Skip to main content
. 2022 Jul 15;3:926627. doi: 10.3389/fragi.2022.926627

TABLE 3.

Potential therapeutics for RPE Aging and AMD through restoring mitochondrial function.

Compound Functions References
Humanin Reduce pro-apoptosis gene expression levels Nashine et al. (2017)
Prevent the loss of AMD mitochondria
Protect oxidative-stress induced RPE cell death and senescence Sreekumar et al. (2016)
Prevent oxidative stress-induced decrease in mitochondrial bioenergetics
Increase mitochondrial DNA copy number
Upregulate the expression of mitochondrial transcription factor A
Resveratrol Improve cell viability (King et al., 2005; Sheu et al., 2010; Sheu et al., 2013; Nashine et al., 2020; Neal et al., 2020) (Borra et al., 2005)
Decrease ROS level
Stimulate mitochondrial bioenergetics
Induce autophagy, pro-survival and specific anti-inflammatory response Josifovska et al. (2020)
Suppress choroidal neovascularization Nagai et al. (2014)
Activate SIRT1, a key regulator of cellular senescence, aging and longevity Borra et al. (2005)
Chrysoeriol Diminish mitochondrial dysfunction Kim et al. (2021a)
Prevent ROS accumulation
Enhance expression of anti-oxidative genes
Attenuate oxidative stress-induced mitochondrial membrane potential loss
Necrostatins Protect oxidative stress-induced RPE cell death in vitro and in vivo (Hanus et al., 2015; Hanus et al., 2016)
Recover mitochondrial dysfunction and reduce ROS production in response to necroptosis inducer TNFα or acetaminophen (Ye et al., 2012; Takemoto et al., 2014)
PU-91 Upregulate PGC-1α Nashine et al. (2019)
Increase mtDNA copy number
Upregulate the genes involved in mitochondrial biogenesis pathway
Increase mitochondrial membrane potential
Decrease the level of mitochondrial superoxide
Upregulate SOD2 expression level
TPP-Niacin Ameliorate H2O2-induced Mitochondrial dysfunction and mitochondrial membrane potential reduction Kim et al. (2021b)
Enhance the expression of transcription factors (PGC-1α and NRF2) and antioxidant-associated genes (HO-1 and NQO-1)
ZLN005 Upregulate of PGC-1α and its associated transcription factors, antioxidant enzymes, and mitochondrial genes Satish et al. (2018)
Increase basal and maximal respiration rates, and spare respiratory capacity
AICAR, Metformin, Trehalose Maintain RPE mitochondrial function by activating AMPK pathway and boost autophagy (Zhao et al., 2020) (Ebeling et al., 2022)
Rapamycin Inhibit mTOR and activate autophagy (Huang et al., 2019; Go et al., 2020)
Nicotinamide mononucleotide (NMN) Improve mitochondrial functions including basal respiration, maximal respiration, spare respiratory capacity and ATP production Ebeling et al. (2020)
Elamipretide Reduce RPE cell death and senescence. Under phase II clinical trail Mettu et al. (2022)
α-Lipoic acid (LA) Protect against an acute acrolein-induced RPE cell death Jia et al. (2007)
Prevent mitochondrial membrane potential decrease
Inhibit generation of intracellular oxidants
Prevent the intracellular SOD decrease
Protect mitochondrial complex I, II, and III activity
Increase intracellular total antioxidant power in RPE cells
Melatonin Protect human RPE cells against cytotoxic effects of H2O2 Rosen et al. (2012)
Protect of mtDNA of ARPE-19 cells against H2O2-induced damage Liang et al. (2004)
SkQ1 Prevent progression of retinopathy and suppressed atrophic changes in the RPE cells in the senescence-accelerated OXYS rats (Muraleva et al., 2014; Muraleva et al., 2019; Telegina et al., 2020)

Abbreviations: RPE, retinal pigmented epithelial; AMD, Age-related macular degeneration; ROS, reactive oxygen species; POS, photoreceptor outer segments; BrM, Bruch’s membrane; IL, interleukin; TNF, tumor necrosis factor; IFN, interferon; TGF, transforming growth factor; TCA, tricarboxylic acid; ER, endoplasmic reticulum; ATP, adenosine triphosphate; mtDNA, mitochondrial DNA; NAD, nicotinamide adenine dinucleotide; GTPase, Guanosine triphosphatases; MFN, mitofusins; Opa1, Optic atrophy 1; Drp1, Dynamin-related protein 1; PGC, Peroxisome proliferator-activated receptor gamma coactivator; NRF, nuclear respiratory factors; TOM, translocase of the outer membrane; Pink1, PTEN-induced putative kinase 1; AMPK, Adenosine5′-monophosphate (AMP)-activated protein kinase; LC3, Microtubule-associated protein 1 light chain 3; TEM, transmission electron microscopy; MT/LT, MitoTracker/LysoTracker; PUFA, polyunsaturated fatty acids; UV, ultraviolet; EMT, Epithelial-mesenchymal transition; GA, geographic atrophy; SD-OCT, spectral domain optical coherence tomography; TUNEL, Terminal deoxynucleotidyl transferase dUTP, nick end labeling; iPSC, induced pluripotent stem cell; NLRP3, NLR, Family Pyrin Domain Containing 3; mtHsp, mitochondrial heat shock protein; CFH, Complement factor H; SIRT1, Sirtuin 1; mTOR, mammalian target of rapamycin; NRF2, Nuclear factor erythroid 2-related factor 2; OXPHOS, oxidative phosphorylation; Fis1, Mitochondrial fission 1 protein; CSE, cigarette smoke extract; PGAM5, Phosphoglycerate mutase 5; H2O2, hydrogen peroxide; ΔΨm, Mitochondrial membrane potential; MOMP, mitochondrial outer membrane permeabilization; BCL-2, B-cell lymphoma 2; BAK, BCL-2, antagonist/killer; BAX, BCL-2–associated X; SMAC, Second mitochondria-derived activator of caspase; MPTP, mitochondrial permeability pore; GSDMD, Gasdermin D; CoQH2, ubiquinol; FSP1, Ferroptosis Suppressor Protein 1; GPX4, Glutathione peroxidase 4; A2E, N-retinylidene-N-retinyl-ethanolamine; tBHP, tert-butyl hydroperoxide; NaIO3, sodium iodate; TXNIP, Thioredoxin-interacting protein; Nec-1, Necrostatin-1; RIPK1, Receptor Interacting Serine/Threonine Kinase 1; PPAR; Peroxisome proliferator-activated receptors; TPP, triphenylphosphonium; AICAR, 5-Aminoimidazole-4-carboxamide ribonucleotide; NMN, nicotinamide mononucleotide; LA, α-Lipoic acid; SkQ1, Plastoquinonyl-decyl-triphenylphosphonium.