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Abstract

Recent studies have revealed a correlation between aging-related hearing loss and the likelihood 

of developing Alzheimer Disease. However, it is not yet known if the correlation simply reflects 

the fact that these two disorders share common risk factors or whether there is a causal link 

between them. The answer to this question carries therapeutic implications. Unfortunately, it is 

not possible to study the question of causality between aging-related hearing loss and dementia 

in human subjects. Here, we evaluate the research surrounding induced-hearing loss in animal 

models on non-auditory cognition to help infer if there is any causal evidence linking hearing 

loss and a more general dementia. We find ample evidence that induction of hearing loss in 

animals produces cognitive decline, particularly hippocampal dysfunction. The data suggest that 

noise-exposure produces a toxic milieu in the hippocampus consisting of a spike in glucocorticoid 

levels, elevations of mediators of oxidative stress and excitotoxicity, which as a consequence 

induce cessation of neurogenesis, synaptic loss and tau hyperphosphorylation. These data suggest 

that hearing loss can lead to pathological hallmarks similar to those seen in Alzheimer’s Disease 

and other dementias. However, the rodent data do not establish that hearing loss on its own can 

induce a progressive degenerative dementing illness. Therefore, we conclude that an additional 

“hit”, such as aging, APOE genotype, microvascular disease or others, may be necessary to trigger 

an ongoing degenerative process such as Alzheimer Disease.

1.0 Introduction:

Alzheimer’s Disease (AD) and Aging-Related Hearing Loss (ARHL) are diseases of rapidly 

increasing prevalence and are of major societal importance. Both disorders rob people 

of their quality of life, and neither has adequate treatments. Approximately half of the 

population over the age of 70 suffer from ARHL and 10–15% have AD, and these 

numbers are growing. Recently, there has been an explosion of epidemiological studies 

suggesting that aging-related cognitive declines, AD and ARHL are associated (Ford et al., 

2018; Golub et al., 2017; Gurgel et al., 2014; Heywood et al., 2017; Lin et al., 2011a; 
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Lin et al., 2011b; Lin et al., 2013; Thomson et al., 2017). Most of these studies have 

revealed a strong association between AHRL and cognitive impairment despite controlling 

for multiple potentially confounding variables, such as age, sex, apolipoprotein E4 status 

and cardiovascular risk factors. For example, in a recent study of nearly 38,000 elderly 

Australian men without dementia followed up to 17 years, those with hearing loss at entry 

had a 69% increased risk of developing dementia over the study period, when adjusted 

for age and aging-related morbidities (see Figure 1 for Kaplan-Meier curve (Ford et al., 

2018)). The other studies cited above have similar risk profiles, suggesting that ARHL 

may be an independent risk factor for the development of cognitive impairment. Because 

multiple treatments exist to improve auditory function in individuals with ARHL (hearing 

aids, aural rehabilitation, cochlear implants, etc.), ARHL may, in fact, be a modifiable risk 

factor for the development of dementia. However, currently, less than 20% of individuals 

that could benefit from hearing aids obtain them (Chien et al., 2012; Popelka et al., 1998), 

suggesting that there may be a large untapped resource available to mitigate the risk of 

developing AD. Thus, uncovering a common pathological substrate that links ARHL and 

AD would represent a major breakthrough for the development of new therapies for both 

disorders because it would merge large bodies of work and their drug targets. In addition, 

finding an etiological link between ARHL and AD would open the door for sophisticated 

psychoacoustic measurements to be used to help diagnose and track progress and treatment-

responses in AD (Swords et al., 2018). Therefore, identifying the mechanisms that underlie 

the epidemiological association between ARHL and AD carries significant implications.

Loss of function in other sensory systems, such as vision, may also be linked to AD, but the 

nature of the relationship is less clear. Several studies have found an epidemiological link 

between aging-related vision loss and AD (Chen et al., 2017; Lin et al., 2014; Mangione 

et al., 1993). However, other factors may confound these data. First, glaucoma, which 

is the leading non-reversible cause of blindness in both the U.S. and overseas, as well 

as macular degeneration another major cause of aging-associated vision loss, are both 

associated with retinal amyloid beta deposition (McKinnon, 2003; Mullins et al., 2000). This 

relationship suggests that a shared propensity towards pathological proteostasis may underlie 

the relationship, rather than a causal link between vision loss and subsequent hippocampal 

dysfunction. In addition, many of the timed tasks used to measure cognitive function 

such as Stroop, Trails B, digit-symbol substitution, etc, are require vision, and diminished 

visual signal-to-noise ratio may lengthen processing times, thus diminishing performance. 

Therefore, more work is needed to clarify the nature of the relationship between vision and 

AD.

One major scientific unresolved problem is whether the connection between AD and ARHL 

is simply related to common risk factors (e.g., aging, microvascular disease, diabetes, 

etc.), or whether a causal relationship exists between the two. Answering this question is 

critical because if the two are simply related due to common risk factors, then approaches 

that involve aggressively managing those risk factors would be an optimal strategy to 

mitigate AD and ARHL. However, if, for example, hearing loss on its own exacerbated 

AD pathology, then a broad array of aggressive interventions ranging from auditory 

rehabilitation, to early use of hearing aids or even cochlear implants, may be justified as 

a means to diminish AD pathology.
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Unfortunately, this question cannot be answered in human subjects. To make inferences 

about causation, an animal model is needed so that interventions can be done, such as 

the induction of hearing loss, to then examine the impact of hearing loss on non-cognitive 

function. The reverse is also possible. That is, AD pathology could lead to peripheral 

hearing loss, as has been suggested in a mouse model of amyloid beta over-expression 

