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ABSTRACT
Previous genome-wide association studies (GWAS) have identified potential genetic variants 
involved in the risk of Alzheimer’s dementia, but their underlying biological interpretation remains 
largely unclear. In addition, the effects of DNA methylation and gene expression on Alzheimer’s 
dementia are not well understood. A network summary data-based Mendelian randomization 
(SMR) analysis was performed integrating cis- DNA methylation quantitative trait loci (mQTL) /cis- 
gene expression QTL (eQTL) data in the brain and blood, as well as GWAS summarized data for 
Alzheimer’s dementia to evaluate the pleiotropic associations of DNA methylation and gene 
expression with Alzheimer’s dementia and to explore the complex mechanisms underpinning 
Alzheimer’s dementia. After correction for multiple testing (false discovery rate [FDR] P < 0.05) and 
filtering using the heterogeneity in dependent instruments (HEIDI) test (PHEIDI>0.01), we identified 
dozens of DNA methylation sites and genes showing pleiotropic associations with Alzheimer’s 
dementia. We found 22 and 16 potentially causal pathways of Alzheimer’s dementia (i.e., 
SNP→DNA methylation→Gene expression→Alzheimer’s dementia) in the brain and blood, respec
tively. Approximately two-thirds of the identified DNA methylation sites had an influence on gene 
expression and the expression of almost all the identified genes was regulated by DNA methyla
tion. Our network SMR analysis provided evidence supporting the pleiotropic association of some 
novel DNA methylation sites and genes with Alzheimer’s dementia and revealed possible causal 
pathways underlying the pathogenesis of Alzheimer’s dementia. Our findings shed light on the 
role of DNA methylation in gene expression and in the development of Alzheimer’s dementia.
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Introduction
Alzheimer’s dementia, the most common form of 
dementia in elderly people and a major cause of 
disability, is a severe public health burden world
wide[1], [2]. Alzheimer’s dementia is a complex 
neurodegenerative disease, with contributions 
from a variety of neuropathological, genetic, and 
environmental risk factors [3–5]. However, there 
are considerable gaps in our understanding of the 
nosology and aetiological complexity of 
Alzheimer’s dementia.

Alzheimer’s dementia is a highly heritable dis
ease, and genome-wide association studies 
(GWAS) have revealed multiple genetic variants 
that are associated with susceptibility of 
Alzheimer’s dementia [4,6,7]; however, the exact 

functions of the identified genetic variants remain 
uncharacterized. Because most genetic variants 
associated with complex traits are in non-coding 
regions of the genome, it is likely that such var
iants influence disease susceptibility through 
mechanisms other than proteins coding [8–12]. 
Previous research found that DNA methylation 
regulating gene expression participates in the 
molecular mechanism of Alzheimer’s dementia 
[13]. However, the causal relationship between 
genetic variants, DNA methylation and gene 
expression in influencing Alzheimer’s dementia 
has not been systematically explored.

Previous studies using summary data-based 
Mendelian randomization (SMR) analysis that 
integrated cis- DNA methylation quantitative 
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trait loci (mQTL) or cis- gene expression QTL 
(eQTL) data with GWAS summarized data found 
that both DNA methylation and gene expression 
resided along the causal pathway from genetic 
variation to complex diseases, such as cardiovas
cular disease and Alzheimer’s dementia [10,12,14– 
16]. The network Mendelian randomization (MR) 
aims to disentangle complex networks underlying 
the pathogenesis of a disease by utilizing multi- 
omics data in a multi-step SMR analysis [17]. This 
approach has been successful in revealing the 
potentially causal pathways of several diseases, 
such as schizophrenia, coronary artery disease, 
and multiple sclerosis [17,18]. In the present 
paper, we performed a network SMR study inte
grating mQTL, eQTL, and GWAS summarized 
data for Alzheimer’s dementia to explore the pleio
tropic association of DNA methylation and gene 
expression with Alzheimer’s dementia. In a pre
vious study, we conducted a MR analysis integrat
ing GWAS and mQTL data to explore the role of 
DNA methylation in the neuropathogenesis of 
Alzheimer’s disease (AD) [16]. The current study 
is different from our previous one in that: 1) The 
network SMR approach adopted in the present 
study includes eQTL as well as mQTL data, 
enabling us to explore multiple potentially causal 
pathways; 2) The network SMR analyses use data 
from multiple studies and have much larger sam
ple sizes, compared with the previous study which 
only used data from the Religious Orders Study 
and the Rush Memory and Ageing Project 
(ROSMAP) [19]; and 3) We performed SMR ana
lysis in both blood and brain, compared with the 
previous research in which we only analysed data 
from brain. We performed separate SMR analyses 
using data from the brain and blood because DNA 
methylation and gene expression are tissue speci
fic. If findings from the two analyses are different, 
they may imply different pathways in the brain 
and blood underlying the pathogenesis of 
Alzheimer’s dementia. By contrast, overlapping 
results could provide more convincing evidence 
of the identified pathways underpinning 
Alzheimer’s dementia. The findings of the present 
study thus provide important insights into the 
complex mechanisms of DNA methylation and 
gene expression for Alzheimer’s dementia.

