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Heme is an oxygen carrier and a cofactor of both industrial enzymes and food additives.
The intracellular level of free heme is low, which limits the synthesis of heme proteins.
Therefore, increasing heme synthesis allows an increased production of heme proteins.
Using the genome-scale metabolic model (GEM) Yeast8 for the yeast Saccharomyces
cerevisiae, we identified fluxes potentially important to heme synthesis. With this
model, in silico simulations highlighted 84 gene targets for balancing biomass and
increasing heme production. Of those identified, 76 genes were individually deleted or
overexpressed in experiments. Empirically, 40 genes individually increased heme pro-
duction (up to threefold). Heme was increased by modifying target genes, which not
only included the genes involved in heme biosynthesis, but also those involved in
glycolysis, pyruvate, Fe-S clusters, glycine, and succinyl-coenzyme A (CoA) metabolism.
Next, we developed an algorithmic method for predicting an optimal combination of
these genes by using the enzyme-constrained extension of the Yeast8 model, ecYeast8.
The computationally identified combination for enhanced heme production was evalu-
ated using the heme ligand-binding biosensor (Heme-LBB). The positive targets were
combined using CRISPR-Cas9 in the yeast strain (IMX581-HEM15-HEM14-HEM3-
Δshm1-HEM2-Δhmx1-FET4-Δgcv2-HEM1-Δgcv1-HEM13), which produces 70-fold-
higher levels of intracellular heme.

genome-scale modeling j heme j Saccharomyces cerevisiae j metabolic engineering j
heme ligand-binding biosensor

Heme is a cofactor of essential enzymes for aerobic life within the three domains of life
(archaea, bacteria, and eukarya). The heme molecule consists of a porphyrin ring that
surrounds an iron atom, which alternates between its ferric and ferrous states in the
oxidation and reduction reactions. Heme-containing proteins (HCPs) have several
functions. For example, HCPs transport electrons in the respiratory chain in mitochon-
dria and are crucial for energy production, transport molecular oxygen in globin pro-
teins (e.g., hemoglobin in humans), and protect cells from oxidative damage (1–4).
The heme biosynthetic pathway is conserved and tightly regulated to supply heme at
levels to meet cellular demands. The cotranslational incorporation of heme into heme
proteins governs their folding process (5, 6). The intracellular availability of heme is
crucial for the production of heme proteins, which denature and lose their function
without heme.
Because of their biological importance, heme and HCPs are a central topic in molec-

ular cell biology, with basic research occurring together with applications in medicine
and technology. The production of heme and heme proteins has been a focus of
research in microbial metabolic engineering. For example, research on blood substitutes
focuses on human hemoglobin (7, 8), and plant-derived hemoglobin provides vegetar-
ian protein (artificial meat with a lower carbon footprint) (9). Heme was used to
improve charging of lithium batteries (10) and in the bioremediation of sulfite waste
(11). Cytochromes and their new mutant forms catalyze novel chemical reactions with
silicon (12) and were evolved to perform novel chemical reactions (13). The heterolo-
gous production of heme proteins is, however, challenging due to the limited amount
of free heme and the complexity of the metabolic network in the cell.
While a heme-biosynthesis pathway is conserved in nature, the precursor

5-aminolevulinic acid (5-ALA) is synthesized distinctly in different organisms. In the
C4 pathway, the precursor 5-ALA is produced from glycine and from succinyl-
coenzyme A (CoA) (the C4 intermediate of the tricarboxylic acid [TCA] cycle) in yeast,
birds, mammals, and purple nonsulfur photosynthetic bacteria. In contrast, in the C5
pathway, the precursor 5-ALA is produced from alpha-ketoglutarate (the C5 intermedi-
ate of the TCA cycle) in algae, plants, and bacteria such as Escherichia coli (14).
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In E. coli, heme production has been increased by metabolic
engineering of the pathways for 5-ALA synthesis, both native
(C5) and heterologous (C4). The metabolic engineering studies
using the C4 pathway increased heme production by overex-
pression of the Rhodobacter sphaeroides hemA gene (encoding
ALA synthase), which produces the 5-ALA precursor; by over-
expressing the native coaA gene (encoding pantothenate kinase),
which produces CoA; and by overexpression of genes for heme
biosynthesis. This engineering strategy yielded 3.3 μmol/L (15)
and 9.1 μmol/gcell (16) of heme. By overexpressing genes for
heme production via the C5 pathway and by deleting genes of
competing pathways, 51.5 mg/L total heme was produced (17).
In the same strain, metabolic engineering of a heme-secretory
pathway and feed-control optimization of substrates in fed-
batch cultivation increased the production of total heme to
239 mg/L (17).
In the unicellular eukaryote and established yeast cell-factory