(O’Leary et al., 2017), though the link between such models and the most common 

sporadic forms of AD is still uncertain. Here, we evaluate the research surrounding induced 

hearing loss in animals to determine if there is a causal link between hearing loss and 

non-auditory cognition. The focus of this literature review is on the impact of hearing loss 

on hippocampal function, since loss of hippocampal structural damage and dysfunction are 

core findings in AD (Barnes et al., 2009; Scheff et al., 2007; Tromp et al., 2015). We 

begin with an evaluation of the findings regarding the association between hearing loss 

and cognitive decline in animal studies. We examine how lesioning the peripheral auditory 

apparatus leads to worsened performance on behavioral tasks that measure hippocampal 

function, such as the Morris Water Maze (MWM) task, radial-arm maze (RAM) task and 

object recognition (OR) tasks. We exclude studies that examined the relationship between 

aging-related hearing loss and hippocampal function in aged animals since aging serves as 

a confounding variable. We also exclude studies that used systemic administration of drugs, 

such as aminoglycosides or salicylates, to cause hearing loss, since their effects may extend 

to the brain, confounding the link between hearing loss and hippocampal dysfunction. We 

therefore focus on studies that injure the peripheral hearing apparatus with noise. Although 

other methods of deafferentation exist, such as ear plugging or surgical disruption of the 

auditory periphery, there is not yet an extensive literature examining their effects on non-

auditory cognitive function. Noise exposure also provides a way to titrate the peripheral loss 

based on the severity of the exposure. Therefore, in the following sections, we separate the 

findings into animals that have received acute (a single exposure) vs. subacute (defined here 

as up to 30 days of exposure) exposure to noise. Subacute exposure would be expected to 

produce longer-lasting changes in hippocampal function, but may show diminished changes 

related to the acute stress of one-time noise exposure. The second goal will be to discuss 

the potential mechanistic links underlying these experimental results. We will conclude by 

discussing potential future directions of this research, to further study this topic. The studies 

involving induced hearing loss and hippocampal dysfunction that are reviewed and their key 

findings are summarized in Table 1.

2.0 The impact of acute noise exposure

2.1 Acute noise exposure and hippocampal function:

Several studies focused on the impact of acute noise exposure on short-term hippocampal 

physiology and neurochemistry. For example, Goble et al. evaluated the impact of 30 

minutes of high-intensity sound exposure effect on the hippocampal place cells (Goble et 

al., 2009). The group used implanted recording electrodes in the hippocampus to measure 

changes in place cell maps, as well as the RAM test, to investigate for altered spatial 

memory. The investigators observed that in the ensuing 2–6 hours after intense noise 

exposure that rats demonstrated poor learning on a RAM task and that hippocampal place 

fields became expanded or duplicated (see Figure 2). In addition, long-term potentiation, 

Nadhimi and Llano Page 3

Hear Res. Author manuscript; available in PMC 2022 July 29.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



long thought to be a substrate for learning and memory in the hippocampus (Whitlock 

et al., 2006), was found to be diminished over the first 24 hours after noise-exposure 

in a noise dose-dependent manner (De Deus et al., 2017). Despite the inhibition in long-

term potentiation, the investigators did not observe significant changes in spatial memory 

function in these animals. Potential neurochemical correlates of these functional changes 

were examined by Cui et al. who employed acute noise exposure followed by high 

performance liquid chromatography, Western blotting, and immunohistochemistry in the 

hippocampus (Cui et al., 2012). Using homogenized hippocampal tissue, the investigators 

observed increased concentrations of glutamate and aspartate in the hippocampus as well 

as an increase in expression of the NMDA receptor subunit NR2B 30 minutes after noise 

exposure, and these levels remained elevated for 24 hours. The concentration of glycine 

remained stable for several hours and then increased 24 hours after noise stress. They also 

observed tau hyperphosphorylation in the dentate gyrus and CA1 region of the hippocampus 

following noise exposure. These three studies suggest that noise exposure causes a rapid 

and dramatic reorganization of inputs, neurochemistry and neuroplastic potential of the 

hippocampus, on time scales commensurate with other changes seen after noise exposure, 

such as changes in spontaneous and driven activity in the auditory cortex (Kimura et al., 

1999; Norena et al., 2003). These changes are linked to behavioral manifestations (poor 

performance on RAM testing) and may be related to increased NMDA-receptor signaling 

in the hippocampus. Similar results have been seen in a model of accelerated aging-related 

hearing loss (C57BL/6 mice), which show elevated hippocampal NR2B expression relative 

to mice with intact hearing, and this elevation is associated with impaired hippocampal 

plasticity and item-place memory (Beckmann et al., 2020).

2.2 Acute noise and hippocampal neurogenesis:

Hippocampal neurogenesis in adults is thought to be important for learning and memory 

(Deng et al., 2010; Shors et al., 2001). Several studies have examined the impact of acute 

noise exposure on the production of new neurons in the adult hippocampus. For example, 