Methods

Study design

In the present study, we conducted SMR analysis 
integrating summarized GWAS data for 
Alzheimer’s dementia, cis-mQTL and cis-eQTL 
data in the blood and brain to prioritize DNA 
methylation sites and genes that were pleiotropi
cally or potentially causally associated with the risk 
of Alzheimer’s dementia. Our analysis consisted of 
three different MR tests, as described below. First, 
the pleiotropic associations of genetically deter
mined DNA methylation with Alzheimer’s demen
tia were analysed considering cis-mQTL as the 
instrumental variables (IVs), DNA methylation as 
the exposure, and Alzheimer’s dementia as the 
outcome. Second, the pleiotropic associations of 
genetically determined gene expressions with 
Alzheimer’s dementia were analysed considering 
cis-eQTL as the IVs, gene expression as the expo
sure, and Alzheimer’s dementia as the outcome. 
Third, the pleiotropic associations of genetically 
determined DNA methylation with gene expres
sion were analysed considering cis-mQTL as the 
IVs, DNA methylation as the exposure, and gene 
expression as the outcome. The design of the net
work SMR analysis is presented in Figure 1. 
Analyses were performed separately for brain and 
blood.

Data sources

mQTL data
The brain mQTL data (named brain-mQTL here
after) were obtained from a meta-analysis of 
ROSMAP [19], the study by Hannon et al. [20], 
and the study by Jaffe et al. [21]. The brain-mQTL 
data [22] included 1,160 participants 
(Supplementary Table 1). In the ROSMAP study, 
only SNPs within 5 Kb from each CpG were avail
able. In the study by Hannon et al., only SNPs 
within 500 Kb of each CpG with PmQTL < 
1 × 10−10 were available. In the study by Jaffe et 
al., only SNPs within 20 Kb from each CpG with a 
false discovery rate (FDR [23]) < 0.1 were avail
able. The blood mQTL data (named blood-mQTL 
hereafter) were obtained from a meta-analysis of 
the study by McRae et al. and Wu et al. [17,24], 

EPIGENETICS 747



which included a total of 1,980 participants and 
were generated using peripheral blood in two 
cohorts, the Brisbane Systems Genetics Study 
[25] (BSGS) and the Lothian Birth Cohorts [26] 
(LBC). DNA methylation data of all the samples 
were generated using Illumina 
HumanMethylation450 chips. Only CpG probes 
with at least a cis-mQTL at P < 5 × 10−8 and 
SNPs within 2 Mb from each CpG were retained. 
The mQTL data can be downloaded at https:// 
c n s g e n o m i c s . c o m / d a t a / S M R /  
#mQTLsummarydata.

eQTL data
The brain eQTL data (named brain-eQTL here
after) were obtained from the meta-analysis of 
three studies including a total of 1,194 participants 
[22]: GTEx [27], the Common Mind Consortium 
[28], and ROSMAP [19]. The blood eQTL data 
(named blood-eQTL hereafter) were obtained 
from the CAGE eQTL summarized data [29], 
which included 2,765 participants. Only SNPs 
within 1 Mb from each mRNA were available. 
The eQTL data can be downloaded at https://cnsge 
nomics.com/data/SMR/#eQTLsummarydata.

GWAS data for Alzheimer’s dementia
The GWAS summarized data for Alzheimer’s 
dementia were based on the meta-analysis of four 
large GWASs, including the Psychiatric Genomics 
Consortium (PGC-ALZ), the International 
Genomics of Alzheimer’s Project (IGAP), the 
Alzheimer’s Disease Sequencing Project (ADSP), 
and UK Biobank (UKB) [6]. The summarized 

data included 455,258 individuals (71,880 cases 
and 383,378 controls) and 13,367,301 variants. 
The GWAS summarized data can be downloaded 
at https://ctg.cncr.nl/software/summary_statistics/.

Detailed information on Alzheimer’s dementia 
status of subjects included in the mQTL and eQTL 
data is not available. Many of the included studies, 
such as ROSMAP and LBC, are longitudinal stu
dies in which subjects who were initially healthy 
are followed for many years. Therefore, some of 
the included subjects very likely had developed 
Alzheimer’s dementia or mild cognitive impair
ment during the follow-up.