Saccharomyces cerevisiae, heme is synthesized through the C4
pathway (14). To improve the production of heme and heme
proteins in S. cerevisiae, metabolic engineering studies have
overexpressed genes encoding the known rate-limiting enzymes
for heme biosynthesis (18–21) and have engineered oxygen
sensing involved in heme biosynthesis regulation (22). To
increase the production of the first intermediate of the heme
pathway, 5-ALA, the HEM1 and ACO2 genes were overex-
pressed (23). However, the contribution of overall metabolism
to heme production has not been analyzed.
The impressive development of heme production in E. coli,

however, has had some limitations, such as weak tolerance to
acidic pH and phage sensitivity. As E. coli produces endotoxins,
it is difficult to use E. coli directly in food production. In con-
trast, the S. cerevisiae yeast has greater tolerance for acidic pH
and has been used for food production for millennia.
The S. cerevisiae has been analyzed with genome-scale metabolic

models (GEMs) (24). For S. cerevisiae, GEM analysis has guided
the construction of strains with optimized yields of industrial mol-
ecules (e.g., bioethanol, sesquiterpenes, vanillin, 2,3-butanediol,
fumaric acid, succinate, amorphadiene, 3-hydroxypropionate,
β-farnesene, and dihydroxyacetone phosphate [DHAP]) (24, 25).
The measurement of metabolic compounds in screening has facili-
tated the development of new biosensors that can be used for
novel applications in other organisms (26).
For S. cerevisiae, the consensus GEM (version 7.6) informed

the engineering of strains with increased production of acetyl-
CoA and malonyl-CoA in 2019 (27). The updated consensus
Yeast8 model was followed by ecYeast8, which has additional

constraints on the metabolic fluxes, representing enzymatic
abundances. Enzyme-constrained GEMs improved the predic-
tion of specific phenotypes (28, 29).

Studies of heme production have explored the modification of
genes and their expression, improving our knowledge of particu-
lar pathways. Using metabolic GEMs to maximize the produc-
tion of heme is the focus of this study. We used the 2019
enzyme-constrained ecYeast8 (29) to identify metabolic fluxes
that are important for heme biosynthesis. Our systems-biology
analysis and modification of the gene expression guided the opti-
mization of a heme strain with 58 genes in silico. The sequential
strain engineering increased intracellular heme production
70-fold. In optimization of sequentially accumulated gene modi-
fications, we developed a heme biosensor, which detects heme
availability and the incorporation of heme into hemoglobin pro-
tein. This heme ligand-binding biosensor (Heme-LBB), like ear-
lier genetically encoded ratiometric heme sensors (30), is likely
useful for heme detection in other organisms.

Our results are striking in terms of the dramatic increase in
heme production and as a showcase of model-assisted synthetic
biology. More importantly, our case study is one of the most
rigorous in terms of evaluation of model-predicted targets for
the widely used cell factory S. cerevisiae. As several of the
model-predicted targets resulted in improved production, our
paper represents a significant milestone in terms of a wider use
of model-based design of yeast cell factories.

Results

Yeast8 Simulations of Metabolic Fluxes Impacting Heme
Production. As an initial screening, we quantified the fluxes
impacting heme production using flux balance analysis (FBA)
tools available for S. cerevisiae at the start of our study. Using
Yeast8 (29), we computed the theoretical biomass yield on glucose
to be 0.1168 gDW/g for batch cultures, which is very close to the
experimentally validated value of our strain (0.122 gDW/g). We
followed a published approach (27, 31), which is the adaptation
of the flux scanning based on enforced objective flux (FSEOF)
method (32). To simulate physiologically relevant conditions and
analyze heme production at suboptimal growth yields, we ran sev-
eral simulations on glucose as the single carbon source, varying
the biomass yield from half of the experimental yield to twice the
value (Fig. 1). In each simulation, the objective function was to
maximize heme production, computing for each biomass-yield
condition an optimum solution. In these simulation-generated
optimal solutions, the number of active fluxes was reduced by

A B

Fig. 1. The Yeast8 genome-scale model was used to find fluxes important for heme production to enable the construction of a heme yeast cell factory.
(A) The structure of heme b, which is protoporphyrin IX with ferrous iron. (B) Simulations of heme production using S. cerevisiae Yeast8.0.1 model.
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parsimonious FBA (33). From these simulations, scores were
computed for each metabolic reaction in the network to detect
which fluxes were consistently either increasing or decreasing as
the biomass requirements decreased, an established strategy (27,
31, 32). Finally, using known reaction-gene associations, we con-
verted those flux scores to gene scores, which indicate whether a
gene has a monotonic behavior—that is, the flux scores selected
genes that are consistently upregulated (score > 1), downregulated
(0 < score < 1), or completely silenced (score = 0) (Fig. 1). This
scoring predicted that 84 genes had a monotonic effect, including
62 genes being overexpressed and 8 genes deleted. Additionally,
14 genes were downregulated (among them, 6 were essential or
required additional growth supplements when deleted: OLE1,
FAS1, FAS2, RNR2, CDS1, and CHO1) (Dataset S1).