Kraus et al. examined 9 rats that were exposed unilaterally to high-intensity, narrow-band 

noise centered at 12 kHz at 126 dB SPL under isoflurane anesthesia (Kraus et al., 2010) 

and observed a reduction in the number of neuronal precursor cells (doublecortin-positive) 

and proliferating neurons (Ki67-positive) in the hippocampus. No hippocampal memory 

testing was done in this study, but the investigators did find behavioral evidence of tinnitus 

in some animals, and that tinnitus-like behavior was not linked to aberrant hippocampal 

neurogenesis. Tao et al. investigated if noise exposure during early development (postnatal 

day 15 mice) exerts a long term impact on cognitive function and neurogenesis two 

months later (Tao et al., 2015). They observed that the noise-exposure was associated 

with diminished performance on MWM compared to sham animals and similar to Kraus 

et al. observed that hippocampal neurogenesis (via doublecortin immunostaining) was 

reduced after noise exposure. Similarly, Liu et al. found that the mice with acute noise-

exposure demonstrated slower learning on a MWM task and they observed a decrease 

in the hippocampal neurogenesis (via doublecortin and Ki67 immunostaining) of the 

noise group compared to the control (Liu et al., 2016). In addition, they observed that 

plasma corticosterone levels were higher in the noise-exposure group than the control 

immediately after noise exposure. However, when measured again three months, the plasma 
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corticosterone level returned to normal. Superoxide dismutase, an enzyme that breaks down 

toxic oxygen radicals, and malondialdehyde, a marker of lipid peroxidation, were also 

elevated in the hippocampus immediately after noise exposure but recovered within one 

month. Using a similar noise-exposure paradigm, Liu et al. also evaluated the effect of 

noise-induced hearing loss on spatial learning and memory using the MWM task, as well 

as a battery of other measures of hippocampal tissue health (Liu et al., 2018). Similar to 

their 2016 study, mice exhibited diminished learning on the MWM task. They also found 

that noise exposure diminished the ability of training to rescue proliferating hippocampal 

neurons, diminished morphological complexity as well as a reduced transcription of 

immediate-early genes in the hippocampus while not altering the bank of hippocampal stem 

cells. Collectively, these data point to an ability of noise exposure to diminish the capacity 

for the hippocampus to produce new neurons, which may limit its ability to effectuate plastic 

changes in its synaptic organization in response to changing environmental demands.

3.0 The impact of subacute noise exposure

3.1 Subacute noise exposure and hippocampal function:

Several studies examined the impact of subacute noise exposure on hippocampal 

neurotransmitter levels and receptor expression. For example, Cui et al. (2009) and (2013) 

examined the effects of subacute noise exposure on spatial memory in Sprague-Dawley 

rats (using the MWM task), and its associated anatomical and biochemical changes 

in the hippocampus (specifically looking at its effect on NMDA Receptor 2B and tau 

phosphorylation) (Cui et al., 2009; Cui et al., 2013). The 2009 study showed that 30 

days of noise exposure (100 dB white noise for 4 hours/day) significantly decreased 

spatial learning and memory performance compared to control. The rats underwent amino 

acid neurotransmitter (glutamic acid, GABA, aspartic acid, and glycine) assays from 

hippocampal tissue homogenates immediately after the last noise exposure. Brain sections 

were also evaluated by Nissl staining and immunohistochemistry was performed for NR2B. 

The researchers found that the concentration of glutamic acid increased significantly in the 

noise-exposure group, and that GABA decreased significantly. They also found the mean 

optical density of Nissl bodies (a marker of protein synthesis) to be reduced in CA1, dentate 

gyrus, and CA3 of the hippocampus, as well as significantly decreased expression of NR2B 

in those regions. They concluded that the impaired spatial memory in the noise-exposed 

animals may be related to excitotoxicity and reduced NR2B expression, and a diminishment 

in protein synthesis. Using a similar noise exposure paradigm, Cui et al. (2013) studied the 

effect of subacute noise exposure on the subsequent expression of NMDA receptor and tau 

phosphorylation in the hippocampus of rats. The authors again observed diminished NR2B 

expression along with an increase in tau hyperphosphorylation as well as TUNEL-positive 

neurons in the hippocampus of noise-exposed rats, suggesting that noise-induced NMDA 

receptor downregulation as well as hippocampus apoptosis.

In another study examining the impact of subacute noise exposure on hippocampal 

neurochemistry, Chengzhi et al. (2011) exposed rats to moderate (80 dB) or severe (100 

dB) noise for 30 days and evaluated the level of monoamine neurotransmitters in the 

hippocampus at one day or 40 days post-exposure (Chengzhi et al., 2011). They observed 
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that the noise-exposure groups failed to reach the same level of performance as the normal 

controls in the MWM task and also found that the noise-exposed rats had a dose-dependent 

decrease in levels of dopamine, norepinephrine, and serotonin in their hippocampus. The 

researchers also found that the reduction in the neurotransmitters and impaired water maze 

task did recover over time; on the 30th day after noise-exposure the 80 dB SPL group 

was not different the controls, and by day 40, the 100 dB SPL group also showed no 

differences than control. The authors conclude that their study shows that noise-exposure 

does induce cognitive difficulties, but that these recovered over time in parallel with changes 

in dopamine, norepinephrine and serotonin in the hippocampus. These changes in dopamine 

and serotonin are likely related to an increase in their turnover, as Haider et al., observed 

an increase in serotonin and dopamine metabolites in the hippocampus in parallel with a 

decline in memory function (Haider et al., 2012).