Statistical and bioinformatics analysis

The MR analyses were performed using the 
method implemented in the software SMR. 
Detailed information regarding the SMR method 
has been described previously [30]. Briefly, SMR 
uses the principles of MR to test for pleotropic 
associations between the exposure and the out
come due to a shared and potentially causal 
variant at a locus. The heterogeneity in depen
dent instruments (HEIDI) test was done to 
explore the existence of linkage in the observed 
association. Rejection of the null hypothesis indi
cates that the observed associations might be due 
to two distinct genetic variants in high linkage 
disequilibrium (LD) with each other. We adopted 
a threshold of 0.01 as the criteria for rejection of 
the null hypothesis because recent research indi
cated that using PHEIDI <0.05 often leads to false 
positive findings [17].

Figure 1. Study design of the network Mendelian randomization.
Confounders represent any measured and unmeasured factors confounding the association between DNA methylation or gene 
expression and Alzheimer’s dementia. 
AD, Alzheimer’s dementia; mQTL, DNA methylation quantitative trait loci; eQTL, gene expression quantitative trait loci. 
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We adopted the default settings in SMR (e.g., 
PQTL <5 × 10−8, minor allele frequency [MAF] > 
0.01, removing SNPs in very strong LD [r2 > 0.9] 
with the top associated QTL, and removing SNPs 
in low LD or not in LD [r2 <0.05] with the top 
associated QTL), and used FDR to adjust for mul
tiple testing. Only SNPs with available SNP- 
exposure and SNP-outcome association data were 
retained. For the network SMR, pleotropic associa
tions between genes and DNA methylation sites 
that were in less than 2 Mb of the corresponding 
genes were tested.

The pathways from genetic variants to 
Alzheimer’s dementia were delineated into five 
potential categories (Figure 2). Annotations of 
the transcripts were based on the Affymetrix 
exon array S1.0 platform. To functionally annotate 
putative transcripts, we conducted a functional 
enrichment analysis using the functional annota
tion tool ‘Metascape’ [31] for the genes identified 
in the pathways from genetic variants to 
Alzheimer’s dementia. Gene symbols correspond
ing to significant genes (FDR P <0.05) were used 
as the input of the gene ontology (GO) and Kyoto 
Encyclopaedia of Genes and Genomes (KEGG) 
enrichment analysis. The information on DNA 
methylation can be obtained at (http://bigd.big.ac. 
cn/methbank) [32].

Data cleaning and statistical/bioinformatical 
analysis were performed using R version 4.0.0 
(https://www.r-project.org/), PLINK 1.9 (https:// 
www.cog-genomics.org/plink/1.9/) and SMR 
(https://cnsgenomics.com/software/smr/).

Results

Pleiotropic associations between DNA 
methylation and Alzheimer’s dementia

Using brain-mQTL data and GWAS summary 
data for Alzheimer’s dementia, we performed 
SMR analysis to evaluate the associations between 
94,537 CpGs probes and Alzheimer’s dementia. 
We found 68 CpGs that showed pleiotropic asso
ciations with Alzheimer’s dementia after correc
tion for multiple testing and application of the 
HEIDI test (PHEIDI >0.01; Supplementary Table 
2). Using blood-mQTL data and GWAS summary 
data for Alzheimer’s dementia, we evaluated the 

associations between 93,087 CpG probes and 
Alzheimer’s dementia. We found 95 CpGs that 
showed pleiotropic associations with Alzheimer’s 
dementia after correction for multiple testing and 
application of the HEIDI test (Supplementary 
Table 3), of which 22 CpGs overlapped with the 
brain-mQTL results, including cg03526776, 
cg12672189, cg15837308, cg10846853, 
cg13778567, cg20172563, cg13210467, 
cg05868365, cg18648645, cg08729755, 
cg03887787, cg19792802, cg08416661, 
cg16757332, cg09251291, cg08898775, 
cg26312935, cg02220965, cg06985993, 
cg06015834, cg09495303, and cg10553748.

Pleiotropic associations between gene expression 
and Alzheimer’s dementia

Using brain-eQTL data and GWAS summary data for 
Alzheimer’s dementia, we performed SMR analysis to 
evaluate the associations between 7,466 mRNA 
probes and Alzheimer’s dementia. We found 15 
mRNA probes tagging 15 genes that showed pleio
tropic associations with Alzheimer’s dementia after 
correction for multiple testing and application of the 
HEIDI test (Supplementary Table 4). Using blood- 
eQTL data and GWAS summary data for Alzheimer’s 
dementia, we tested the associations between 8,519 
mRNA probes and Alzheimer’s dementia. We found 
15 mRNA probes tagging 13 genes that showed pleio
tropic associations with Alzheimer’s dementia after 
correction for multiple testing and application of the 
HEIDI test (Supplementary Table 5), of which only 
one gene FIBP overlapped with the brain-eQTL result.

