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Abstract

In recent work, Wang et al introduced the “Sum of Single Effects” (SuSiE) model, and

showed that it provides a simple and efficient approach to fine-mapping genetic variants

from individual-level data. Here we present new methods for fitting the SuSiE model to sum-

mary data, for example to single-SNP z-scores from an association study and linkage dis-

equilibrium (LD) values estimated from a suitable reference panel. To develop these new

methods, we first describe a simple, generic strategy for extending any individual-level data

method to deal with summary data. The key idea is to replace the usual regression likelihood

with an analogous likelihood based on summary data. We show that existing fine-mapping

methods such as FINEMAP and CAVIAR also (implicitly) use this strategy, but in different

ways, and so this provides a common framework for understanding different methods for

fine-mapping. We investigate other common practical issues in fine-mapping with summary

data, including problems caused by inconsistencies between the z-scores and LD esti-

mates, and we develop diagnostics to identify these inconsistencies. We also present a new

refinement procedure that improves model fits in some data sets, and hence improves over-

all reliability of the SuSiE fine-mapping results. Detailed evaluations of fine-mapping meth-

ods in a range of simulated data sets show that SuSiE applied to summary data is

competitive, in both speed and accuracy, with the best available fine-mapping methods for

summary data.

Author summary

The goal of fine-mapping is to identify the genetic variants that causally affect some trait

of interest. Fine-mapping is challenging because the genetic variants can be highly corre-

lated due to a phenomenon called linkage disequilibrium (LD). The most successful cur-

rent approaches to fine-mapping frame the problem as a variable selection problem, and

here we focus on one such approach based on the “Sum of Single Effects” (SuSiE) model.

The main contribution of this paper is to extend SuSiE to work with summary data, which

is often accessible when the full genotype and phenotype data are not. In the process of

extending SuSiE, we developed a new mathematical framework that helps to explain
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existing fine-mapping methods for summary data, why they work well (or not), and

under what circumstances. In simulations, we show that SuSiE applied to summary data is

competitive with the best available fine-mapping methods for summary data. We also

show how different factors such as accuracy of the LD estimates can affect the quality of

the fine-mapping.

Introduction

Fine-mapping is the process of narrowing down genetic association signals to a small number

of potential causal variants [1–4], and it is an important step in the effort to understand the

genetic causes of diseases [5, 6]. However, fine-mapping is a difficult problem due to the strong

and complex correlation patterns (“linkage disequilibrium”, or LD) that exist among nearby

genetic variants. Many different methods and algorithms have been developed to tackle the

fine-mapping problem [2, 7–19]. In recent work, Wang et al [17] introduced a new approach

to fine-mapping, SuSiE (short for “SUm of SIngle Effects”), which has several advantages over

existing approaches: it is more computationally scalable; and it provides a new, simple way to

calculate “credible sets” of putative causal variants [2, 20]. However, the algorithms in [17] also

have an important limitation—they require individual-level genotype and phenotype data. In

contrast, many other fine-mapping methods require access only to summary data, such as z-

scores from single-SNP association analyses and an estimate of LD from a suitable reference

panel [7, 8, 11–13, 15, 16, 21]. Requiring only summary data is useful because individual-level

data are often difficult to obtain, both for practical reasons, such as the need to obtain many

data sets collected by many different researchers, and for reasons to do with consent and pri-

vacy. By comparison, summary data are much easier to obtain, and many publications share

such summary data [22].

In this paper, we introduce new variants of SuSiE for performing fine-mapping from sum-

mary data; we call these variants SuSiE-RSS (RSS stands for “regression with summary statis-

tics” [23].) Our work exploits the fact that (i) the multiple regression likelihood can be written

in terms of a particular type of summary data, known as sufficient statistics (explained below),

and (ii) these sufficient statistics can be approximated from the types of summary data that are

commonly available (e.g., z-scores from single-SNP association tests and LD estimates from

suitable reference panel). In the special case where the sufficient statistics themselves are avail-

able, the second approximation is unnecessary and SuSiE-RSS yields the same results as SuSiE
applied to the original individual-level data; otherwise, it yields an approximation. By extend-

ing SuSiE to deal with widely available summary statistics, SuSiE-RSS greatly expands the

applicability of the SuSiE fine-mapping approach.

Although our main goal here is to extend SuSiE to work with summary data, the approach

we use, and the connections it exploits, are quite general, and could be used to extend other

individual-level data methods to work with summary data. This general approach has two nice

features. First it deals simply and automatically with non-invertible LD matrices, which arise

frequently in fine-mapping. We argue, both through theory and example, that it provides a

simpler and more effective solution to this issue than some existing approaches. Second, it

shows how individual-level results can be obtained as a special case of summary-data analysis,

by using the sufficient statistics as summary data.

By highlighting the close connection between the likelihoods for individual-level and sum-

mary data, our work generalizes results of [11], who showed a strong connection between

Bayes Factors, based on specific priors, from individual-level data and summary data. Our
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results highlight that this connection is fundamentally due to a close connection between the

likelihoods, and so will apply whatever prior is used (and will also apply to non-Bayesian

approaches that do not use a prior). By focussing on likelihoods, our analysis also helps clarify

differences and connections between existing fine-mapping methods such as FINEMAP ver-

sion 1.1 [12], FINEMAP version 1.2 [21] and CAVIAR [7], which can differ in both the prior

and likelihood used.

Finally, we introduce several other methodological innovations for fine-mapping. Some of

these innovations are not specific to SuSiE and could be used with other statistical methods.

We describe methods for identifying “allele flips”—alleles that are (erroneously) encoded dif-

ferently in the study and reference data—and other inconsistencies in the summary data. (See

also [24] for related ideas.) We illustrate how a single allele flip can lead to inaccurate fine-

mapping results, emphasizing the importance of careful quality control when performing fine-

mapping using summary data. We also introduce a new refinement procedure for SuSiE that

sometimes improves estimates from the original fitting procedure.

Description of the method

We begin with some background and notation. Let y 2 RN
denote the phenotypes of N indi-

viduals in a genetic association study, and let X 2 RN�J
denote their corresponding genotypes

at J genetic variants (SNPs). To simplify the presentation, we assume the y are quantitative and

approximately normally distributed, and that both y and the columns of X are centered to

have mean zero, which avoids the need for an intercept term in (1) [25]. We elaborate on treat-

ment of binary and case-control phenotypes in the Discussion below.

Fine-mapping from individual-level data is usually performed by fitting the multiple linear

regression model

y ¼ Xbþ e; ð1Þ

where b = (b1, . . ., bJ)
⊺ is a vector of multiple regression coefficients, e is an N-vector of error

terms distributed as e � N Nð0; s2INÞ, with (typically unknown) residual variance σ2 > 0, IN is

the N × N identity matrix, and N rðμ;ΣÞ denotes the r-variate normal distribution with mean μ
and variance S.