Validation of Individual Gene Targets Predicted by Yeast8.
The gene targets predicted by Yeast8 were experimentally tested
for their impact on heme production by modifying genes one
at a time and by measuring intracellular heme concentration.
As gene downregulation requires more fine tuning (e.g., by pro-
moter modifications or gene silencing approaches), we tested
the effect of gene deletions first by using the deletion strains
from the yeast knockout (YKO) collection (34). We analyzed
16 S. cerevisiae BY4741 strains carrying single gene deletions:
8 strains from the downregulation group (Δrnr1, Δrnr3, Δrnr4,
Δcho2, Δopi3, Δpsd1, Δgpt2, Δale1) and 8 deletion strains from
the deletion group (Δshm1, Δslc1, Δpro1, Δpro2, Δsfc1, Δyhm2,
Δidh1, Δidh2) (Fig. 2A and Dataset S1). The Δrnr3 strain grew
poorly and was excluded from further experimental analysis.
The heme production of 15 strains was measured in two bio-
logical replicates after 24 h of cultivation in yeast extract-
peptone-dextrose (YPD) medium (Fig. 2A).
Deletion of five out of the seven tested genes in the downre-

gulation group (OPI3 [encoding methylene-fatty-acyl-phospho-
lipid synthase], CHO2 [encoding phosphatidylethanolamine
methyltransferase], RNR1 [encoding major isoform of large
subunit of ribonucleotide-diphosphate reductase], RNR4
[encoding ribonucleotide-diphosphate reductase small subunit],
and ALE1) validated the model predictions and increased heme
production up to 70% compared to the BY4741 control strain
(Fig. 2A). The deletion of two genes, GPT2 (encoding glycerol-
3-phosphate/DHAP sn-1 acyltransferase) and PSD1 (encoding
phosphatidylserine decarboxylase of the mitochondrial inner
membrane), decreased heme production ∼10 to 50% compared
to the BY4741 control strain (Fig. 2A).
Deletion of three out of the eight genes (identified to be

deleted by Yeast8) increased heme production (Fig. 2A). The
deletion of SHM1 (encoding mitochondrial serine hydroxylme-
thyltransferase) resulted in a ∼11.5% increase in heme produc-
tion, the deletion of the ALE1 gene (encoding broad-specificity
lysophospholipid acyltransferase) resulted in a ∼13% increase,
and the deletion of SFC1 (encoding mitochondrial succinate-
fumarate transporter) resulted only in a ∼4% increase (Fig.
2A). On the other hand, the deletion of SLC1 (encoding 1-
acyl-sn-glycerol-3-phosphate acyltransferase) and YHM2
(encoding citrate and oxoglutarate carrier protein), did not
result in a significant increase in heme production compared
with BY4741 (Fig. 2A and Dataset S1). Deletions of PRO1
(encoding gamma-glutamyl kinase), PRO2 (gamma-glutamyl
phosphate reductase), and IDH1 and IDH2 (encoding subunits
of mitochondrial NAD [+]-dependent isocitrate dehydroge-
nase) genes decreased heme production, contrary to the model
predictions (Fig. 2A and Dataset S1). Both PRO1 and PRO2
gene deletions resulted in proline auxotrophy, and the resulting

strains grew poorly in YPD. In summary, among the 15 tested
gene candidates identified to be deleted or downregulated,
8 genes increased heme production.

We evaluated the overexpression of 61 of the 62 model gene
targets (we could not amplify the HMG2 gene) in the S. cerevisiae
CEN.PK.113–11c strain background (Fig. 2B). For this purpose,
we cloned the open reading frames (ORFs) of the 61 genes into
the centromeric expression plasmid pRS316+prTEF1-terADH1
under control of strong constitutive promoter TEF1. Two trans-
formants with expression cassettes for each of the 61 model target
genes (predicted to be overexpressed) were used to evaluate heme
production (Fig. 2B and Dataset S1). The highest heme produc-
tion (∼300% average increase) was observed upon the overex-
pression of the HEM13 (encoding coproporphyrinogen III
oxidase) heme biosynthetic gene (Fig. 2B). Under normal condi-
tions, the HEM13 is transcriptionally repressed by Rox1 (22, 35),
and expressing it under the promoter TEF1 will increase the pro-
tein abundance independent of the oxygen and heme levels.
Overexpressing other heme biosynthetic genes—such as HEM14
(encoding protoporphyrinogen oxidase), HEM2 (encoding ami-
nolevulinate dehydratase), HEM15 (encoding ferrochelatase),
HEM3 (encoding porphobilinogen deaminase), and HEM12
(encoding uroporphyrinogen decarboxylase)—also increased
heme production from ∼20 to 70%, respectively (Fig. 2 B
and C). The HEM2, HEM3, and HEM12 genes have been
reported to be rate-limiting steps in heme biosynthesis (18–20).
Overexpression of HEM1 (encoding 5-aminolevulinate synthase)
did not improve heme production at 48 h of fermentation (Fig.
2B), and the overexpression of HEM4 (encoding uroporphyrino-
gen III synthase) resulted in substantially reduced yeast growth.
We speculate this was caused by the accumulation of uropor-
phyrinogen III, which is toxic when oxidized (36). In addition to
heme-biosynthetic genes, the overexpression of single genes
involved in iron homeostasis and Fe-S cluster proteins (YAH1
and ARH1), glutamate biosynthesis (GLT1), pyruvate metabolism
and its transport (PYC1, PYC2, MPC1, MPC2, MPC3), fuma-
rate reductase (FRD1), malate dehydrogenase (MDH2), glycolysis
(PFK1, PFK2, TDH1, TDH2, TDH3), amino acids, iron, pro-
tons, and water transport (AGC1, FET4, FET3, PMA1, PMA2,
AQY1, and AQY2) increased heme production up to 40% com-
pared to the control strain carrying the empty vector pRS316
(Fig. 2 B and C). In summary, among the 61 overexpression
targets tested, 32 increased heme production (Fig. 2C), which is a
52% success rate of model predictions.