Pleiotropic associations between DNA 
methylation and gene expression

Using brain-mQTL data and brain-eQTL data in the 
SMR, we found 51,031 associations between 29,149 
CpGs and 9,713 mRNAs after correction for multi
ple testing and application of the HEIDI test (Figure 
3(a)). Using blood-mQTL data and blood-eQTL 
data, we found 62,796 associations between 31,279 
CpGs and 7,708 mRNAs after correction for multi
ple testing and application of the HEIDI test (Figure 
3(b)), of which 2,886 associations between 2,203 
CpGs and 1,207 mRNAs overlapped with results 
obtained in the brain.
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Figure 2. Potential pathways linking genetic variants with Alzheimer’s dementia.
(1) A genetic variant exerts its effect on Alzheimer’s dementia, mediated completely by DNA methylation; (2) A genetic variant exerts 
its effect on Alzheimer’s dementia, mediated through DNA methylation which regulates gene expression; (3) A genetic variant exerts 
its effect on Alzheimer’s dementia, mediated completely by gene expression; (4) A genetic variant exerts its effect on Alzheimer’s 
dementia, mediated through gene expression which is regulated by DNA methylation; and (5) A genetic variant exerts its effect on 
Alzheimer’s dementia, mediated by genetic regulation of gene expression through DNA methylation. 
mQTL and eQTL represent genetic variant that is associated with DNA methylation and gene expression, respectively. The top 
associated eQTLs or mQTLs that passed the default criteria (PeQTL<5 × 10−8 or PmQTL<5 × 10−8, with a default window size of 2000 
Kb) were selected as the instrumental variables. 
mQTL, DNA methylation quantitative trait loci; eQTL, gene expression quantitative trait loci. 
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Pathways from genetic variants to Alzheimer’s 
dementia

In the brain, we found 22 pathways in which 
genetic variants exerted their effect on 
Alzheimer’s dementia mediated completely by 
DNA methylation. We discovered 90 pathways 
involving 44 CpGs and 47 mRNAs tagging 47 
genes in which genetic variants exerted their 
effect on Alzheimer’s dementia mediated by 
DNA methylation regulating gene expression; 
only one pathway in which genetic variants 
exerted their effect on Alzheimer’s dementia 
mediated completely by gene expression; and 
171 pathways involving 129 CpGs and 14 
mRNAs tagging 14 genes in which gene expres
sion influenced the susceptibility of Alzheimer’s 
dementia regulated by DNA methylation 
(Supplementary Table 2, Supplementary Table 
4, and Figure 3(a)). Finally, we found 22 path
ways involving 14 CpGs regulating 9 mRNAs 
tagging 9 genes in linking genetic variants with 
the risk of Alzheimer’s dementia (i.e., 

SNP→DNA methylation→Gene 
expression→Alzheimer’s dementia; Table 1).

In the blood, we found 37 pathways in which 
genetic variants exert their effect on Alzheimer’s 
dementia mediated completely by DNA methyla
tion; 147 pathways involving 57 CpGs and 68 
mRNAs tagging 62 genes in which genetic variants 
exert their effect on Alzheimer’s dementia mediated 
by DNA methylation regulating gene expression; 
only one pathway in which genetic variants exert 
their effect on Alzheimer’s dementia mediated 
completely by gene expression; and 97 pathways 
involving 90 CpGs and 14 mRNAs tagging 12 
genes in which gene expressions influence the sus
ceptibility of Alzheimer’s dementia regulated by 
DNA methylation (Supplementary Table 3, 
Supplementary Table 5, and Figure 3(b)). Finally, 
we found 16 pathways involving 14 CpGs regulat
ing 6 mRNAs tagging 6 genes in linking genetic 
variants with the risk of Alzheimer’s dementia 
(i.e., SNP→DNA methylation→Gene 
expression→Alzheimer’s dementia; Table 2).

Figure 3. Venn diagram of the 5 different pathways linking genetic variants with Alzheimer’s dementia.
The number of overlapping and distinct pathways, as listed in Figure 2, linking genetic variants with Alzheimer’s dementia 
a) Brain, and b) Blood 
The explain numbers refer to the pathways as described in Figure 2. 
AD, Alzheimer’s dementia 
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Functionally relevant DNA methylation and 
target genes

Of the 68 identified CpGs in the brain, 46 (67.7%) 
were associated with the expression of 56 mRNAs 

tagging 56 genes comprising 112 CpG-mRNA 
pairs (Supplementary Table 6). GO enrichment 
analysis of biological process, molecular function, 
and cellular component pathways showed that the 

Table 1. Prioritizing genes and DNA methylation involved in potentially causal pathways linking genetic variants with Alzheimer’s 
dementia in brain.