In this multiple regression framework, the question of which SNPs are affecting y becomes

a problem of “variable selection”; that is, the problem of identifying which elements of b are

not zero. While many methods exist for variable selection in multiple regression, fine-mapping

has some special features—in particular, very high correlations among some columns of X,

and very sparse b—that make Bayesian methods with sparse priors a preferred approach (e.g.,

[7–9]). These methods specify a sparse prior for b, and perform inference by approximating

the posterior distribution p(b j X, y). In particular, the evidence for SNP j having a non-zero

effect is often summarized by the “posterior inclusion probability” (PIP),

PIPj ≔ Prðbj 6¼ 0 j X; yÞ: ð2Þ

The Sum of Single Effects (SuSiE) model

The key idea behind SuSiE [17] is to write b as a sum,

b ¼
XL

l¼1

bl; ð3Þ

in which each vector bl = (bl1, . . ., blJ)
⊺ is a “single effect” vector; that is, a vector with exactly
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one non-zero element. The representation (3) allows that b has at most L non-zero elements,

where L is a user-specified upper bound on the number of effects. (Consider that if single-

effect vectors b1 and b2 have a non-zero element at the same SNP j, b will have fewer than L
non-zeros.)

The special case L = 1 corresponds to the assumption that a region has exactly one causal

SNP; i.e., exactly one SNP with a non-zero effect. In [17], this special case is called the “single

effect regression” (SER) model. The SER is particularly convenient because posterior computa-

tions are analytically tractable [9]; consequently, despite its limitations, the SER has been

widely used [2, 26–28].

For L> 1, Wang et al [17] introduced a simple model-fitting algorithm, which they called

Iterative Bayesian Stepwise Selection (IBSS). In brief, IBSS iterates through the single-effect

vectors l = 1, . . ., L, at each iteration fitting bl while keeping the other single-effect vectors

fixed. By construction, each step thus involves fitting an SER, which, as noted above, is

straightforward. Wang et al [17] showed that IBSS can be understood as computing an approx-

imate posterior distribution p(b1, . . ., bL j X, y, σ2), and that the algorithm iteratively optimizes

an objective function known as the “evidence lower bound” (ELBO).

Summary data for fine-mapping

Motivated by the difficulties in accessing the individual-level data X, y from most studies,

researchers have developed fine-mapping approaches that work with more widely available

“summary data.” Here we develop methods that use various combinations of the summary data.

1. Vectors b̂ ¼ ðb̂1; . . . ; b̂JÞ
⊺

and ŝ ¼ ðŝ1; . . . ; ŝJÞ
⊺

containing estimates of marginal association

for each SNP j, and corresponding standard errors, from a simple linear regression:

b̂j ≔
x⊺jy
x⊺jxj

; ð4Þ

ŝj ≔

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðy � xjb̂jÞ
⊺
ðy � xjb̂jÞ

Nx⊺jxj

v
u
u
t : ð5Þ

An alternative to b̂; ŝ is the vector ẑ ¼ ðẑ1; . . . ; ẑ JÞ
⊺

of z-scores,

ẑ j ≔ b̂j=ŝj: ð6Þ

Many studies provide b̂ and ŝ (see [22] for examples), and many more provide the z-scores,

or data that can be used to compute the z-scores (e.g., ẑ j can be recovered from the p-value

and the sign of b̂j [29]). Note that it is important that all b̂; ŝ and ẑ be computed from the

same N samples.

2. An estimate, R̂, of the in-sample LD matrix, R, where R is the J × J SNP-by-SNP sample cor-

relation matrix,

R ≔ D� 1=2

xx X⊺XD� 1=2

xx ð7Þ

and where Dxx ≔ diag(X⊺X) is a diagonal matrix that ensures the diagonal entries of R are

all 1. Often, the estimate R̂ is taken to be an “out-of-sample” LD matrix—that is, the sample

correlation matrix of the same J SNPs in a suitable reference panel, chosen to be genetically

similar to the study population, possibly with additional shrinkage or banding steps to

improve accuracy [14].
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3. Optionally, the sample size N and the sample variance of y. (Since y is centered, the sample

variance of y is simply vy ≔ y⊺y/N). Knowing these quantities is obviously equivalent to

knowing y⊺y and N, so for brevity we will use the latter. These quantities are not required,

but they can be helpful as we will see later.

We caution that if the summary statistics come from a meta-analysis, the summary statistics
should be computed carefully to avoid the pitfalls highlighted in [24]. Importantly, SNPs that are
not analyzed in all the individual studies in the meta-analysis should not be included in the fine-
mapping.

SuSiE with summary data

A key question—and the question central to this paper—is, how do we use summary data to

estimate the coefficients b in a multiple linear regression (1)? And, more specifically, how do

we use them to estimate the single-effect vectors b1, . . ., bL in SuSiE (3)? Here, we tackle these

questions in two steps. First, we consider a special type of summary data, called “sufficient sta-

tistics,” which contain the same information about the model parameters as the individual-

level data X, y. Given such sufficient statistics, we develop an algorithm that exactly reproduces
the results that would have been obtained by running SuSiE on the original data X, y. Second,

we consider the case where we have access to summary data that are not sufficient statistics;

these summary data can be used to approximate the sufficient statistics, and therefore approxi-

mate the results from individual-level data.

The IBSS-ss algorithm. The IBSS algorithm of [17] fits the SuSiE model to individual-

level data X, y. The data enter the SuSiE model only through the likelihood, which from (1) is

‘ðb; s2;X; yÞ ¼ ð2ps2Þ
� N=2exp �

1

2s2
ðy⊺y � 2b⊺X⊺y þ b⊺X⊺XbÞ

� �

: ð8Þ

This likelihood depends on the data only through X⊺X, X⊺y, y⊺y and N. Therefore, these quanti-

ties are sufficient statistics. (These sufficient statistics can be computed from other combina-

tions of summary data, which are therefore also sufficient statistics; we discuss this point

below.) Careful inspection of the IBSS algorithm in [17] confirms that it depends on the data

only through these sufficient statistics. Thus, by rearranging the computations we obtain a var-

iant of IBSS, called “IBSS-ss”, that can fit the SuSiE model from sufficient statistics; see S1 Text.

We use IBSS(X, y) to denote the result of applying the IBSS algorithm to the individual-

level data, and IBSS-ss(X⊺X, X⊺y, y⊺y, N) to denote the results of applying the IBSS-ss algorithm

to the sufficient statistics. These two algorithms will give the same result,

IBSSðX; yÞ ¼ IBSS-ssðX⊺X;X⊺y; y⊺y;NÞ: ð9Þ

However, the computational complexity of the two approaches is different. First, computing

the sufficient statistics requires computing the J × J matrix X⊺X, which is a non-trivial compu-

tation, requiring O(NJ2) operations. However, once this matrix has been computed, IBSS-ss

requires O(J2) operations per iteration, whereas IBSS requires O(NJ) operations per iteration.

(The number of iterations should be the same.) Therefore, when N� J, which is often the case

in fine-mapping studies, IBSS-ss will usually be faster. In practice, choosing between these

workflows also depends on whether one prefers to precompute X⊺X, which can be done conve-

niently in programs such as PLINK [30] or LDstore [31].

SuSiE with summary data: SuSiE-RSS. In practice, sufficient statistics may not be avail-

able; in particular, when individual-level data are unavailable, the matrix X⊺X is also usually

unavailable. A natural approach to deal with this issue is to approximate the sufficient statistics,
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then to proceed as if the sufficient statistics were available by inputting the approximate suffi-

cient statistics to the IBSS-ss algorithm. We call this approach “SuSiE-RSS”.