Refining the Simulations of Heme Production Fluxes Using
ecYeast8. We used the enzyme-constrained version of the Yeast8
model (ecYeast8) to refine model simulations and to evaluate the
combinatorial effects of the gene targets (Fig. 3A and SI
Appendix). The ecYeast8 model accounts for the activity of meta-
bolic enzymes as constraints on the reactions in the network.
These constraints are limited by the total amount of available pro-
tein mass, yielding a drastic reduction of the variability of the met-
abolic fluxes and notable improvements on phenotype predictions
for S. cerevisiae’s metabolism (28, 29). Simulations for optimiza-
tion of heme production using ecYeast8 were performed following
the same procedure as with the Yeast8 model; in this case, candi-
date gene targets for downregulation (0 < gene score ≤ 1) were
discarded. Additionally, as enzyme-constrained models enable a
direct assessment of the effects of enzyme activity perturbations,
the enzyme usage variability analysis and mechanistic simulations
for the individual gene modifications were implemented for heme
production (Fig. 3B and SI Appendix). This allowed the prediction
of 80 gene targets (Dataset S2) by ecYeast8. Comparing the target
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lists of both models (Datasets S1 and S2), 40 genes were found to
overlap between Yeast8 and ecYeast8, 44 genes were detected
exclusively by Yeast8, and 40 genes were detected exclusively by
ecYeast8 (Fig. 3C). The genes exclusive to ecYeast8 were heme

A synthase (COX15), nucleoside triphosphate pyrophosphohydro-
lase (HAM1), pentose phosphate pathway (TKL1, RPE1), alcohol
dehydrogenase (ADH1), glucose uptake (YRL446W, HXK1,
HXK2, GLK1, EMI2), isoprenoids and sterol biosynthesis

A

D

B C

Fig. 2. Experimental validation of Yeast8 gene targets. (A) Heme production (fold-change) of 15 gene KO strains from the YKO collection (BY4741 strain
background). BY4741 strain served as a control to normalize data (shown in green). Two replicates were used in the analysis. Heme was extracted from
eight OD600 of cells. The gene targets where heme production was higher than the control are highlighted in red. The gene targets where heme production
was lower than the control are highlighted in blue. (B) Heme production (fold-change) of strains carrying 61 model genes overexpressed under control of
the TEF1 promoter using a centromeric plasmid in CEN.PK113-11C strain background. Heme was extracted from eight OD600 of cells. CEN.PK113-11C carry-
ing empty vector served as a control to normalize data (shown in green). Two replicates were used in the analysis. (C) Heme production of strains with
gene modifications that improved heme production the most. Average value of two replicates was used. Heme was extracted from eight OD600 of cells.
(D) Schematic overview of metabolism with Yeast8 targets, which experimentally improved heme production.
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(ERG12), pyruvate metabolism (PDA1, PDB1, PDC1, PDX1,
LAT1, MAE1), TCA cycle (CIT1, MDH1, FUM1), glyoxylate
cycle (ICL1), glycine biosynthesis (GLY1, AGX1), glycine cleavage
system (GCV1, GCV2, GCV3), fatty acids synthesis (FAA1,
FAA4), L-lysine degradation (KGD1, KGD2), L-threonine metab-
olism (HOM2, HOM3, HOM6, THR1, THR4), phosphatase
(YOR283W), polyphosphate metabolism (PPN1), formate dehy-
drogenase (FDH1), carbonic anhydrase (NCE103), and aromatic
amino acids synthesis (ARO9) (Fig. 3C). Interestingly, among
genes common to both Yeast8 and ecYeast8, PRO1 was predicted
to be downregulated by Yeast8, whereas it was predicted to be
overexpressed by the ecYeast8 simulations. Experimental valida-
tion showed that deletion of this gene reduced the heme produc-
tion drastically (Fig. 2A).
The small portion of positive Yeast8 genes (including OPI3,

CHO2, SLC1, PMA2, MPC3, MDH2, GLT1, FRD1, AQY1,
AQY2, ALE1, SFC1, and AGC1) were not detected by
ecYeast8. However, these genes proved to improve heme pro-
duction by the engineering genes one at a time (Fig. 2). These
data can also be used for further improvement of the ecYeast8
model predictions.