CHR CpG CpG_Gene mRNA mRNA_Gene P_SMR_CpG_mRNA P_SMR_CpG_AD P_SMR_mRNA_AD

1 cg05656486 NDUFS2 ENSG00000158864 NDUFS2 3.35 × 10−07 2.06 × 10−06 4.17 × 10−06

1 cg08850169 NDUFS2 ENSG00000158864 NDUFS2 1.15 × 10−06 5.28 × 10−06 4.17 × 10−06

1 cg16673712 UFC1 ENSG00000158864 NDUFS2 5.79 × 10−07 7.21 × 10−05 4.17 × 10−06

1 cg23274951 NDUFS2 ENSG00000158864 NDUFS2 7.73 × 10−07 3.89 × 10−06 4.17 × 10−06

1 cg24049880 NDUFS2 ENSG00000158864 NDUFS2 1.87 × 10−07 1.33 × 10−06 4.17 × 10−06

7 cg13210467 STAG3 ENSG00000066923 STAG3 5.54 × 10−06 3.11 × 10−06 1.17 × 10−05

7 cg22906224 STAG3 ENSG00000066923 STAG3 4.23 × 10−07 9.58 × 10−07 1.17 × 10−05

11 cg03887787 CTSW ENSG00000172500 FIBP 1.25 × 10−14 1.67 × 10−05 1.91 × 10−05

11 cg19792802 CTSW ENSG00000172500 FIBP 1.07 × 10−22 1.36 × 10−05 1.91 × 10−05

16 cg02220965 MYST1 ENSG00000103510 KAT8 3.76 × 10−19 1.78 × 10−05 1.28 × 10−05

16 cg04275947 PRSS8 ENSG00000103510 KAT8 1.09 × 10−07 4.88 × 10−05 1.28 × 10−05

16 cg07078430 PRSS36 ENSG00000103510 KAT8 1.83 × 10−07 8.74 × 10−06 1.28 × 10−05

16 cg04275947 PRSS8 ENSG00000103549 RNF40 1.58 × 10−05 4.88 × 10−05 1.27 × 10−04

16 cg07078430 PRSS36 ENSG00000103549 RNF40 6.64 × 10−04 8.74 × 10−06 1.27 × 10−04

16 cg04275947 PRSS8 ENSG00000178226 PRSS36 3.37 × 10−06 4.88 × 10−05 4.55 × 10−06

16 cg07078430 PRSS36 ENSG00000178226 PRSS36 2.94 × 10−09 8.74 × 10−06 4.55 × 10−06

16 cg02220965 MYST1 ENSG00000196118 C16orf93 5.03 × 10−06 1.78 × 10−05 1.2 × 10−04

16 cg04275947 PRSS8 ENSG00000196118 C16orf93 7.13 × 10−06 4.88 × 10−05 1.2 × 10−04

17 cg03433048 CHRNE ENSG00000167840 ZNF232 2.24 × 10−06 5.03 × 10−05 7.65 × 10−06

17 cg20814095 CHRNE ENSG00000167840 ZNF232 4.92 × 10−06 5.07 × 10−05 7.65 × 10−06

17 cg03433048 CHRNE ENSG00000234327 AC012146.7 8.92 × 10−08 5.03 × 10−05 9.77 × 10−07

17 cg20814095 CHRNE ENSG00000234327 AC012146.7 2.58 × 10−06 5.07 × 10−05 9.77 × 10−07

We included results that passed correction for multiple testing (FDR P < 0.05) and the HEIDI test (P > 0.01). 
CHR means chromosome, P_SMR_CpG_mRNA is the P value in the SMR analysis using mQTL data and eQTL data, P_SMR_CpG_AD is the P value in 

the SMR analysis using mQTL data and GWAS summary data for Alzheimer’s dementia, and P_SMR_ mRNA_AD is the P value in the SMR analysis 
using eQTL data and GWAS summary data for Alzheimer’s dementia. 

AD, Alzheimer dementia; FDR, false discovery rate; HEIDI, heterogeneity in dependent instruments; SMR, summary data-based Mendelian 
randomization; eQTL, gene expression quantitative trait loci; mQTL, DNA methylation quantitative trait loci. 

Table 2. Prioritizing genes and DNA methylation involved in potentially causal pathways linking genetic variants with Alzheimer’s 
dementia in blood.