For example, let V̂ xx denote an approximation to the sample covariance Vxx ¼
1

N X
⊺X, and

assume the other sufficient statistics X⊺y, y⊺y, N are available exactly. (These are easily obtained

from commonly available summary data, and R̂; see S1 Text.) Then SuSiE-RSS is the result of

running the IBSS-ss algorithm on the sufficient statistics but with NV̂ xx replacing X⊺X; that is,

SuSiE-RSS is IBSS-ssðNV̂ xx;X
⊺y; y⊺y;NÞ.

In practice, we found that estimating σ2 sometimes produced very inaccurate estimates,

presumably due to inaccuracies in V̂ xx as an approximation to Vxx. (This problem did not

occur when V̂ xx ¼ Vxx.) Therefore, when running the IBSS-ss algorithm on approximate sum-

mary statistics, we recommend to fix the residual variance, σ2 = y⊺y/N, rather than estimate it.

Interpretation in terms of an approximation to the likelihood. We defined SuSiE-RSS
as the application the IBSS-ss algorithm to the sufficient statistics or approximations to these

statistics. Conceptually, this approach combines the SuSiE prior with an approximation to the

likelihood (8).

To formalize this, we write the likelihood (8) explicitly as a function of the sufficient statis-

tics,

‘ssðb; s2;Vxx; vxy; vyy;NÞ ≔ ð2ps2Þ
� N=2exp �

N
2s2
ðvyy � 2b⊺vxy þ b⊺VxxbÞ

� �

; ð10Þ

so that

‘ðb; s2;X; yÞ ¼ ‘ss b;s2;Vxx;
1

N
X⊺y;

1

N
y⊺y;N

� �

: ð11Þ

Replacing Vxx with an estimate V̂ xx is therefore the same as replacing the likelihood (11) with

‘RSSðb; s2Þ ≔ ‘ss b;s2; V̂ xx;
1

N
X⊺y;

1

N
y⊺y;N

� �

: ð12Þ

Note that when V̂ xx ¼ Vxx, the approximation is exact; that is, ℓRSS(b, σ2) = ℓ(b, σ2; X, y).

Thus, applying SuSiE-RSS with Vxx is equivalent to using the individual-data likelihood (8),

and applying it with V̂ xx is equivalent to using the approximate likelihood (12). Finally, fixing

s2 ¼ 1

N y
⊺y is equivalent to using the following likelihood:

‘RSSðbÞ ≔ ‘RSS b;
1

N
y⊺y

� �

¼ ‘ss b;
1

N
y⊺y; V̂ xx;

1

N
X⊺y;

1

N
y⊺y;N

� �

:

ð13Þ

General strategy for applying regression methods to summary data. The strategy used

here to extend SuSiE to summary data is quite general, and could be used to extend essentially

any likelihood-based multiple regression method for individual-level data X, y to summary

data. Operationally, this strategy would involve two steps: (i) implement an algorithm that

accepts as input sufficient statistics and outputs the same result as the individual-level data; (ii)

apply this algorithm to approximations of the sufficient statistics computed from (non-suffi-

cient) summary data (optionally, fixing the residual variance to σ2 = y⊺y/N). This involves

replacing the exact likelihood (18) with an approximate likelihood, either (12) or (13).
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Special case when X, y are standardized. In genetic association studies, it is common

practice to standardize both y and the columns of X to have unit variance—that is, y⊺y = N and

x⊺jxj ¼ N for all j = 1, . . ., J—before fitting the model (1). Standardizing X, y is commonly done

in genetic association analysis and fine-mapping, and results in some simplifications that facil-

itates connections with existing methods, so we consider this special case in detail. (See [32,

33] for a discussion on the choice to standardize.)

When X, y are standardized, the sufficient statistics are easily computed from the in-sample

LD matrix R, the single-SNP z-scores ẑ , and the sample size, N:

X⊺X ¼ NR ð14Þ

X⊺y ¼
ffiffiffiffi
N
p

~z ð15Þ

y⊺y ¼ N; ð16Þ

where we define

~z ≔ D1=2

z ẑ ; ð17Þ

and we define Dz to be the diagonal matrix in which the jth diagonal element is N=ðN þ ẑ2
j Þ

[21]. Note the elements of Dz have the interpretation as being one minus the estimated PVE

(“Proportion of phenotypic Variance Explained”), so we refer to ~z as the vector of the “PVE-

adjusted z-scores.” If all the effects are small, the estimated PVEs will be close to zero, the diag-

onal of Dz will be close to one, and ~z � ẑ .

Substituting Eqs (14)–(16) into (11) gives

‘ðb; s2;X; yÞ ¼ ‘ssðb;s2;R; ~z=
ffiffiffiffi
N
p

; 1;NÞ: ð18Þ

When the in-sample LD matrix R is not available, and is replaced with R̂ � R, the SuSiE-RSS
likelihood (13) becomes

‘RSSðbÞ ¼ ‘ssðb; 1; R̂; ~z=
ffiffiffiffi
N
p

; 1;NÞ: ð19Þ

These expressions are summarized in Table 1.

Connections with previous work. The approach we take here is most closely connected

with the approach used in FINEMAP (versions 1.2 and later) [21]. In essence, FINEMAP 1.2

uses the same likelihoods (18, 19) as we use here, but the derivations in [21] do not clearly dis-

tinguish the case where the in-sample LD matrix is available from the case where it is not. In

addition, the derivations in [21] focus on Bayes Factors computed with particular priors, rather

than focussing on the likelihood. Our derivations emphasize that, when the in-sample LD

matrix is available, results from “summary data” should be identical to those that would have

been obtained from individual-level data. Our focus on likelihoods draws attention the

Table 1. Summary of SuSiE and SuSiE-RSS, the different data they accept, and the corresponding likelihoods. In the “likelihood” column, ~z ≔ D1=2
z ẑ is the vector of

adjusted z-scores; see (17). In this summary, we assume X, y are standardized, which is common practice in genetic association studies. Note that when SuSiE-RSS is

applied to sufficient statistics and σ2 is estimated (second row), the likelihood is identical to the likelihood for SuSiE applied the individual-level data (first row). See https://

stephenslab.github.io/susieR/articles/susie_rss.html for an illustration of how these methods are invoked in the R package susieR.

method data type data σ2 likelihood algorithm

SuSiE individual X, y fit ℓ(b, σ2) = ℓ(b, σ2; X, y) IBSS

SuSiE-RSS sufficient R; ẑ ;N fit ‘ðb; s2Þ ¼ ‘ssðb; s2;R; ~z=
ffiffiffiffi
N
p

; 1;NÞ IBSS-ss

SuSiE-RSS summary R̂; ẑ ;N 1 ‘ðbÞ ¼ ‘ssðb; 1; R̂; ~z=
ffiffiffiffi
N
p

; 1;NÞ IBSS-ss

https://doi.org/10.1371/journal.pgen.1010299.t001
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generality of this strategy; it is not specific to a particular prior, nor does it require the use of

Bayesian methods.