Several studies examined the impact of subacute noise exposure on hippocampal stem 

cells as well as metrics of hippocampal tissue health. For example, Cheng et al. (2011) 

investigated the effect of moderately intense white noise exposure (80 dB SPL for 2h/day) 

on learning and memory in Kunming mice (Cheng et al., 2011). They also measured 

the levels of oxidative stress and phosphorylated-tau in the inferior colliculus, auditory 

cortex, and hippocampus, as these structures make up the acoustic lemniscal ascending 

pathway. They found that the latencies to find the platform in the MWM in the 1 and 

3-week noise-exposed groups were significantly longer and that the swimming paths of 

the noise-exposed mice groups were longer and more complicated than the controls. They 

also found evidence of oxidative damage in the inferior colliculus, auditory cortex and 

hippocampus, as evidenced by a drop in the superoxide dismutase/malondialdehyde ratio, 

and found that this drop was strongest in the hippocampus. Consistent with several other 

studies referenced above, they observed an increase in hyperphosphorylated tau protein 

and a decline in unphosphorylated tau in the hippocampus. A subsequent study from the 

same group further investigated the structural and functional effects of noise exposure on 

the auditory cortex and hippocampus of mice (Cheng et al., 2016). Mice were exposed 

to moderate-intensity noise (80 dB SPL noise (10Hz-10kHz) for 2 hours per day for 1–3 

weeks), and then evaluated which brain region (auditory cortex or hippocampus) is more 

susceptible to this noise damage by measuring malondialdehyde and superoxide dismutase 

activity as well as tau phosphorylation. The investigators studied three week-old Kunming 

mice, divided into 4 groups, those exposed to one week to noise and their control, and then 

those exposed to three weeks of noise and their associated control. The authors found that 

there was significant peroxidation and tau hyperphosphorylation in the hippocampus of the 

mice with one or three weeks of noise exposure. The auditory cortex did not show any 

significant changes until three weeks of exposure to noise (Figure 3). The authors conclude 

that the hippocampus is more vulnerable to noise-related damage than the auditory cortex.

3.2 Subacute noise and hippocampal neurogenesis:

Similar to the acute noise exposure data, several studies reported that subacute noise 

exposure leads to diminished hippocampal neurogenesis. For example, Jauregui-Huerta 

et al. examined the impact of environmental noise exposure and its long-term effect on 

hippocampal cell proliferation (Jáuregui-Huerta et al., 2011). They exposed the 21-day old 
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male Wistar rats for 15 days to an audiogram-fitted adaptation to a noisy environment. The 

noise ranged from 70 dB SPL for background to 85–103 dB SPL for the noisy events. 

Two months later they sacrificed the rats and evaluated the hippocampal cell proliferation 

using immunohistochemical analysis with 5’bromodeoxiuridine as a marker. They also 

used blood samples from the rats to evaluate peripheral corticosterone levels immediately 

after noise exposure. They found that noise-exposure increased corticosterone at day 1, but 

not day 54 post-exposure, but decreased bromodeoxyuridine-positive cells in the dentate 

gyrus and CA3 of the hippocampus at 54 days post-exposure. More recently, Shukla et al. 

examined Sprague-Dawley that underwent noise-exposure with 100 dB SPL white noise for 

2 hours per day for 15 days (Shukla et al., 2019). They found that the rats that underwent 

noise-exposure had longer latencies and longer path lengths on MWM testing as well as 

diminished DCX- and Ki67 positive cells in the hippocampus, consistent with previous work 

showing that acute noise exposure causes diminished hippocampal neurogenesis (Kraus et 

al., 2010; Liu et al., 2016; Liu et al., 2018; Tao et al., 2015).

Whereas virtually all studies on noise exposure and its effects on hippocampal function had 

focused on the impact over relatively short durations (hours to weeks post-exposure), two 

studies by Park et al. examined the impact of noise exposure 6–12 months post-exposure 

(Park et al., 2016; Park et al., 2018). In the 2016 study, 24 male C57BL/6J 1 month old 

mice were exposed to continuous white noise at 100 dB SPL for 60 min daily for a 20 

day period. At 6 months post-noise exposure, animals showed increased total trial time and 

working memory errors and lowered correct entry ratios on RAM, as well as diminished 

discrimination index measured using novel object recognition. The 2018 study extended the 

follow-up of the mice to 9 and 12 months to evaluate the long-term effects of noise-induced 

hearing loss on cognition, and also examined hippocampal phosphorylated tau expression 

and lipofuscin in the noise-exposed mice. Performance on RAM (working memory errors 

and correct entry ratios) worsened up to 9 months post-exposure, then improved for working 

memory errors at 12 months. Discrimination index on novel object recognition was worse 

at 12 months post-exposure in the noise compared to the control group. The finding that the 

working memory impairment was reversible, but that recognition memory dysfunction was 

permanent, suggests that the effects of noise on different aspects of cognition are separable. 

After the behavioral tests at 12 months, they observed that the noise-induced hearing loss 

mice exhibited higher levels of phosphorylated tau and large lipofuscin granule area (a 

marker of brain aging (Mann et al., 1974; Moreno-García et al., 2018)) in the hippocampus.

4.0 Acute vs. subacute noise exposure

Several studies examined the impact of both acute and subacute noise exposure on 

hippocampal function. Manikandan et al., measured the impact of 1, 15 or 30 days of noise 

stress on memory alteration by examining RAM performance, brain antioxidant levels, free 

radical scavenging enzyme activity, and plasma corticosterone in rats (after the noise-stress 

for different durations), as well as performing a dendritic count of the medial prefrontal 

cortex and hippocampus 30 days following noise stress (Manikandan et al., 2006). The 

investigators found that the working and reference memory errors increased significantly 

in the noise-exposed rats compared to the controls, though did not differentiate based on 

duration of noise exposure. They also found that noise-exposed mice had increased plasma 
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corticosterone levels, increased hippocampal lipid peroxidation, superoxide dismutase, 

glutathione peroxidase, catalase and acetylcholinesterase after one day of noise stress. 

All of these values gradually diminished towards normal values as the duration of noise 

exposure increased from 1, to 15 and then to 30 days. Hippocampal levels of glutathione 

(an antioxidant), remained low across all time points, though the 15 and 30 day values were 

not significantly lower than baseline. These data suggest that adaptation to chronic noise 

exposure occurs, and is reflected in metrics of psychological and oxidative stress.