Predicting Compatible Gene Combinations for Improved Heme
Production. The list of genetic targets in Dataset S2 represents
individual strategies for enhancing heme production, and we next
used ecYeast8 to assess the viability of combining these strategies
in silico. First, metabolic function redundancy was assessed by
identification of identical genes in a genes-metabolites network
(i.e., a bipartite graph that connects a metabolite with a gene if
they are both involved in the same reaction). This allowed classi-
fication of gene targets in groups, where each gene group contains
genes that are linked to the same metabolites according to the
model. This grouping allowed a further reduction of the total

number of candidates by discarding all genes that did not fit into
any of the following categories: 1) gene target candidates with a
unique metabolic function; 2) genes encoding for enzymes with
the highest specific activity in a given group of redundant candi-
dates for overexpression, due to their lower impact on the total
protein burden for the cell; and 3) all gene candidates for deletion
whose enzymes did not carry any flux in a reference flux distribu-
tion for optimized heme production (SI Appendix). Overall, this
filtering procedure reduced the number of candidates from 80 to
71 genes.

We ranked the remaining modification targets according to
the categories described above. Within each category, the fold-
change in heme production was predicted for each individual
target. An optimal mutant strain was then constructed in silico
by implementing the remaining modifications in a sequential
and cumulative way. Gene modifications that decreased the
optimal production yield when compared to the previous itera-
tion were discarded. This allowed us to obtain a list of
“compatible” 58 gene target modifications that, according to
the ecYeast8 model simulations, should yield a viable strain
with enhanced heme production capabilities if they are com-
bined (Dataset S3).

Constructing Compatible Gene Combinations for Improved
Heme Production. We used the CRISPR-Cas9 toolbox devel-
oped for S. cerevisiae (37) to combine positive gene targets,
which were predicted by the ecYeast8 model to yield higher pro-
duction of intracellular heme, resulting in a viable strain. From
our list of 58 compatible genes (Dataset S3), we overexpressed
the HEM13 gene first, as this gene had the maximum experi-
mental effect (Fig. 2). The choice of the sequential targets to be
combined with HEM13 gene was evaluated experimentally. If
the individual gene modification did not increase the output,

A

C

B

44 4040

Fig. 3. The ecYeast8 model was used to find new targets for improved heme production. (A) Following use of the Yeast8, simulation using the enzyme-
constrained model ecYeast8 was performed for increased heme production. (B) Following the adapted FSEOF approach (19, 22, 23), the enzyme usage vari-
ability analysis and mechanistic genetic manipulations for the individual gene modifications were used to refine the heme target list. (C) In simulations, the
Yeast8 model identified 84 targets, and the ecYeast8 model identified 80 targets. Of the gene targets identified by the two models, 40 genes overlapped
between Yeast8 and ecYeast8; 44 genes were identified by only the Yeast8 model, and 40 genes were identified by only the ecYeast8 model.
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then it was declared a failure at that time (but kept as a possible
modification for later experimentation with a new gene combi-
nation). Plasmids expressing single guide RNAs (sgRNAs) target-
ing different genomic loci were constructed (using the pMEL10
plasmid vector as a base; ref. 37) and used to integrate the
expression cassettes of gene targets (as described in SI Appendix).
The sequential gene modifications, which lead to sequential
increases in heme production, are presented in Fig. 4A. The
HEM13 gene was expressed from centromeric plasmid under
promoter TEF1 of S. cerevisiae (Fig. 4A and SI Appendix, Fig.
S1). The effects of introduced strain modifications were verified
both by heme production measurement and by using Heme-
LBB (Fig. 5 and SI Appendix, Figs. S9–S12). The Heme-LBB is
a fusion protein of green fluorescent protein (GFP) and hemo-
globin alpha-gamma subunits (SI Appendix) and was expressed
under the copper-inducible promoter CUP1 of S. cerevisiae. The
biosensor fluorescence was designed to reflect the intracellular

heme amount. Hemoglobin is a HCP, and heme incorporation
during its translation determines correct folding (5, 6). Thus, we
inferred that greater intracellular heme is associated with an
increase in correctly folded GFP-hemoglobin protein that can be
measured by the biosensor’s activity (Fig. 5A). As the Heme-
LBB is a new biosensor, it was used in parallel with direct heme
measurement to study its response.