Several other previous fine-mapping methods (e.g., [7, 8, 12, 16]) are based on the following

model:

ẑ j z; R̂ � N JðR̂z; R̂Þ; ð20Þ

where z = (z1, . . ., zJ)
⊺ is an unobserved vector of scaled effects, sometimes called the noncen-

trality parameters (NCPs),

z ≔
b
ffiffiffiffi
N
p

s
: ð21Þ

(Earlier versions of SuSiE-RSS were also based on this model [34].) To connect our method

with this approach, note that, when R̂ is invertible, the likelihood (19) is equivalent to the like-

lihood for b in the following model:

~z j b; R̂ � N Jð
ffiffiffiffi
N
p

R̂b; R̂Þ: ð22Þ

(See S1 Text for additional notes.) This model was also used in Zhu and Stephens [23], where

the derivation was based on the PVE-adjusted standard errors, which gives the same PVE-

adjusted z-scores. Model (22) is essentially the same as (20) but with the observed z-scores, ẑ ,

replaced with the PVE-adjusted z-scores, ~z . In other words, when R̂ is invertible, these previ-

ous approaches are the same as our approach except that they use the z-scores, ẑ , instead of the

PVE-adjusted z-scores, ~z . Thus, these previous approaches are implicitly making the approxi-

mation X⊺y �
ffiffiffiffi
N
p

ẑ , whereas our approach uses the identity X⊺y ¼
ffiffiffiffi
N
p

~z (Eq 15). If all effect

sizes are small (i.e., PVE� 0 for all SNPs), then ~z � ẑ , and the approximation will be close to

exact; on the other hand, if the PVE is not close to zero for one or more SNPs, then the use of

the PVE-adjusted z-scores is preferred [21]. Note that the PVE-adjusted z-scores require

knowledge of N; in rare cases where N is unknown, replacing ~z with ẑ may be an acceptable

approximation.

Approaches to dealing with a non-invertible LD matrix. One complication that can

arise in working directly with models (20) or (22) is that R̂ is often not invertible. For example,

if R̂ is the sample correlation matrix from a reference panel, R̂ will not be invertible (i.e., singu-

lar) whenever the number of individuals in the panel is less than J, or whenever any two SNPs

are in complete LD in the panel. In such cases, these models do not have a density (with respect

to the Lebesgue measure). Methods using (20) have therefore required workarounds to deal

with this issue. One approach is to modify (“regularize”) R̂ to be invertible by adding a small,

positive constant to the diagonal [7]. In another approach, the data are transformed into a

lower-dimensional space [35, 36], which is equivalent to replacing R̂ � 1 with its pseudoinverse

(see S1 Text). Our approach is to use the likelihood (19), which circumvents these issues

because the likelihood is defined whether or not R̂ is invertible. (The likelihood is defined even

if R̂ is not positive semi-definite, but its use in that case may be problematic as the likelihood

may be unbounded; see [37].) This approach has several advantages over the data transforma-

tion approach: it is simpler; it does not involve inversion or factorization of a (possibly very

large) J × J matrix; and it preserves the property that results under the SER model do not

depend on LD (see Results and S1 Text). Also note that this approach can be combined with

modifications to R̂, such as adding a small constant to the diagonal. The benefits of regulariz-

ing R̂ are investigated in the experiments below.
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New refinement procedure for more accurate CSs

As noted in [17], the IBSS algorithm can sometimes converge to a poor solution (a local opti-

mum of the ELBO). Although this is rare, it can produce misleading results when it does

occur; in particular it can produce false positive CSs (i.e., CSs containing only null SNPs that

have zero effect). To address this issue, we developed a simple refinement procedure for escap-

ing local optima. The procedure is heuristic, and is not guaranteed to eliminate all convergence

issues, but in practice it often helps in those rare cases where the original IBSS had problems.

The refinement procedure applies equally to both individual-level data and summary data.

In brief, the refinement procedure involves two steps: first, fit a SuSiE model by running the

IBSS algorithm to convergence; next, for each CS identified from the fitted SuSiE model, rerun

IBSS to convergence after first removing all SNPs in the CS (which forces the algorithm to seek

alternative explanations for observed associations), then try to improve this fit by running

IBSS to convergence again, with all SNPs. If these refinement steps improve the objective func-

tion, the new solution is accepted; otherwise, the original solution is kept. This process is

repeated until the refinement steps no longer make any improvements to the objective. By

construction, this refinement procedure always produces a solution whose objective is at least

as good as the original IBSS solution. For full details, see S1 Text.

Because the refinement procedure reruns IBSS for each CS discovered in the initial round

of model fitting, the computation increases with the number of CSs identified. In data sets

with many CSs, the refinement procedure may be quite time consuming.

Other improvements to fine-mapping with summary data

Here we introduce additional methods to improve accuracy of fine-mapping with summary

data. These methods are not specific to SuSiE and can be used with other fine-mapping

methods.

Regularization to improve consistency of the estimated LD matrix. Accurate fine-map-

ping requires R̂ to be an accurate estimate of R. When R̂ is computed from a reference panel,

the reference panel should not be too small [31], and should be of similar ancestry to the study

sample. Even when a suitable panel is used, there will inevitably be differences between R̂ and

R. A common way to improve estimation of covariance matrices is to use regularization [38],

replacing R̂ with R̂l,

R̂l ≔ ð1 � lÞR̂0 þ lI; ð23Þ

where R̂0 is the sample correlation matrix computed from the reference panel, and λ 2 [0, 1]

controls the amount of regularization. This strategy has previously been used in fine-mapping

from summary data (e.g., [8, 37, 39]), but in previous work λ was usually fixed at some arbi-

trarily small value, or chosen via cross-validation. Here, we estimate λ by maximizing the like-

lihood under the null (z = 0),

l̂ ≔ argmax
l 2 ½0;1�

N Jð~z ; 0; ð1 � lÞR̂0 þ lIÞ: ð24Þ

The estimated l̂ reflects the consistency between the (PVE-adjusted) z-scores and the LD

matrix R̂0; if the two are consistent with one another, l̂ will be close to zero.

Detecting and removing large inconsistencies in summary data. Regularizing R̂ can

help to address subtle inconsistencies between R̂ and R. However, regularization does not deal

well with large inconsistencies in the summary data, which, in our experience, occur often.

One common source of such inconsistencies is an “allele flip” in which the alleles of a SNP are
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encoded one way in the study sample (used to compute ẑ) and in a different way in the refer-

ence panel (used to compute R̂). Large inconsistencies can also arise from using z-scores that

were obtained using different samples at different SNPs (which should be avoided by perform-

ing genotype imputation [23]). Anecdotally, we have found large inconsistencies like these

often cause SuSiE to converge very slowly and produce misleading results, such as an unex-

pectedly large number of CSs, or two CSs containing SNPs that are in strong LD with each

other. We have therefore developed diagnostics to help users detect such anomalous data. (We

note that similar ideas were proposed in the recent paper [40].)