CHR CpG CpG_Gene mRNA mRNA_Gene P_SMR_CpG_mRNA P_SMR_CpG_AD P_SMR_mRNA_AD

1 cg09070378 NDUFS2 ILMN_2123743 FCER1G 3.14 × 10−27 2.17 × 10−05 6.00 × 10−06

7 cg19116668 PMS2L1 ILMN_1729915 PILRA 7.90 × 10−07 1.26 × 10−14 4.34 × 10−06

11 cg01669108 CTSW ILMN_1657797 FIBP 3.37 × 10−38 2.33 × 10−05 3.19 × 10−05

11 cg23483894 CTSW ILMN_1657797 FIBP 2.42 × 10−19 6.12 × 10−05 3.19 × 10−05

11 cg03887787 CTSW ILMN_1794364 CTSW 2.85 × 10−191 4.65 × 10−06 5.30 × 10−06

11 cg01669108 CTSW ILMN_1794364 CTSW 1.29 × 10−77 2.33 × 10−05 5.30 × 10−06

11 cg23483894 CTSW ILMN_1794364 CTSW 2.60 × 10−25 6.12 × 10−05 5.30 × 10−06

15 cg17207590 Intergenic ILMN_1767816 APH1B 0.000366 3.40 × 10−05 3.91 × 10−06

16 cg26675395 PRSS36 ILMN_1693394 BCKDK 1.47 × 10−05 3.29 × 10−05 3.29 × 10−05

16 cg00249205 STX1B ILMN_1693394 BCKDK 6.99 × 10−13 3.04 × 10−05 3.29 × 10−05

16 cg26949037 STX1B ILMN_1693394 BCKDK 7.91 × 10−09 8.67 × 10−05 3.29 × 10−05

16 cg05768032 Intergenic ILMN_1693394 BCKDK 6.95 × 10−04 3.09 × 10−05 3.29 × 10−05

16 cg10421029 FBXL19 ILMN_1693394 BCKDK 5.13 × 10−06 1.39 × 10−05 3.29 × 10−05

16 cg02220965 MYST1 ILMN_1693394 BCKDK 1.30 × 10−19 6.52 × 10−06 3.29 × 10−05

16 cg03418659 MYST1 ILMN_1693394 BCKDK 4.01 × 10−19 8.46 × 10−06 3.29 × 10−05

16 cg01067137 ZNF646 ILMN_1693394 BCKDK 2.22 × 10−11 3.29 × 10−05 3.29 × 10−05

We included results that passed correction for multiple testing (FDR P < 0.05) and the HEIDI test (P > 0.01). 
CHR means chromosome, P_SMR_CpG_mRNA is the P value in the SMR analysis using mQTL data and eQTL data, P_SMR_CpG_AD is the P value in 

the SMR analysis using mQTL data and GWAS summary data for Alzheimer’s dementia, and P_SMR_ mRNA_AD is the P value in the SMR analysis 
using eQTL data and GWAS summary data for Alzheimer’s dementia. 

AD, Alzheimer dementia; FDR, false discovery rate; HEIDI, heterogeneity in dependent instruments; SMR, summary data-based Mendelian 
randomization; eQTL, gene expression quantitative trait loci; mQTL, DNA methylation quantitative trait loci. 
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genes that were cis associated with the CpGs iden
tified in the pathways from genetic variants to 
Alzheimer’s dementia were involved in eight GO 
terms, such as antigen processing and presentation 
(GO: 0019882) and regulation of innate immune 
response (GO:0045088; Supplementary Figure 1 
and Supplementary Table 7). GO enrichment 
analysis of the genes identified in the pathways 
from genetic variants to Alzheimer’s dementia 
revealed one significant GO term of neutrophil 
mediated immunity (GO:0002446; 
Supplementary Figure 2 and Supplementary 
Table 8).

Of the 95 identified CpGs in blood, 58 (61.05%) 
were associated with 74 mRNAs tagging 66 genes 
comprising 163 CpG-mRNA pairs 
(Supplementary Table 9), of which 16 associa
tions between 14 CpGs and 6 genes, including 
BCKDK, CTSW, FIBP, FCER1G, APH1B and 
PILRA, overlapped between brain and blood. The 
genes that were cis associated with the CpGs iden
tified in the pathways from genetic variants to 
Alzheimer’s dementia were involved in fourteen 
GO terms, such as antigen processing and positive 
regulation of leukocyte degranulation 
(GO:0043302; Supplementary Figure 3). GO 
enrichment analysis of the genes identified in the 
pathways from genetic variants to Alzheimer’s 
dementia revealed three significant GO terms: 
immune response-regulating signalling pathway 
(GO:0002764), transmembrane receptor protein 
tyrosine kinase signalling pathway (GO:0007169), 
and regulated exocytosis (GO:0045055; 
Supplementary Fig. 4). More information can be 
found in Supplementary Figures 3–4 and 
Supplementary Tables 10–11.