In the CEN.PK.113–11c strain background, the overexpres-
sion of the HEM13 gene resulted in an average ∼threefold
increase in heme production (Fig. 2C). In contrast, the HEM13
overexpression in IMX581 strain resulted in only 1.5-fold-higher
heme production (SI Appendix, Fig. S1). Next, we integrated five
heme biosynthetic genes (HEM15, HEM14, HEM3, HEM2,
HEM1) into different genome loci step by step using CRISPR-
Cas9, and this resulted in increased heme production (SI
Appendix, Figs. S1 and S2). Our initial test using Heme-LBB
with 5-ALA (which is the product of Hem1) in the medium
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Fig. 4. CRISPR-Cas9 genome engineering for increased heme production. (A) The IMX581 strain carrying CRISPR-Cas9 gene integrated in the genome was
used to carry the combinatorial engineering of heme gene targets deduced by Yeast8 and ecYeast8 genome-scale model. The gene integrations and dele-
tions were performed using the gRNA constructs targeting different genome loci. The gene HEM13 was overexpressed from the centromeric plasmid. The
HEM13 expression cassette was integrated into the genome in the final strain. Absolute heme (mg/L) was extracted from the entire biomass of the strains.
(B) Heme production, CDW, and glucose consumption in different strains at 24, 48, and 72 h of cultivation in buffered SD ura- or SD with 2% glucose,
100 mM glycine supplemented with 0.1 mM Fe3+. Four biological replicates (transformants) were used in the experiment. Error bars represent the SD.
Commercial hemin was used to calibrate data. Strains: IMX581 carrying an empty vector; IMX581/HEM15 HEM14 HEM3 Δshm1 HEM2 Δhmx1 FET4 Δgcv2 HEM1
carrying the HEM13 centromeric plasmid; IMX581/HEM15 HEM14 HEM3 Δshm1 HEM2 Δhmx1 FET4 Δgcv2 HEM1 Δgcv1 carrying HEM13 expression cassette inte-
grated into genome. Statistical analysis was performed using one-way ANOVA (*P ≤ 0.02741, **P ≤ 0.00594, ****P ≤ 0). (C) The culture, cells, and cell
extracts (obtained with oxalic acid treatment) of engineered strain IMX581/HEM15 HEM14 HEM3 Δshm1 HEM2 Δhmx1 FET4 Δgcv2 HEM1 Δgcv1 HEM13 had a red
color. Increasing the glycine amount from 100 to 300 mM resulted in a further increase in heme production. Statistical analysis was performed using one-
way ANOVA (****P ≤ 0.00007). (D) Spectral analysis of yeast extracts (obtained with oxalic acid treatment) shows the presence of the Soret peak (at 400 nm)
characteristic to heme in IMX581/HEM15 HEM14 HEM3 Δshm1 HEM2 Δhmx1 FET4 Δgcv2 HEM1 Δgcv1 HEM13 strain. Hemin (2.5, 10, 20, and 100 μM) spectra
were used in comparison.
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showed a response in the IMX581 strain carrying the HEM15
gene expression cassette but no response in the control strain (SI
Appendix, Fig. S14A). On the other hand, the biosensor activity
increased with the engineered model targets that increase heme
production (SI Appendix, Figs. S9, S11, S12, and S14B). The
deletion of the SHM1 gene combined with overexpression of
heme genes (HEM15, HEM14, HEM3) resulted in a strain pro-
ducing ∼fivefold more heme than the IMX581 control (SI
Appendix, Fig. S2). The overexpression of ACH1 did not result in
improvement of heme production (SI Appendix, Fig. S3). Addi-
tional deletion of FAA4, FDH1, and YLR446w resulted only in a
small improvement of heme production (SI Appendix, Figs. S4
and S5). The deletion of GCV2 improved heme production in
combination with only some genes (SI Appendix, Figs. S2, S4,
and S7). The gene encoding the heme oxygenase (HMX1), which
is responsible for heme degradation (38), was the integration
locus we used for expression cassettes of the FET4, ADH1, and
ARH1 genes. The overexpression of FET4 and deletion of
HMX1 was a better combination for heme improvement than
overexpression of either ADH1 or ARH1 and deletion of HMX1
(SI Appendix, Figs. S6 and S11). Further deletions of the GCV2
and GCV1 genes and integration of the HEM1 and HEM13 genes
substantially improved heme production, resulting in the strain
turning red (Fig. 4C) and the highest GFP fluorescence of the
heme biosensor (Fig. 5 and SI Appendix, Fig. S12). Further evalua-
tion of this production strain (IMX581 HEM15 HEM14 HEM3
Δshm1 HEM2 Δhmx1 FET4 Δgcv2 HEM1 Δgcv1 HEM13) using
direct heme extraction and fluorescence measurement showed that
it produced 53.5 mg heme per liter of the culture at 24 h of culti-
vation, which was 35.6 times higher than that of the initial strain,
IMX581 (Fig. 4B). When normalized by the cell dry weight
(CDW) (Fig. 4B), the constructed strain produced 70-fold more
heme when compared to the initial strain. When the heme was
extracted from the same amount of biomass, the production strain
(IMX581 HEM15 HEM14 HEM3 Δshm1 HEM2 Δhmx1 FET4

Δgcv2 HEM1 Δgcv1 HEM13) contained 74.4 times more intracel-
lular heme at 72 h of cultivation compared to the control strain,
IMX581 (SI Appendix, Fig. S15). The fluorescence of the biosensor
protein in the constructed strain was also the highest and was
∼20-fold higher than that of initial strain IMX581 (Fig. 5 and SI
Appendix, Fig. S12). The best-performing strain also accumulated
less biomass and consumed less glucose (Fig. 4B). Its growth rate
was reduced by 40% (Fig. 4B and SI Appendix, Fig. S13), and its
heme titer was 35-fold greater (Fig. 4B).