Under model (22), the conditional distribution of ~zj given the other PVE-adjusted z-scores

is

~zj j R̂; b; ~z � j � N ðð
ffiffiffiffi
N
p

bj � Ωj;� j~z � jÞ=Ojj; 1=OjjÞ; ð25Þ

where Ω ≔ R̂ � 1, ~z � j denotes the vector ~z excluding ~zj, and Oj,−j denotes the jth row of O

excluding Ojj. This conditional distribution depends on the unknown bj. However, provided

that the effect of SNP j is small (i.e., bj� 0), or that SNP j is in strong LD with other SNPs,

which implies 1/Ojj� 0, we can approximate (25) by

~zj j R̂; ~z � j � N ð� Ωj;� j~z � j=Ojj; 1=OjjÞ: ð26Þ

This distribution has been previously used to impute z-scores [41], and it is also used in DEN-

TIST [40].

An initial quality control check can be performed by plotting the observed ~zj against its

conditional expectation in (26), with large deviations potentially indicating anomalous z-

scores. Since computing these conditional expectations involves the inverse of R̂, this matrix

must be invertible. When R̂ is not invertible, we replace R̂ with the regularized (and invertible)

matrix R̂l following the steps described above. Note that while we have written (25) and (26)

in terms of the PVE-adjusted z-scores, ~z , it is valid to use the same expressions for the unad-

justed z-scores, ẑ , so long as the effect sizes are small (DENTIST uses z-scores instead of the

PVE-adjusted z-scores).

A more quantitative measure of the discordance of ~zj with its expectation under the model

can be obtained by computing standardized differences between the observed and expected

values,

tj ≔
ffiffiffiffiffiffi
Ojj

p
ð~zj þΩj;� j~z � j=OjjÞ: ð27Þ

SNPs j with largest tj (in magnitude) are most likely to violate the model assumptions, and are

therefore the top candidates for followup. When any such candidates are detected, the user

should check the data pre-processing steps and fix any errors that cause inconsistencies in

summary data. If there is no way to fix the errors, removing the anomalous SNPs is a possible

workaround. Sometimes removing a single SNP is enough to resolve the discrepancies—for

example, a single allele flip can result in inconsistent z-scores among many SNPs in LD with

the allele-flip SNP. We have also developed a likelihood-ratio statistic based on (26) specifically

for identifying allele flips; see S1 Text for a derivation of this likelihood ratio and an empirical

assessment of its ability to identify allele-flip SNPs in simulations. After one or more SNPs are

removed, one should consider re-running these diagnostics on the filtered summary data to

search for additional inconsistencies that may have been missed in the first round. Alterna-

tively, DENTIST provides a more automated approach to filtering out inconsistent SNPs [40].
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We caution that computing these diagnostics requires inverting or factorizing a J × J matrix,

and may therefore involve a large computational expense—potentially a greater expense than

the fine-mapping itself—when J, the number of SNPs, is large.

Verification and comparison

Fine-mapping with inconsistent summary data and a non-invertible LD

matrix: An illustration

A technical issue that arises when developing fine-mapping methods for summary data is that

the LD matrix is often not invertible. Several approaches to dealing with this have been sug-

gested including modifying the LD matrix to be invertible, transforming the data into a lower-

dimensional space, or replacing the inverse with the “pseudoinverse” (see “Approaches to deal-

ing with a non-invertible LD matrix” above). In SuSiE-RSS, we avoid this issue by directly

approximating the likelihood, so SuSiE-RSS does not require the LD matrix to be invertible.

We summarize the theoretical relationships between these approaches in S1 Text. Here we

illustrate the practical advantage of the SuSiE-RSS approach in a toy example.

Consider a very simple situation with two SNPs, in strong LD with each other, with

observed z-scores ẑ ¼ ð6; 7Þ. Both SNPs are significant, but the second SNP is more signifi-

cant. Under the assumption that exactly one of these SNPs has an effect—which allows for

exact posterior computations—the second SNP is the better candidate, and should have a

higher PIP. Further, we expect the PIPs to be unaffected by LD between the SNPs (see S1

Text). However, the transformation and pseudoinverse approaches—which are used by

msCAVIAR [42] and in previous fine-mapping analyses [35, 36], and are also used in DEN-

TIST to detect inconsistencies in summary data [40]—do not guarantee that either of these

properties are satisfied. For example, suppose the two SNPs are in complete LD in the refer-

ence panel, so R̂ is a 2 × 2 (non-invertible) matrix with all entries equal to 1. Here, R̂ is incon-

sistent with the observed ẑ because complete LD between SNPs implies their z-scores should

be identical. (This could happen if the LD in the reference panel used to compute R̂ is slightly

different from the LD in the association study.) The transformation approach effectively

adjusts the observed data ẑ to be consistent with the LD matrix before drawing inferences;

here it would adjust ẑ to ẑ ¼ ð6:5; 6:5Þ, removing the observed difference between the SNPs

and forcing them to be equally significant, which seems undesirable. The pseudoinverse

approach turns out to be equivalent to the transformation approach (see S1 Text), and so

behaves the same way. In contrast, our approach avoids this behaviour, and correctly main-

tains the second SNP as the better candidate; applying SuSiE-RSS to this toy example yields

PIPs of 0.0017 for the first SNP and 0.9983 for the second SNP, and a single CS containing the

second SNP only. To reproduce this result, see the examples accompanying the susie_rss
function in the susieR R package.

Effect of allele flips on accuracy of fine-mapping: An illustration

When fine-mapping is performed using z-scores from a study sample and an LD matrix from

a different reference sample, it is crucial that the same allele encodings are used. In our experi-

ence, “allele flips,” in which different allele encoding are used in the two samples, are a com-

mon source of fine-mapping problems. Here we use a simple simulation to illustrate this

problem, and the steps we have implemented to diagnose and correct the problem.

We simulated a fine-mapping data set with 1,002 SNPs, in which one out of the 1,002 SNPs

was causal, and we deliberately used different allele encodings in the study sample and refer-

ence panel for a non-causal SNP (see S1 Text for more details). The causal SNP is among the
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SNPs with the highest z-scores (Panel A), and SuSiE-RSS correctly includes this causal SNP in

a CS (Panel B). However, SuSiE-RSS also wrongly includes the allele-flip SNP in a second CS

(Panel B). This happens because the LD between the allele-flip SNP and other SNPs is incor-

rectly estimated. Fig 1, Panel C shows a diagnostic plot comparing each z-score against its

expected value under model (22). The allele-flip SNP stands out as a likely outlier (yellow cir-

cle), and the likelihood ratio calculations identify this SNP as a likely allele flip: LR = 8.2 × 103

for the allele-flip SNP, whereas all the other 262 SNPs with z-scores greater than 2 in magni-

tude have likelihood ratios less than 1. (See S1 Text for a more systematic assessment of the use

of these likelihood ratio for identifying allele-flip SNPs.) After correcting the allele encoding to

be the same in the study and reference samples, SuSiE-RSS infers a single CS containing the

causal SNP, and the allele-flip SNP is no longer included in a CS; see Fig 1, Panel D.