Discussion

In this study, we performed network SMR analysis 
by integrating multi-omics data to explore the 
complex mechanisms underpinning Alzheimer’s 
dementia. We identified dozens of DNA methyla
tion sites and genes showing pleiotropic associa
tions with Alzheimer’s dementia. Approximately 
two-thirds of the identified CpGs had an influence 
on gene expressions and the expression of almost 
all the identified genes was regulated by DNA 
methylation. To the best of our knowledge, this 

is the first network SMR study to evaluate the 
pleiotropic associations of DNA methylation and 
gene expression with Alzheimer’s dementia and to 
identify the potential causal pathways of gene reg
ulation linking genetic variants with Alzheimer’s 
dementia.

In our study, some of the identified causal DNA 
methylation sites were reported to be associated 
with the risk factors of Alzheimer’s dementia. For 
example, cg24465943 in FCER1G, cg02747950 in 
RAB8B, and cg05868365 and cg00411097 in 
TMEM184A were found to be associated with age
ing, a major risk factor for Alzheimer’s dementia 
[33,34]. One methylation site, cg02747950 in 
RAB8B was associated with type 2 diabetes 
(T2D). Increasing evidence suggests epidemiologi
cal and pathological links between Alzheimer’s 
dementia and T2D [35,36]. In addition, 
cg05656486, cg08850169 and cg24049880 in 
NDUFS2, cg09251291 in RAB8B, and cg19739596 
in MS4A3 were associated with systemic lupus 
erythematosus (SLE), which could increase the 
risk of Alzheimer’s dementia [37]. Whether and 
how these identified methylation loci affect the 
risk of Alzheimer’s dementia via these risk factors 
warrants further investigation.

In our study, some of the causal genes identified 
in our network SMR, including KAT8, BCKDK, 
FCER1G, and PILRA, were reported to be asso
ciated with Alzheimer’s dementia [6,7,38,39]. 
KAT8, located on chromosome 16, encodes a 
member of the MYST histone acetylase protein 
family [40]. MYST acetyltransferases are essential 
in transcription, and DNA replication, recombina
tion and repair, and are involved in autophagy 
[41,42]. A previous study demonstrated that 
mutations in histone acetyltransferases, including 
MYST acetyltransferases, could lead to abnormal 
development of the nervous system and increased 
neurodegeneration [43], indicating thatKAT8 
might play a role in the aetiology of Alzheimer’s 
dementia by regulating MYST-family acetyltrans
ferase activity. BCKDK encodes the branched- 
chain alpha-ketoacid dehydrogenase complex 
(BCKD), which is an important regulator of the 
valine, leucine, and isoleucine catabolic pathways 
[44]. BCKDK mutations leads to a potentially trea
table form of autism with intellectual disability 
and epilepsy [45]. Another study found that 
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variants in BCKDK were associated with 
Parkinson’s disease [46]. These findings, together 
with ours, demonstrated the important role of 
BCKDK in neurological diseases and highlighted 
the potential of this gene as a promising target for 
the prevention and treatment of Alzheimer’s 
dementia. FCER1G encodes a high affinity IgE 
receptor, which plays an important role in allergic 
reactions. A previous study showed that FCER1G 
predicted the risk of Alzheimer’s dementia and 
was significantly upregulated when exposed to 
Aβ [47]. PILRA, which encodes a cell surface inhi
bitory receptor that participates in the dynamic 
interaction between the activation and suppres
sion of cell signal transduction [48], may be 
involved in the pathogenesis of Alzheimer’s 
dementia due to its involvement in immune reg
ulation. In addition, a whole exome sequencing 
study provided evidence that PILRA played an 
important role in the pathogenesis of Alzheimer’s 
dementia [49]. Based on the above findings, future 
research needs to further explore the application 
of these genes in the development of Alzheimer’s 
dementia.

Some genes found by our network SMR didn’t 
overlap with those identified in previous GWASs 
of Alzheimer’s dementia, implying that these iden
tified genes might be novel genes underlying the 
pathogenesis of Alzheimer’s dementia. These 
genes could exert their function through a variety 
of mechanisms underlying the aetiology of 
Alzheimer’s dementia. For example, FIBP encodes 
acidic fibroblast growth factor (FGF) intracellular 
binding protein (FIBP). FIBP is known to be 
implicated in the FGF signalling pathway [50], 
which has been shown to affect cell proliferation, 
cell survival, chemotaxis, migration, and cell adhe
sion; it also plays an important role in the devel
opment of many diseases [51–53]. A previous 
study suggested that abnormally increased FGF- 
2-associated dysregulation of dentate gyrus neuro
genesis, especially neuronal polarity, was involved 
in the pathogenesis of Alzheimer’s dementia [54]. 
Another study found that APOE interacted with 
FGF1 in leading to episodic memory deficits and 
hippocampus atrophy, thereby contributing to 
Alzheimer’s dementia [55]. The identified genes 
in the brain and blood did not overlap except 
FIBP. These findings, together with ours, 

demonstrated the important role of FIBP in the 
pathogenesis of Alzheimer’s dementia and high
lighted the potential of this gene as a promising 
target for the prevention and treatment of 
Alzheimer’s dementia.