To test the possibility of a further increase in heme produc-
tion, we studied heme produced in the IMX581 strain with
genotype HEM15 HEM14 HEM3 Δshm1 HEM2 Δhmx1 FET4
Δgcv2 HEM1 Δgcv1 HEM13 when cultured with elevated
amounts of the glycine, the substate of Hem1 (Fig. 4C). As
shown in Fig. 4C, the cell extracts of cultures grown on the
medium supplemented with 200 or 300 mM glycine had a 25 or
20% greater heme, respectively. This was also accompanied with
a darker red color of the yeast extracts (Fig. 4C). While both
media with 200 or 300 mM glycine resulted in significantly
higher heme production than the medium with 100 mM glycine
(ANOVA, ****P ≤ 0.00007), the difference in heme production
between cultures grown in media with 200 or 300 mM glycine
was not significant (ANOVA, P ≤ 0.19484) (Fig. 4C). Unlike
the control strain, the extracts of the production strain displayed
a characteristic of heme Soret peak (at 400 nm) similarly to
hemin, which was used as standard (Fig. 4D). Future studies
should optimize heme production using glycine in fed-batch bio-
reactors and introduce the remaining gene modifications deduced
by the model to improve heme production further.

Discussion

Heme is a cofactor of heme proteins and enzymes crucial for aero-
bic cell physiology (1). Free heme, heme proteins, and heme
enzymes have been used in emerging technologies, such as flavoring

A

B

Fig. 5. Heme biosensor in engineered strains. (A) Heme-LBB is a fusion construct of GFP (highlighted in green) and hemoglobin (Hb, highlighted in orange).
Heme (highlighted in red) is cotranslationally incorporated into the hemoglobin part of the biosensor polypeptide and promotes its correct folding. Heme-
less biosensor molecules are misfolded and subjected to degradation. GFP-Hb fusion bound with heme is active and fluorescent. An increase in heme
supply by the strain engineering will subsequently increase the number of correctly folded Heme-LBB molecules and, therefore, increase the strain’s fluores-
cence. (B) Yield of Heme-LBB fluorescence per biomass with sequential heme-modeling targets engineered. Genes modified: 1: HEM15; 2: HEM15, HEM14; 3:
HEM15, HEM14, HEM3; 4: HEM15, HEM14, HEM3, Δshm1; 5: HEM15, HEM14, HEM3, Δshm1, HEM2; 7: HEM15, HEM14, HEM3, Δshm1, HEM2, Δhmx1, FET4; 8:
IMX581, HEM15, HEM14, HEM3, Δshm1, HEM2, Δhmx1, FET4, Δgcv2; 9: HEM15, HEM14, HEM3, Δshm1, HEM2, Δhmx1, FET4, Δgcv2, HEM1; 11: HEM15, HEM14, HEM3,
Δshm1, HEM2, Δhmx1, FET4, Δgcv2, HEM1, Δgcv1, HEM13. Quantile regression with nondecreasing shape constraint (49) was used to estimate the biosensor
response. To calculate the yield, the fluorescence of the Heme-LBB and the growth of each strain was monitored using a BioLector.
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agents for artificial meat (39), blood substitutes (40), lithium-air
batteries (10), and recently discovered chemical reactions (12, 13).
High levels of intracellular heme are toxic to cells. Cytosolic heme
is between 20 and 40 nM. Mitochondria tolerate higher concentra-
tions of heme, roughly 30 μM (30). Higher levels of heme increase
the production of hemoglobin and of P450 enzymes, which is
apparently because the heme group insertion is essential for the
proper folding and conformational stability of heme proteins (5, 6,
19, 41, 42). On the other hand, the overexpression of HCPs
depletes the cellular heme pool and stresses the cell (18).
Recent advances in the GEM of S. cerevisiae (27–29) facili-

tate genome-scale identification of metabolic fluxes active in
heme production, which can then be optimized to increase
heme production. Linear and quadratic programming are
needed for computing optimal, basic, feasible solutions and
optimal interior solutions. Solving such problems is usually
beyond the scope of humans.
Like E. coli, the yeast S. cerevisiae has GEMs of proven

research supported by international communities of researchers
(29, 43–45). In our study, to increase the cellular heme pool in
the yeast S. cerevisiae, we used a metabolic modeling approach
on the genome scale to maximize heme production by genetic
modifications with in silico predictions and in vivo confir-
mation. Using FBA with Yeast8 and then enzymatically con-
strained ecYeast8 models (27, 29), we identified 84 gene as
candidates to increase heme production. Our modeling sug-
gested overexpressing 62 genes, downregulating 14 genes, and
deleting 8 genes.
In the experimental phase of the study, several strategies

were used. The strong constitutive promoter TEF1 was used
for overexpression of candidate genes. For the deletion and
downregulation of genes, we used mutants from a collection of
YKOs. Our one-gene-at-a-time experiments increased heme
production by many interventions: strengthening glycolysis;
improving the transport of pyruvate into mitochondria;
improving the flow of acetyl-CoA into TCA cycle; overexpress-
ing genes of the TCA cycle; modifying glycine-serine metabo-
lism; and improving the transport of iron, water, and amino
acids.
Then, additional modeling was performed to optimize com-