Simulations using UK Biobank genotypes

To systematically compare our new methods with existing methods for fine-mapping, we sim-

ulated fine-mapping data sets using the UK Biobank imputed genotypes [43]. The UK Biobank

Fig 1. Example illustrating importance of identifying and correcting allele flips in fine-mapping. In this simulated

example, one SNP (red triangle) affects the phenotype, and one SNP (yellow circle) has a different allele encoding in

the study sample (the data used to compute the z-scores) and the reference panel (the data used to compute the LD

matrix). Panel A shows the z-scores for all 1,002 SNPs. Panel B summarizes the results of running SuSiE-RSS on the

summary data; SuSiE-RSS identifies a true positive CS (blue circles) containing the true causal SNP, and a false positive

CS (green circles) that incorrectly contains the mismatched SNP. The mismatched SNP is also incorrectly estimated to

have an effect on the phenotype with high probability (PIP = 1.00). The diagnostic plot (Panel C) compares the

observed z-scores against the expected z-scores. In this plot, the mismatched SNP (yellow circle) shows the largest

difference between observed and expected z-scores, and therefore appears furthest away from the diagonal. After fixing

the allele encoding and recomputing the summary data, SuSiE-RSS identifies a single true positive CS (blue circles)

containing the true-causal SNP (red triangle), and the formerly mismatched SNP is (correctly) not included in a CS

(Panel D). This example is implemented as a vignette in the susieR package.

https://doi.org/10.1371/journal.pgen.1010299.g001
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imputed genotypes are well suited to illustrate fine-mapping with summary data due to the

large sample size, and the high density of available genetic variants after imputation. We ran-

domly selected 200 regions on autosomal chromosomes for fine-mapping, such that each

region contained roughly 1,000 SNPs (390 kb on average). Due to the high density of SNPs,

these data sets often contain strong correlations among SNPs; on average, a data set contained

30 SNPs with correlation exceeding 0.9 with at least one other SNP, and 14 SNPs with correla-

tions exceeding 0.99 with at least one other SNP.

For each of the 200 regions, we simulated a quantitative trait under the multiple regression

model (1) with X comprising genotypes of 50,000 randomly selected UK Biobank samples, and

with 1, 2 or 3 causal variants explaining a total of 0.5% of variation in the trait (total PVE of

0.5%). In total, we simulated 200 × 3 = 600 data sets. We computed summary data from the

real genotypes and synthetic phenotypes. To compare how choice of LD matrix affects fine-

mapping, we used three different LD matrices: in-sample LD matrix computed from the

50,000 individuals (R), and two out-of-sample LD matrices computed from randomly sampled

reference panels of 500 or 1,000 individuals, denoted R̂500 and R̂1000, respectively. The samples

randomly chosen for each reference panel had no overlap with the study sample but were

drawn from the same population, which mimicked a situation where the reference sample was

well matched to the study sample.

Refining SuSiE model fits improves fine-mapping performance. Before comparing the

methods, we first demonstrate the benefits of our new refinement procedure for improving

SuSiE model fits. Fig 2 shows an example drawn from our simulations where the regular IBSS

algorithm converges to a poor solution and our refinement procedure improves the solution.

The example has two causal SNPs in moderate LD with one another, which have opposite

effects that partially cancel out each others’ marginal associations (Panel A). This example is

challenging because the SNP with the strongest marginal association (SMA) is not in high LD

with either causal SNP; it is in moderate LD with the first causal SNP, and low LD with the sec-

ond causal SNP. Although [17] showed that the IBSS algorithm can sometimes deal well with

such situations, that does not happen in this case; the IBSS algorithm yields three CSs, two of

which are false positives that do not contain a causal SNP (Panel B). Applying our refinement

procedure solves the problem; it yields a solution with higher objective function (ELBO), and

with two CSs, each containing one of the causal SNPs (Panel C).

Although this sort of problem was not common in our simulations, it occurred often

enough that the refinement procedure yielded a noticeable improvement in performance

across many simulations (Fig 2, Panel D). In this plot, power and false discovery rate (FDR)

are calculated as FDR ≔ FP
TPþFP and power ≔ TP

TPþFN, where FP, TP, FN, TN denote, respec-

tively, the number of false positives, true positives, false negatives and true negatives. In our

remaining experiments, we therefore always ran SuSiE-RSS with refinement.

Impact of LD accuracy on fine-mapping. We performed simulations to compare SuS-
iE-RSS with several other fine-mapping methods for summary data: FINEMAP [12, 21],

DAP-G [14, 16] and CAVIAR [7]. These methods differ in the underlying modeling assump-

tions, the priors used, and in the approach taken to compute posterior quantities. For these

simulations, SuSiE-RSS, FINEMAP and DAP-G were all very fast, usually taking no more than

a few seconds per data set (Table 2); by contrast, CAVIAR was much slower because it exhaus-

tively evaluated all causal SNP configurations. Other Bayesian fine-mapping methods for sum-

mary data include PAINTOR [8], JAM [15] and CAVIARBF [11]. FINEMAP has been shown

[12] to be faster and at least as accurate as PAINTOR and CAVIARBF. JAM is comparable in

accuracy to FINEMAP [15] and is most beneficial when jointly fine-mapping multiple geno-

mic regions, which we did not consider here.
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We compared methods based on both their posterior inclusion probabilities (PIPs) [44]

and credible sets (CSs) [2, 17]. These quantities have different advantages. PIPs have the

advantage that they are returned by most methods, and can be used to assess familiar quanti-

ties such as power and false discovery rates. CSs have the advantage that, when the data sup-

port multiple causal signals, the multiple causal signals is explicitly reflected in the number of

CSs reported. Uncertainty in which SNP is causal is reflected in the size of a CS.

First, we assessed the performance of summary-data methods using the in-sample LD

matrix. With an in-sample LD matrix, SuSiE-RSS applied to sufficient statistics (with estimated

σ2) will produce the same results as SuSiE on the individual-level data, so we did not include

SuSiE in this comparison. The results show that SuSiE-RSS, FINEMAP and DAP-G have very

similar performance, as measured by both PIPs (Fig 3) and CSs (“in-sample LD” columns in

Fig 2. Refining SuSiE model fits improves fine-mapping accuracy. Panels A, B and C show a single example, drawn

from our simulations, that illustrates how refining a SuSiE-RSS model fit improves fine-mapping accuracy. In this

example, there are 1,001 candidate SNPs, and two SNPs (red triangles “SNP 1” and “SNP 2”) explain variation in the

simulated phenotype. The strongest marginal association (yellow circle, “SMA”) is not a causal SNP. Without

refinement, the IBSS-ss algorithm (applied to sufficient statistics, with estimated σ2) returns a SuSiE-RSS fit identifying

three 95% CSs (blue, green and orange circles); two of the CSs (blue, orange) are false positives containing no true

effect SNP, one of these CSs contains the SMA (orange), and no CS includes SNP 1. After running the refinement

procedure, the fit is much improved, as measured by the “evidence lower bound” (ELBO); it increases the ELBO by

