Skip to main content
. 2022 Jul 28;19:83. doi: 10.1186/s12984-022-01053-z

Table 9.

Average results and standard deviation for the Rule-based (RB) and Neural Network (NN) methods for each exercise (E1, E2, and E3) with LOSO and LOES cross-validation

Precision Recall F1score Hamming loss
Rule-based (RB) Approach
 Leave-One-Subject-Out (LOSO) cross-validation
  E1 0.75 ± 0.14 0.78 ± 0.12 0.76 ± 0.12 0.11 ± 0.07
  E2 0.54±0.17 0.65±0.17 0.59±0.16 0.20±0.08
  E3 0.69±0.27 0.71±0.26 0.70±0.26 0.13 ± 0.11
Neural Network (NN) based Approach
 Leave-One-Subject-Out (LOSO) cross-validation
  E1 0.71±0.23 0.70±0.25 0.70±0.24 0.18±0.15
  E2 0.73 ± 0.21 0.73 ± 0.19 0.73 ± 0.19 0.15 ± 0.11
  E3 0.80 ± 0.22 0.80 ± 0.21 0.80 ± 0.22 0.14±0.14
 Leave-One-Exercise-Out (LOEO) cross-validation with E1 and E2
0.78±0.05 0.81±0.01 0.80±0.02 0.12±0.01

The results in bold correspond to the best classifiers' performance for the different metrics for each exercise

F1 score is a measure of accuracy