binations of gene modifications. Building on previous
approaches to the prediction of gene overexpression targets
(32, 46, 47), our study developed a procedure to identify some
gene combinations that are compatible with the specified set of
growth rates. With optimization approaches, increasing the flux
for a reaction (or fluxes for reactions) allows other fluxes to
change unless additional constraints are introduced to fix their
values. FBA approaches have had difficulty accounting for, for
example, protein burden, potential inhibitions by reaction
products, and regulatory feedback loops.
In the first round of simulations with Yeast8, we identified

genes that individually influence heme production. In the
second round with ecYeast8 (with enzyme constraints), we
developed in silico a viable mutant strain with improved heme
production that had accumulated many positive modifications,
successively added after having increased heme production
above the previous maximum. In our model, we blocked the
enzyme usage reactions for deletion targets, and for the overex-
pression targets, we doubled the enzyme usage. In laboratory
experiments, the identified target combination was then engi-
neered using CRISPR-Cas9. Our constraint-based model and
our algorithm produced a list of 58 compatible genes. Thereaf-
ter, our implementation of changes sequentially chose the larg-
est increase predicted by the model. If the individual gene

modification did not increase the output, then it was declared a
failure at that time (but kept as a possible modification for later
experimentation). The first deletion of the GCV2 gene did not
increase output; at a later stage (after having introduced
successful modifications), GCV2 reappeared as a gene with
maximum predicted increase, and it was (per our method) rein-
troduced, this time successfully. Increased heme production
was positively and strongly associated with an increased activity
of the newly developed Heme-LBB, as expected; the predicted
increase in heme availability improves the cotranslational incor-
poration into hemoglobin. The Heme-LBB response to
increased heme productivity was found to be dose dependent
and sigmoidal, which is typical for biosensors. The developed
biosensor provided the opportunity to measure heme in vivo
without the need to extract heme for measurements. The bio-
sensor activity in the constructed strains also assessed the
expression of heme protein, which is useful for future work on
the production of heme proteins using these strains.

With linear programming algorithms, our approach gener-
ated very interesting findings, which were not noticed previ-
ously in the literature. For example, our model found that
heme biosynthesis is tightly coupled to central carbon metabo-
lism with 80 genes, whose expression affects the heme produc-
tion. Also, unexpectedly, the model implied that improved
heme production could be achieved by reducing the lipid and
deoxyribonucleotide triphosphates (dNTPs) biosynthesis and
by increasing the activity of pentose phosphate pathway.

Our enzyme-constrained GEMs enabled us to develop a yeast
strain with 70-fold more intracellular heme compared to the con-
trol strain when normalized per biomass. Our engineered strain
produced 53.5 mg/L heme. Zhao et al. (17) achieved the intracel-
lular production of 51.5 mg/L in E. coli, which is comparable with
our yeast strain producing 53.5 mg/L total heme. Improving heme
output by an order of magnitude in our strain required the simul-
taneous modification of 11 genes, which were selected through
GEM simulation and laboratory experimentation. Our strain over-
expressed the heme-biosynthetic genes HEM15, HEM14, HEM3,
HEM2, HEM1, and HEM13, and it also overexpressed the low-
affinity Fe (II) transporter of the plasma-membrane gene (FET4).
In addition, we deleted the mitochondrial serine hydroxymethyl-
transferase gene (SHM1), the heme oxygenase gene (HMX1), and
the two genes encoding subunits of the mitochondrial glycine
decarboxylase complex (GCV1 and GCV2). The constructed strain
with 11 genetic modifications can be further engineered with the
58 genetic modifications predicted to be beneficial. However, the
introduction of numerous genetic modifications in one strain risks
off-target mutations, and the 11 implemented modifications
already increased heme production by 70 times.

Materials and Methods

All the materials and methods are detailed in SI Appendix. These include prelim-
inary target selection using Yeast8; reference flux distribution using ecYeast8;
gene target selection using ecYeast8; identification of an optimal combination of
targets using ecYeast8; media and growth conditions; genome engineering;
determination of glucose concentration; CDW analysis; determination of heme
concentration; and heme biosensor. Briefly, the Yeast8 metabolic model of
S. cerevisiae was used to identify preliminary gene targets using FBA. Then, the
ecYeast8 allowed the incorporation of enzyme constraints and informed the
selection of gene targets. Intracellular heme was extracted with oxalic acid (18).
For the cell dry weight (CDW), cells were collected on 0.45 μm cellulose-acetate
filter paper (Satorius Biolabs). We developed the Heme-HBB as a synthetic fusion
protein (consisting of α-globin, γ-globin, and GFP) to detect heme in vivo, vali-
dating its increasing response experimentally. The Heme-HBB construct was
expressed under the control of the copper-inducible promoter CUP1.
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Statistical Analysis. The statistical programs R (48) and Minitab 18.1 were
used to analyze the data. The biosensor response was studied with quantile
regression with a nondecreasing shape constraint (49, 50).

Data Availability. All the necessary scripts for model prediction and analysis
used in this study have been deposited to GitHub and are available at https://
github.com/SysBioChalmers/heme_production_ecYeastGEM/releases/tag/v1.0 (51)
or through Zenodo at https://doi.org/10.5281/zenodo.6792435 (52).
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