19.06 (−70837.09 vs. −70818.03). The new SuSiE-RSS fit (Panel C) identifies two 95% CSs (blue and green circles), each

containing a true causal SNP, and neither contains the SMA. Panel D summarizes the improvement in fine-mapping

across all 600 simulations; it shows power and false discovery rate (FDR) for SuSiE-RSS with and without using the

refinement procedure as the PIP threshold for reporting causal SNPs is varied from 0 to 1. (This plot is the same as a

precision-recall curve after flipping the x-axis because precision ¼ TP
TPþFP ¼ 1 � FDR and recall = power.) Circles are

drawn at a PIP threshold of 0.95.

https://doi.org/10.1371/journal.pgen.1010299.g002
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Fig 4). Further, all four methods produced CSs whose coverage was close to the target level of

95% (Panel A in Fig 4). The main difference between the methods is that DAP-G produced

some “high confidence” (high PIP) false positives, which hindered its ability to produce very

low FDR values. Both SuSiE-RSS and FINEMAP require the user to specify an upper bound on

the number of causal SNPs L. Setting this upper bound to the true value (“L = true” in the fig-

ures) only slightly improved their performance, demonstrating that, with an in-sample LD

matrix, these methods are robust to overstating this bound. We also compared the sufficient-

data (estimated σ2) and summary-data (fixed σ2) variants of SuSiE-RSS (see Table 1). The per-

formance of the two variants was very similar, likely owing to the fact that the PVE was close

to zero in all simulations, and so σ2 = 1 was not far from the truth. CAVIAR performed notably

less well than the other methods for the PIP computations. (Note the CSs computed by

Table 2. Runtimes on simulated data sets with in-sample LD matrix. Average runtimes are taken over 600 simula-

tions. All runtimes are in seconds. All runtimes include the time taken to read the data and write the results to files.

method min. average max.

SuSiE-RSS, estimated σ, no refinement 0.65 1.33 18.89

SuSiE-RSS, estimated σ, with refinement 1.62 5.50 72.57

SuSiE-RSS, fixed σ, no refinement 0.40 1.40 18.61

SuSiE-RSS, fixed σ, with refinement 1.44 4.81 62.34

SuSiE-RSS, fixed σ, with refinement, L = true 0.37 1.52 4.95

DAP-G 0.66 5.70 371.76

FINEMAP 1.67 16.11 39.27

FINEMAP, L = true 1.00 12.92 42.93

CAVIAR, L = true 3.54 1,516.91 4,831.95

https://doi.org/10.1371/journal.pgen.1010299.t002

Fig 3. Discovery of causal SNPs using posterior inclusion probabilities—in-sample LD. Each curve shows power vs. FDR in

identifying causal SNPs when the method (SuSiE-RSS, FINEMAP, DAP-G or CAVIAR) was provided with the in-sample LD matrix.

FDR and power are calculated from 600 simulations as the PIP threshold is varied from 0 to 1. Open circles are drawn at a PIP

threshold of 0.95. Two variants of FINEMAP and three variants of SuSiE-RSS are also compared: when L, the maximum number of

estimated causal SNPs, is the true number of causal SNPs, or larger than the true number; and, for SuSiE-RSS only, when the residual

variance σ2 is estimated (“sufficient data”) or fixed to 1 (“summary data”); see Table 1. The results for SuSiE-RSS with estimated σ2 is

shown in both A and B to aid in comparing results. Note that power and FDR are virtually identical for all three variants of SuSiE-RSS
so the three curves almost completely overlap in Panel A.

https://doi.org/10.1371/journal.pgen.1010299.g003
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CAVIAR are defined differently from CSs computed by other methods, so we did not include

CAVIAR in Fig 4.)

Next, we compared the summary data methods using different out-of-sample LD matrices,

again using SuSiE-RSS with in-sample LD (and estimated σ2) as a benchmark. For each

method, we computed out-of-sample LD matrices using two different panel sizes (n = 500,

1000) and three different values for the regularization parameter, λ (no regularization, λ = 0;

weak regularization, λ = 0.001; and λ estimated from the data). As might be expected, the per-

formance of SuSiE-RSS, FINEMAP and DAP-G all degraded with out-of-sample LD compared

with in-sample LD; see Figs 4 and 5. Notably, the CSs no longer met the 95% target coverage

(Panel A in Fig 4). In all cases, performance was notably worse with the smaller reference

panel, which highlights the importance of using a sufficiently large reference panel [31].

Regarding regularization, SuSiE-RSS and DAP-G performed similarly at all levels of

Fig 4. Assessment of 95% credible sets from SuSiE-RSS, FINEMAP and DAP-G with different LD estimates, and

different LD regularization methods. For in-sample LD, two variants of SuSiE-RSS were also compared (see Table 1):

when the residual variance σ2 was estimated (“sufficient data”), or fixed to 1 (“summary data”). We evaluate the

estimated CSs using the following metrics: (A) coverage, the proportion of CSs that contain a true causal SNP; (B)

power, the proportion of true causal SNPs included in a CS; (C) median number of SNPs in each CS; and (D) median
purity, where “purity” is defined as the smallest absolute correlation among all pairs of SNPs within a CS. These

statistics are taken as the mean (A, B) or median (C, D) over all simulations; error bars in A and B show two times the

standard error. The target coverage of 95% is shown as a dotted horizontal line in Panel A. Following [17], we

discarded all CSs with purity less than 0.5.

https://doi.org/10.1371/journal.pgen.1010299.g004
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Fig 5. Discovery of causal SNPs using posterior inclusion probabilities—Out-of-sample LD. Plots compare power vs. FDR for fine-mapping

methods with different LD matrices, across all 600 simulations, as the PIP threshold is varied from 0 to 1. Open circles indicate results at PIP

threshold of 0.95. Each plot compares performance of one method (CAVIAR, DAP-G, FINEMAP or SuSiE-RSS) when provided with different

LD estimates: in-sample (R̂ ¼ R), or out-of-sample LD from a reference panel with either 1,000 samples (R̂ ¼ R̂1000) or 500 samples (R̂ ¼ R̂500).

For out-of-sample LD, different levels of the regularization parameter λ are also compared: λ = 0; λ = 0.001; and estimated λ. Panels C–F show

results for two variants of FINEMAP and SuSiE-RSS: in Panels C and E, the maximum number of causal SNPs, L, is set to the true value (“L =

true”); in Panels D and F, L is set larger than the true value (L = 5 for FINEMAP; L = 10 for SuSiE-RSS). In each panel, the dotted black line shows

the results from SuSiE-RSS with in-sample LD and estimated σ2, which provides a baseline for comparison (note that all the other SuSiE-RSS
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regularization, and so do not appear to require regularization; in contrast, FINEMAP required

regularization with an estimated λ to compete with SuSiE-RSS and DAP-G. Since estimating λ
is somewhat computationally burdensome, SuSiE-RSS and DAP-G have an advantage in this

situation. All three methods benefited more from increasing the size of the reference panel

than from regularization, again emphasizing the importance of sufficiently large reference

panels. Interestingly, CAVIAR’s performance was relatively insensitive to choice of LD matrix;

however the other methods clearly outperformed CAVIAR with the larger (n = 1, 000) refer-

ence panel.

