 1,

397         ‘t_ss’: design[‘t_ss’],

398         ‘t_ll’: design[‘t_ll’],

399         ‘r_ss’: design[‘r_ss’],

400         ‘r_ll’: design[‘r_ll’],

401         ‘is_ll_on_left’: is_ll_on_left,

402         ‘key_left’: key_left,

403         ‘response’: response,

404         ‘rt’: rt,

405     }), ignore_index=True)

406

407     # Save the current data into a file

408     df_data.to_csv(path_output, index=False)

409

410 

#----------------------------------------------------------------------------

--

411 # Main block (using ADO designs)

412 

#----------------------------------------------------------------------------

--

413

414 # Show an instruction screen (3)

415 show_instruction(INSTRUCTION[3])

416

417 # Show countdowns for the main block

418 show_countdown()

419

420 # Run the main task

421 for trial in range(n_trial):

422     # Get a design from the ADOpy Engine

423     design = engine.get_design()

424

425     # Run a trial using the design

426     is_ll_on_left, key_left, response, rt = run_trial(design)

427

428     # Update the engine

429     engine.update(design, response)

430
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431     # Append the current trial into the DataFrame

432     df_data = df_data.append(pd.Series({

433         ‘block’: ‘main’,

434         ‘trial’: trial + 1,

435         ‘t_ss’: design[‘t_ss’],

436         ‘t_ll’: design[‘t_ll’],

437         ‘r_ss’: design[‘r_ss’],

438         ‘r_ll’: design[‘r_ll’],

439         ‘is_ll_on_left’: is_ll_on_left,

440         ‘key_left’: key_left,

441         ‘response’: response,

442         ‘rt’: rt,

443         ‘mean_k’: engine.post_mean[0],

444         ‘mean_tau’: engine.post_mean[1],

445         ‘sd_k’: engine.post_sd[0],

446         ‘sd_tau’: engine.post_sd[1],

447     }), ignore_index=True)

448

449     # Save the current data in a file

450     df_data.to_csv(path_output, index=False)

451

452 # Show the last instruction screen (4)

453 show_instruction(INSTRUCTION[4])

454

455 # Close the PsychoPy window

456 window.close ()
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Fig. 1: 
Schematic diagram illustrating the three iterative steps of adaptive design optimization 

(ADO).
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Fig. 2: 
Three steps of a grid-based ADO algorithm with an initial step for pre-computation.
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Fig. 3: 
ADOpy workflow. Each function call above is described in greater detail in Section 3.5. 

Note that ADOpy itself is soley the engine for stimulus selection and does not include code 

to conduct an experiment (e.g., present the stimuli or collect responses, save the data); the 

user must program these steps.
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Fig. 4: 
Illustrated scheme of the delay discounting (DD) task. On each trial, a participant is asked to 

choose between two options, a smaller-sooner (SS) option on the left and a larger-later (LL) 

option on the right. The dotted lines and arrows indicate the design variables of the task to 

be optimized.
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Fig. 5: 
The psychometric function and its parameters defined in Equation (4).
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Fig. 6: 
Comparison of ADO, staircase, and random designs in the simulation of psychometric 

function estimation. Simulations were conducted using the logistic model with parameter 

values of threshold α = 20, slope β = 1.5, guess rate γ = 0.5, and lapse rate δ = 0.04. 

The three designed are compared with root mean squared errors (RMSE; Panel A) and 

standard deviations of the posterior distribution (Panel B). RMSE represents the discrepancy 

between true and estimated parameters in that the lower RMSE, the better estimation 

performance. Standard deviations of the posterior distribution indicate the certainty of a 

belief on the distribution for model parameters, i.e., the lower the standard deviations is, the 

higher certainty on the model parameters. Each curve represents an average across 1,000 

independent simulation runs.
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Fig. 7: 
Comparison of ADO, staircase, and random designs in the simulation of the delay 

discounting task. Simulations were conducted using the hyperbolic model with parameter 

values of k = 0.12 and τ = 1.5. The three designs are compared with root mean squared 

errors (RMSE; Panel A) and standard deviations of the posterior distribution (Panel B). Each 

curve represents an average across 1,000 independent simulation runs.

Yang et al. Page 50

Behav Res Methods. Author manuscript; available in PMC 2022 July 29.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 8: 
Illustrated scheme of the choice under risk and ambiguity (CRA) task. The participant 

chooses one of two options on either a risky trial (left) or an ambiguous trial (right). A risky 

option has the amount of reward and a probability of winning the reward indicated by the 

upper, brown proportion of the box. For an ambiguous option, the probability to win is not 

explicitly shown but partially blocked by a gray box. On each trial, a risk or ambiguous 

option is always paired with a fixed (reference) option whose probability of winning the 

reward is set to 0.5. .
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Fig. 9: 
Comparison of ADO, fixed, and random designs in the simulation of the choice under 

risk and ambiguity task. The fixed design was pre-determined according to Levy et al. 

(2010). Simulations were conducted using the linear model with parameter values of α = 

0.66, β = 0.67, and γ = 3.5. Three designed are compared with root mean squared errors 

(RMSE; Panel A) and standard deviations of the posterior distribution (Panel B). Each curve 

represents an average across 1,000 independent simulation runs.

Yang et al. Page 52

Behav Res Methods. Author manuscript; available in PMC 2022 July 29.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Yang et al. Page 53

Table 1:

Tasks and models implemented in the ADOpy package (alphabetized order). For detailed information, see the 

documentation website for ADOpy (https://github.com/adopy/adopy).

Module
Task Model

Engine
Class Designs Class Model name Parameters

Choice under 
risk & ambiguity 
(adopy.tasks.cra)

TaskCRA p_var, a_var, 
r_var, r_fix

ModelLinear Linear
alpha, beta, gamma EngineCRA

ModelExp Exponential

Delay discounting 
(adopy.tasks.dd) TaskDD t_ss, t_ll, r_ss, 

r_ll

ModelExp Exponential tau, r

EngineDD

ModelHyp Hyperbolic tau, k

ModelHPB Hyperboloid tau, k, s

ModelCOS Constant 
Sensitivity tau, r, s

ModelQH Quasi-
Hyperbolic tau, beta, delta

ModelDE Double 
Exponential tau, omega, r, s

Psychometric 
function estimation 

(adopy.tasks.psi)
Task2AFC stimulus

ModelLogistic Logistic function

guess rate, lapse_rate, 
threshold, slope EnginePsiModelWeibull Log-Weibull 

CDF

ModelProbit Normal CDF
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