Uran et al. examined Wistar rats that were split into 3 groups: control, acute noise exposure 

and subacute noise exposure (Urán et al., 2010). Acute noise exposure consisted of loud 

noise (95–97 dB) for a single 2 hour session, while subacute exposure was the same, but 

was daily for 15 days. At 30 days, both groups of rats committed more errors on a RAM 

test, but the rate of learning the task was lower in the subacute group. The subacute group 

also made more errors in an open field test. They also measured oxidative status markers 

in the hippocampus, specifically brain reactive oxygen species levels and free scavenging 

antioxidant enzyme activities (catalase and superoxide dismutase) immediately after the last 

noise exposure. They found acute noise led to a decrease in hippocampal reactive oxygen 

species, an increase in superoxide dismutase and an increase in catalase and that each of 

these values trended towards normalizing in the subacute group. The investigators concluded 

that their findings point to dysregulated hippocampal oxidative stress mechanisms in the 

generation of learning and memory deficits. In an additional study from the same group 

male Wistar rats were exposed to noise at 95–97 dB SPL for 2 hours daily either for 1 

day in the acute noise exposure group, or between postnatal days 15–30 for the subacute 

noise exposure group (Urán et al., 2012). They subsequently evaluated the rats’ memory 

in different hippocampal-dependent tasks, such as habituation memory retention in an open-

field device, and object recognition device to test recognition memory. They observed that 

there were significant behavioral abnormalities on the short-term and long-term habituation 

and object recognition tasks in both exposure groups. They also observed that acute noise 

exposure increased the number of total (small increase) and pyknotic (large increase) cells 

in the CA1 and CA3 regions of hippocampus. Subacute exposure increased total cells in 

CA3 and DG and increased pyknotic cells only in CA3. The generally milder effects on 

hippocampal pyknosis of subacute exposure compared to acute exposure suggests that some 

compensation occurs over the multiple days of noise stress.

5.0 Potential mechanisms linking hearing loss and general cognitive 

dysfunction

5.1 Noise exposure and hippocampal tissue health:

Multiple potential mechanisms have been proposed to explain how a lesion in the peripheral 

auditory system can lead to poor performance on non-auditory dependent tasks (Jafari 

et al., 2019a; Shen et al., 2018). For example, several of the studies described above 

suggest that noise exposure leads to an increase in oxidative stress in the hippocampus. 

Oxidative stress reflects a shift in tissue redox state towards oxidation leading to the 

uncontrolled production of oxygen free radicals and the inability to neutralize them with 

endogenous antioxidant compounds, such as glutathione. We have previously shown that the 
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hippocampus is particularly prone to hearing loss-related oxidative stress that is associated 

with aging, and that hippocampal sensitivity is greater than the auditory cortex (Stebbings 

et al., 2016a; Stebbings et al., 2016b). This enhanced vulnerability to oxidative stress of the 

hippocampus compared to auditory structures is consistent with the studies reviewed above 

by Cheng et al. (Cheng et al., 2011; Cheng et al., 2016) which both showed a drop in the 

enzyme superoxide dismutase and increase in malondialdehyde in the hippocampus to a 

greater degree than the auditory cortex. The hippocampus may be particularly vulnerable to 

oxidative stress in general (El Mohsen et al., 2005; Huang et al., 2015), possibly because 

of the use of reactive oxygen species as a normal part of hippocampal function (Hidalgo 

et al., 2016). Several studies reviewed above have revealed that noise-induced hearing loss 

alters markers of oxidative stress in the hippocampus (Cheng et al., 2011; Cheng et al., 2016; 

Manikandan et al., 2006; Urán et al., 2010) though the mechanism by which hearing loss 

induces this shift in redox state is not clear. Noise-induced hearing loss causes significant 

tissue damage to the peripheral hearing apparatus, and may lead to an upregulation of 

reactive inflammatory changes in the central nervous system (Wang et al., 2019) which may 

cause a shift in the redox state, leading to hippocampal damage. Psychological stress, as 

manifested by an increase in plasma corticosterone levels, can also lead to a shift in the 

brain redox state (Liu et al., 1994; Spiers et al., 2015). Elevated plasma glucocorticoid levels 

can also independently interfere with hippocampal function (Joëls et al., 2004; Kim et al., 

2015). Several studies listed in Table 1 revealed an increase in plasma resting or reactive 

corticosterone or receptor expression in the hippocampus after noise-exposure (Gai et al., 

2017; Hayes et al., 2019; Jáuregui-Huerta et al., 2011; Liu et al., 2016; Manikandan et al., 

2006; Shukla et al., 2019), suggesting that psychological stress, either via its effects on 

hippocampal redox state and/or via direct effects on hippocampal neurons, may have led 

to hippocampal dysfunction. We do note, however, that mice with aging-related changes in 

hearing and never exposed to a loud sound show some similar changes to those seen in noise 

exposed animals such as increased hippocampal NR2B expression and disrupted spatial 

memory (Beckmann et al., 2020). This finding argues against noise-induced psychological 

stress as the only cause of these hippocampal changes.

Related to the findings of elevations in peripheral markers of psychological stress and 

shift in redox state are the studies showing alterations in the levels of glutamate and 

NMDA receptor expression in the hippocampus. Elevations of glutamate are known to 

lead to excitotoxicity, possibly via excessive stimulation of NMDA receptors, and excessive 

glutamate signaling can lead to a shift in neuronal redox potential (Hasel et al., 2015). 