DNA methylation can influence gene expres
sion, and its relationship with transcriptional 
activity plays an important role in influencing dis
eases [11]. In our study, the expression of almost 
all the identified genes was regulated by DNA 
methylation, highlighting the important role of 
DNA methylation in the regulation of gene expres
sion in leading to Alzheimer’s dementia. In addi
tion, the presence of ‘vertical causal pathways’ 
underpinned the pathogenesis of Alzheimer’s 
dementia, linking genetic variants, DNA methyla
tion, and gene expression to Alzheimer’s dementia. 
DNA methylation and gene expression of 
NDUFS2, STAG3, CTSW, and PRSS36 play an 
important role in the regulation of how genetic 
variants affect the development of Alzheimer’s 
dementia. NDUFS2, located on chromosome 1, 
was associated with mitochondrial complex I defi
ciency and was essential for oxygen-sensing [56]. 
A previous study showed that mitochondrial dys
function was present in degenerative disorders, 
including Alzheimer’s dementia and Parkinson’s 
disease [57]. It is possible that NDUFS2 plays a 
role in the aetiology of Alzheimer’s dementia by 
regulating mitochondrial dysfunction. Moreover, 
CTSW encoded a cysteine proteinase as a member 
of the peptidase C1 family, which was found to be 
associated with the expression of natural killer and 
cytotoxic T-cells [58]. A study found that the 
increased ratio of cytotoxic T cells was regarded 
as a preclinical biomarker of Alzheimer’s dementia 
and involved in the Aβ neuropathological mechan
ism [59]. Both animal and in vivo human studies 
are needed to explore the physiological functions 
that these genes exert and the pathways that they 
are involved in influencing Alzheimer’s dementia.

Approximately two-thirds of the identified 
CpGs influenced gene expression, indicating that 
DNA methylation does not always influence gene 
expression. Future research should focus on 
exploring the role of DNA methylation in the 
pathogenesis of Alzheimer’s dementia and explor
ing the application of DNA methylation in the 
targeted intervention and prediction of 
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Alzheimer’s dementia. The genetic risk score 
(GRS) is a powerful tool in assessing the risk of 
many diseases such as Alzheimer’s dementia 
[4,60]. However, GRS cannot capture the environ
mental contributions to the risk of a disease and 
often has limited clinical utility. Environmental 
exposure that affects disease progression can mod
ify methylation patterns [61,62], which in turn can 
affect many biological processes and influence dis
ease susceptibility [63,64]. Combining methylation 
risk score (MRS) and GRS can improve predictive 
accuracy in identifying high-risk populations of 
diseases [65,66]. Future studies with individual- 
level multi-omics data are needed to explore the 
utility of combining MRS and GRS using the 
identified DNA methylation sites and genes in 
assessing the risk of Alzheimer’s dementia.

Our study has some limitations. We performed 
the SMR and HEIDI analyses to detect DNA 
methylation – gene expression, DNA methylation 
– Alzheimer’s dementia, and gene expression – 
Alzheimer’s dementia associations separately and 
focused on association signals that were consistent 
across the three types of analyses at a locus. This 
strategy potentially loses power due to threshold
ing the results by P-values in the multiple steps. In 
addition, we adopted correction for multiple test
ing to reduce the false positive rate; however, we 
might have missed important SNPs, CpGs, and 
genes. The MR analyses were based on several 
assumptions, some of which cannot be tested 
directly. Our results may be biased if these 
assumptions are violated, and cautions should be 
executed in interpreting the potentially causal 
pathways from genetic variants to Alzheimer’s 
dementia. Finally, due to the scarcity of publicly 
relevant data, we did not examine how DNA 
methylation or gene expression of the identified 
genes changed in subjects who had Alzheimer’s 
dementia compared to the healthy controls. 
Examination of such changes would help research
ers better understand the roles of these genes in 
the pathogenesis of Alzheimer’s dementia. We 
plan to pursue this in a future study when we 
have access to data that provide gene expression 
data and status of Alzheimer’s disease at the indi
vidual level.

In conclusion, our network SMR analysis pro
vided evidence supporting the pleiotropic 

association of some novel DNA methylation sites 
and genes with Alzheimer’s dementia and revealed 
possible causal pathways underlying the pathogen
esis of Alzheimer’s dementia. Our findings high
lighted the important role of DNA methylation in 
the regulation of gene expression leading to 
Alzheimer’s dementia. Future studies are needed to 
explore the biological functions of the identified 
CpGs and genes in the development of 
Alzheimer’s dementia.
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