Alternatively, a shift in redox potential may lead to an accumulation of extracellular 

glutamate (Robert et al., 2014). In the studies reviewed above, acute or subacute noise 

exposure led to an increase in hippocampal glutamate (Cui et al., 2009; Cui et al., 2012). 

In addition, the acute noise exposure paradigm led to an increase in NR2B expression (Cui 

et al., 2012), whereas the two subacute exposure studies observed a decrease (Cui et al., 

2009; Cui et al., 2013), suggesting that these receptors may be downregulated over time after 

excessive exposure to glutamate.

Arguing against the role of noise-induced elevations of cortisol, shift in redox state or 

excitotoxicity as mechanisms leading to noise-induced hippocampal dysfunction are the 

time courses of these changes. In most cases when serial measurements have been made 
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after the onset of noise trauma these markers have normalized over time, often despite 

persistent deficits in assays of learning and memory (Jáuregui-Huerta et al., 2011; Liu et 

al., 2016; Manikandan et al., 2006; Urán et al., 2010; Urán et al., 2012). These data suggest 

that an initial burst of excitotoxic activity and/or oxidative stress may trigger longer-lasting 

hippocampal dysfunction leading to more chronic deficits in learning in memory. To this 

end, a number of investigators have identified structural changes in the hippocampus that 

may be responsible for chronic hippocampal dysfunction after noise exposure. One specific 

change observed across several studies has been the decline in hippocampal neurogenesis 

after noise exposure (Jáuregui-Huerta et al., 2011; Kraus et al., 2010; Tao et al., 2015). 

Adult-born hippocampal neurons are thought to be important for learning and memory 

(Deng et al., 2010; Shors et al., 2001). Hippocampal neurogenesis is also vulnerable to 

psychological stress (Gould et al., 1999; Schoenfeld et al., 2012), oxidative stress (Huang 

et al., 2012) as well as excitotoxic stress (Faiz et al., 2005). Thus, it is possible that the 

diminishment in hippocampal neurogenesis seen after noise exposure is a consequence of 

the psychological, oxidative and/or excitotoxic stress observed in the hours to days after 

noise exposure.

In addition to the decline in hippocampal neurogenesis, other long-term structural effects are 

seen in the hippocampus after noise exposure. For example, noise induced an increase in the 

number of pyknotic nuclei in the hippocampus (Urán et al., 2012) which is a sign that cells 

are undergoing either necrosis or apoptosis. Similar findings were seen in Cui et al. (2013). 

In addition, morphological changes, such as a decrease in hippocampal neuronal dendritic 

complexity, were also seen after noise exposure (Liu et al., 2018). These effects are likely a 

consequence of the various forms of acute toxicity described above, and may be responsible 

for the cognitive deficits which appear to outlast the acutely toxic effects of noise.

An intriguing set of findings with respect to the epidemiological data linking hearing 

loss to AD are those studies that have identified an increase in phosphorylated tau in the 

hippocampus after noise exposure (Cheng et al., 2011; Cheng et al., 2016; Cui et al., 2012; 

Cui et al., 2013; Park et al., 2018). Deposition of hyperphosphorylated tau is a pathological 

hallmark of AD and the levels of tau deposition are correlate more strongly with cognitive 

decline in AD than other markers such as amyloid beta deposition (Nelson et al., 2007; 

Nelson et al., 2012). Tau hyperphosphorylation in Alzheimer Disease is generally felt to 

occur in the middle or late stages of the pathologic cascade leading to Alzheimer Disease 

(Hampel et al., 2015; Karran et al., 2011), and thus may be a consequence of other toxic or 

metabolic insults, such as the accumulation of amyloid beta or other molecules. Consistent 

with this idea is the finding that tau hyperphosphorylation is seen across a number of 

neurologic diseases (Arendt et al., 2016; Kovacs, 2018), and can be seen in the setting of 

high stress and glucocorticoid levels (Dey et al., 2017; Rissman et al., 2007), hypothermia 

(Bretteville et al., 2012; Planel et al., 2007) or diabetes models (Gonçalves et al., 2019; 

Morales-Corraliza et al., 2016), suggesting that it reflects a response to metabolic stress. In 

support of the notion that phosphorylation of tau is a consequence of more acute excitotoxic 

injury to the hippocampus is the finding that systemic exposure to MK-801, an antagonist 

at the NMDA receptor, inhibits hippocampal tau phosphorylation after noise exposure (Li 

et al., 2014). Thus, the noise-induced increases in hippocampal phosphorylated tau, which 
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are seen at least 12 months post-exposure, are likely caused by the acute injuries to the 

hippocampus detailed above.

5.2 Noise exposure and auditory-hippocampal circuitry:

In addition to the structural lesions to the hippocampus described above, noise exposure 

may cause circuit-level disruptions in the interactions between the auditory system and 

the hippocampus. An important question in this context is whether noise-exposure in the 

studies cited in Table 1 led to significant hearing loss, since the human epidemiological 

data reviewed above reflect an association between hearing loss, not noise exposure per se, 

and dementia. Unfortunately, most studies did not measure peripheral hearing function after 

noise exposure (last column of Table 1). However, those that did observed significant loss 

of hearing function (generally at least 20 dB threshold elevations) and the two studies that 

compared the magnitudes of hearing loss and behavioral metrics of hippocampal function on 

a per-animal basis found significant correlations between the two (Liu et al., 2016; Tao et al., 

2015). These data suggest that loss of auditory input, rather than the stress of noise-exposure 

only, is a significant driver of hippocampal dysfunction.

It is well-established that hearing loss causes a cascade of changes in the auditory system. 

For example, noise-induced hearing loss induces increases in spontaneous activity as well 

as broadening of frequency tuning throughout the central auditory system (Barsz et al., 

2007; Jastreboff et al., 1986; Ma et al., 2006; Seki et al., 2002; Seki et al., 2003; Zhang 

et al., 1998). Other changes are also seen, such as downregulation of synaptic inhibition 

and increases in burst firing activity (Ibrahim et al., 2019; Mossop et al., 2000; Pilati et 

al., 2012; Stebbings et al., 2016a; Takesian et al., 2012). It is also known that neurons in 

the hippocampus respond to acoustic stimuli (Moita et al., 2003; Xiao et al., 2018) and 

that auditory evoked potentials can be evoked in the hippocampus (Bickford-Wimer et al., 

1990; Moxon et al., 1999). However, the pathways by which auditory information reaches 

the hippocampus are not entirely clear. Multiple pathways have been identified. A lemniscal 

pathway that comprises projections from the auditory cortex to the entorhinal cortex that 

then projects to the hippocampus has been proposed (Budinger et al., 2009; Germroth et 

al., 1989; Moxon et al., 1999; Steward, 1976). Additional pathways involving projections 

from the cochlear nucleus to the brainstem reticular formation and then to the medial septum 

en route to the hippocampus have also been proposed, as have others involving multimodal 

cortical areas (Moxon et al., 1999; Munoz-Lopez et al., 2010; Zhang et al., 2018). Finally, 

acoustic information can travel from either the medial portions of the auditory thalamus 

(Bordi et al., 1994; LeDoux et al., 1985; Patel et al., 2017) or secondary auditory cortex 

(Tsukano et al., 2019) to the basolateral amygdala. The basolateral amygdala does not have 

direct projections to the regions of the dorsal hippocampus that are important for the spatial 

memory tasks outlined above, but projects to the medial entorhinal cortex, which may then 

influence hippocampal spatial memory (Wahlstrom et al., 2018), see Figure 4 for a summary 

of potential pathways. Given the alteration in spontaneous and driven spiking properties 

of auditory system neurons that ultimately project to the hippocampus, it is likely that 

hippocampal function is perturbed after noise exposure, independently of the hippocampal 

tissue toxicity mechanisms described above. However, we are not aware of any studies, 
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outside of Goble et al. 2009 that have examined the electrophysiological properties of 

hippocampal neurons after hearing loss.

It is also possible that noise may cause functional alterations by altering thalamocortical 

rhythms associated with sleep. For example, Rabat et al. examined the effects of chronic 

exposure of environmental noise on long-term memory and linked these behavioral 

problems to sleep disturbances related to environmental noise in rats (Rabat et al., 2006). 

The long-term memory performance was evaluated using a novel spatial exploration assay, 

before and 9 days following environmental noise exposure. The investigators also evaluated 

the effect of noise-exposure on sleep disturbance by using EEG recordings with surgically 

implanted electrodes. The investigators observed deficits after the chronic environmental 

noise exposure with interindividual vulnerability that was determined based on the animal’s 

response to novelty. They found that the long-term memory deficits correlated to both a 

loss of slow wave sleep and slow wave sleep bout duration, suggesting that a potential 

mechanism of noise effects on general cognition is via disruption of slow-wave sleep. 

It is also possible that sleep disruption is simply a marker for psychological stress and 

glucocorticoid increases, which may be the real mediator. Further studies here are necessary.

6.0 Conclusions and open questions:

Here, we have described a likely cascade of events that leads to hippocampal dysfunction 

after noise exposure and hearing loss. Noise exposure itself is a destructive force and the 

process of being noise-exposed likely produces substantial psychological stress. Therefore, 

in the early period (hours) after noise exposure, there is likely a toxic milieu that is 

induced that includes central nervous system inflammation, high levels of circulating 

glucocorticoids, an oxidative shift in hippocampal neuronal redox state and excitotoxic 

elevations of hippocampal glutamate. As a consequence of this toxic milieu, hippocampal 

neurogenesis is downregulated, neuronal tau proteins become hyperphosphorylated and a 

sub-population of hippocampal neurons undergo apoptosis, leading to poor performance on 

hippocampal-based memory tasks (Figure 5).

Although this proposed sequence of events may help explain some of the rodent behavioral 

data showing that noise exposure causes hippocampal dysfunction, many questions remain. 

For example, it is not at all clear whether the key factor that incites plastic changes in the 

hippocampus is the noise trauma itself, and the related tissue destruction within the cochlea 

(and/or the psychological trauma from the noise exposure) or the sensory deprivation that 

occurs as a consequence of the trauma. In the epidemiological link between hearing loss 

and AD, in most cases there is no trauma – only a gradual loss of peripheral auditory 

function related to aging. Indirect evidence suggestive that sensory deprivation is a key 

factor is the finding that an intervention that protected hair cells and peripheral hearing 

(the adenosine A2A agonist CGS21680), also protected the hippocampus from noise damage 

(Shukla et al., 2019). Other studies that are suggestive of an independent role of hearing 

loss are those that showed a correlation between the degree of hearing loss and the degree 

of behavioral impairment (Liu et al., 2016; Tao et al., 2015). Of course, these studies are 

also confounded because the degree of hearing loss is related to the degree of cochlear tissue 

destruction. What will be necessary to answer the question of noise-related tissue destruction 
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vs. sensory deprivation is to non-destructively induce auditory deprivation such as with the 

use of ear plugs (Caras et al., 2015; Mowery et al., 2015) and then examine performance on 

non-auditory dependent behavioral tasks.

Another limitation in the ability to extrapolate the above-reviewed studies to the potential 

connection between hearing loss and AD is that the vast majority of studies established 

a relatively short term relationship (hours to weeks) that generally showed improvement 

over time. That is, most subjects showed gradual recovery in their non-auditory memory 

function. The few studies that examined long-term effects (up to 12 months) also showed 

partial recovery, but also used aggressive means to lesion the hearing apparatus (110 dB 

SPL noise for 60 min day × 20 days (Park et al., 2016; Park et al., 2018)). None of the 

studies reviewed above showed that hearing loss induced a progressive cognitive syndrome 

akin to a neurodegenerative process. Thus, it may be that hearing loss on its own may not 

be enough to induce a progressive neurodegenerative syndrome. That is, a second “hit” may 

be necessary, such as noise exposure to an aging animal or an animal engineered to express 

mutant human apolipoprotein or over-produce amyloid beta or to hyperphosphorylate tau. 

To that end, a useful approach may be to induce hearing loss in a mouse engineered to 

have one “hit” (e.g., overexpression of amyloid beta or tau) and to induce a hearing loss 

(the second “hit”) and to examine long-term consequences in terms of cognition. Over the 

past 25 years, there have been dozens of mouse models of AD that have been introduced 

to the literature. Early models only expressed single mutated genes that produce amyloid 

beta (Games et al., 1995; Hsiao et al., 1996), while later models were engineered to 

overproduce amyloid beta and tau (Oakley et al., 2006; Oddo et al., 2003), while several 

other models do not contain mutations that directly influence amyloid beta or tau, but 

may lead to their deposition (Lester-Coll et al., 2006; Park et al., 2007) as well as other 

models that have mutations for combinations of risk factors for both sporadic and familial 

AD (Holtzman et al., 2000; Youmans et al., 2012). Unfortunately, very little work has yet 

been done to examine the impact of hearing loss in these animals from the perspective of 

accelerating a neurodegenerative phenotype. Recent work has been done to show that either 

prenatal noise exposure (Jafari et al., 2019b; Jafari et al., 2019c) or adult cochlear ablation 

in the setting of excess amyloid-beta (Chang et al., 2019) appear to worsen AD-related 

and hippocampal pathology. None of these studies, however, established that a progressive 

degenerative disorder was induced by hearing loss. Finally, most (19 out of 24) of the studies 

reviewed above were done in males. Given the female predominance for risk of cognitive 

decline in AD (Buckley et al., 2018; Fisher et al., 2018; Podcasy et al., 2016), and the 

male predominance of ARHL (Hong et al., 2015; Raynor et al., 2009; Roth et al., 2011), 

it will be important to know if sex plays a role in the likelihood of hearing loss leading 

to hippocampal dysfunction. Therefore, additional studies in older animals and/or disease 

models, in male and female animals, and/or use of a less destructive means to diminish 

hearing, will be useful to understand the interactions between noise exposure, auditory 

deprivation and pre-existing pathology that potentially lead to AD.
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Highlights

• Aging-related hearing loss and Alzheimer Disease are epidemiologically 

linked

• We review the literature examining a potential causal association between the 

two

• There is ample evidence that noise and hearing loss lead to hippocampal 

dysfunction

• Noise-induced excitotoxic and oxidative stress cause hippocampal structural 

changes

• Future directions for research in this area are discussed
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Figure 1: 
Kaplan-Meier curve illustrating the likelihood of developing dementia in elderly men 

without a previous diagnosis of dementia that either had normal hearing (blue line) or had 

hearing loss (based on diagnosis codes, brown line) at study entry. Rates of development of 

dementia were adjusted for age and aging-associated comorbidities such as cardiac disease, 

respiratory disease, gastrointestinal or kidney disease as well as cancer. The adjusted Hazard 

Ratio for developing dementia was 1.69. Data obtained with permission from (Ford et al., 

2018).
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Figure 2: 
Example of heatmaps of place cell activity overlaid with the rodent’s behavioral path (thin 

black line) and single unit firing of place cells (black squares) before (left) and 2, 4 and 6 

hours after noise exposure (4 kHz tone at 104 dB SPL for 30 min). Note that novel place 

fields arose at sites A and B after noise exposure. Reproduced with permission from (Goble 

et al., 2009).

Nadhimi and Llano Page 23

Hear Res. Author manuscript; available in PMC 2022 July 29.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 3: 
Density analysis taken from Western blots of hippocampal tissue probed with an antibody 

against the phosphorylation site at Serine 396 of tau. Levels were normalized to the tau 

levels in the control group and done with three replicates. Error bars represent the standard 

deviation. **p<0.001 compared to control. Reproduced with permission from (Cheng et al., 

2016).
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Figure 4: 
Diagram of potential pathways by which sound (or the absence of sound) can influence 

the hippocampus. A canonical pathway exists that takes information from the inner hair 

cell, through the traditional ascending auditory pathway to the auditory cortex, then reaches 

hippocampus via entorhinal cortex (red). Two alternatives involve either the amygdala or 

non-auditory heteromodal cortex (pink). A non-canonical pathway, sometimes referred to as 

a “reticulo-limbic” pathway is shown in green.
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Figure 5: 
Proposed sequence of events that leads to hippocampal dysfunction after noise exposure. 

Noise exposure leads to an acute increase in circulating glucocorticoids and increases 

in hippocampal oxidative and excitotoxic stress. These changes led to a decrease in 

hippocampal neurogenesis, diminished synaptic connectivity within the hippocampus and 

increased tau phosphorylation and the associated diminished performance in hippocampal-

based tests such as the MWM and RAM.
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