The fine-mapping results with out-of-sample LD matrix also expose another interesting

result: if FINEMAP and SuSiE-RSS are provided with the true number of causal SNPs (L =

true), their results improve (Fig 5, Panels C vs. D, Panels E vs. F). This improvement is particu-

larly noticeable for the small reference panel. We interpret this result as indicating a tendency

of these methods to react to misspecification of the LD matrix by sometimes including addi-

tional (false positive) signals. Specifying the true L reduces their tendency to do this because it

limits the number of signals that can be included. This suggests that restricting the number of

causal SNPs, L, may make fine-mapping results more robust to misspecification of the LD

matrix, even for methods that are robust to overstating L when the LD matrix is accurate. Pri-

ors or penalties that favor smaller L may also help. Indeed, when none of the methods are pro-

vided with information about the true number of causal SNPs, DAP-G slightly outperforms

FINEMAP and SuSiE-RSS, possibly reflecting a tendency for DAP-G to favour models with

smaller numbers of causal SNPs (either due to the differences in prior or differences in approx-

imate posterior inference). Further study of this issue may lead to methods that are more

robust to misspecified LD.

Fine-mapping causal SNPs with larger effects. Above, we evaluated the performance of

fine-mapping methods in simulations when the simulated effects of the causal SNPs were

small (total PVE of 0.5%). This was intended to mimic the typical situation encountered in

genome-wide association studies [45, 46]. Here we scrutinize the performance of fine-mapping

methods when the effects of the causal SNPs are much larger, which might be more represen-

tative of the situation in expression quantitative trait loci (eQTL) studies [47–49]. FINEMAP

and SuSiE—and therefore SuSiE-RSS with sufficient statistics—are expected to perform well in

this setting [17, 21], but, as mentioned above, some summary-data methods make the

(implicit) assumption that the effects are small (see “Connections with previous work”), and

this assumption may affect performance in settings where this assumption is violated.

To assess the ability of the fine-mapping methods to identify causal SNPs with larger effects,

we performed an additional set of simulations, again using the UK Biobank genotypes, except

that here we simulated the 1–3 causal variants so that they explained, in total, a much larger

proportion of variance in the trait (PVE of 10% and 30%). To evaluate these methods at

roughly the same level of difficulty (i.e., power), we simulated these fine-mapping data sets

with much smaller sample sizes, N = 2, 500 and N = 800, respectively (the out-of-sample LD

matrix was calculated using 1,000 samples).

The results of these high-PVE simulations are summarized in Fig 6. As expected, SuSiE-RSS
with in-sample LD matrix performed consistently better than the other methods, which use an

out-of-sample LD matrix, and therefore provides a baseline against which other methods can

results were generated by fixing σ2 to 1, which is the recommended setting for out-of-sample LD; see Table 1). Some power vs. FDR curves may

not be visible in the plots because they overlap almost completely with another curve, such as some of the SuSiE-RSS results at different LD

regularization levels.

https://doi.org/10.1371/journal.pgen.1010299.g005
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be compared. Overall, increasing PVE tended to increase variation in performance among the

methods. In all PVE settings, SuSiE-RSS with out-of-sample LD was among the top perform-

ers, and it most clearly outperformed other methods in the highest PVE setting (30% PVE),

where all of FINEMAP, DAP-G, and CAVIAR showed a notable decrease in performance. For

DAP-G and CAVIAR, this decrease in performance was expected due to their implicit

Fig 6. Discovery of causal SNPs using posterior inclusion probabilities—Out-of-sample LD and larger effects. Each curve

shows power vs. FDR for identifying causal SNPs with different effect sizes (total PVE of 0.5%, 10% and 30%). Each panel

summarizes results from 600 simulations; FDR and power are calculated from the 600 simulations as the PIP threshold is varied

from 0 to 1. Open circles depict power and FDR at a PIP threshold of 0.95. In addition to comparing different methods (SuSiE-RSS.

FINEMAP, DAP-G, CAVIAR), two variants of FINEMAP and SuSiE-RSS are also compared: when L, the maximum number of

estimated causal SNPs, is set to the true number of causal SNPs; and when L is larger than the true number. SuSiE-RSS with

estimated residual variance σ2 and in-sample LD (dotted black line) is shown as a “best case” method against which other methods

can be compared. All other methods are given an out-of-sample LD matrix computed from a reference panel with 1,000 samples,

and with no regularization (λ = 0). The simulation results for 0.5% PVE (top-left panel) are the same as the results shown in

previous plots (Figs 3 and 5), but presented differently here to facilitate comparison with the results of the higher-PVE simulations.

https://doi.org/10.1371/journal.pgen.1010299.g006

PLOS GENETICS Fine-mapping from summary data with the “Sum of Single Effects” model

PLOS Genetics | https://doi.org/10.1371/journal.pgen.1010299 July 19, 2022 19 / 24

https://doi.org/10.1371/journal.pgen.1010299.g006
https://doi.org/10.1371/journal.pgen.1010299


modeling assumption that the effect sizes are small. For FINEMAP, this drop in performance

was unexpected since FINEMAP also uses the PVE-adjusted z-scores to account for larger

effects. Although this situation is unusual in fine-mapping studies—that is, it is unusual for a

handful of SNPs to explain such a large proportion of variance in the trait—we examined these

FINEMAP results more closely to understand why this was happening. (We also prepared a

detailed working example illustrating this result; see https://stephenslab.github.io/finemap/

large_effect.html.) We confirmed that this performance drop only occurred with an out-of-

sample LD matrix; with an in-sample LD matrix, FINEMAP’s performance was very similar to

SuSiE-RSS’s with an in-sample LD matrix (results not shown). A partial explanation for the

much worse performance with out-of-sample LD was that FINEMAP often overestimated the

number of causal SNPs; in 17% of the simulations, FINEMAP assigned highest probability to

configurations with more causal SNPs than the true number. By contrast, SuSiE-RSS overesti-

mated the number of causal SNPs (i.e., the number of CSs) in only 1% of the simulations. For-

tunately, in settings where causal SNPs might have larger effects, FINEMAP’s performance

can be greatly improved by telling it the true number of causal SNPs (“L = true”), which is con-

sistent with our earlier finding that restricting L in SuSiE-RSS and FINEMAP can improve

fine-mapping with an out-of-sample LD matrix.

Discussion

We have presented extensions of the SuSiE fine-mapping method to accommodate summary

data, with a focus on marginal z-scores and an out-of-sample LD matrix computed from a ref-

erence panel. Our approach provides a generic template for how to extend any full-data regres-

sion method to analyze summary data: develop a full-data algorithm that works with sufficient

statistics, then apply this algorithm directly to summary data. Although it is simple, as far as

we are aware this generic template is novel, and it avoids the need for any special treatment of

non-invertible LD matrices.

In simulations, we found that our new method, SuSiE-RSS, is competitive in both accuracy

and computational cost with the best available methods for fine-mapping from summary data,

DAP-G and FINEMAP. Whatever method is used, our results underscore the importance of

accurately computing out-of-sample LD from an appropriate and large reference panel (see

also [31]). Indeed, for the best performing methods, performance depended more on choice of

LD matrix than on choice of method. We also emphasize the importance of computing z-

scores at different SNPs from the exact same samples, using genotype imputation if necessary

[50]. It is also important to ensure that alleles are consistently encoded in study and reference

samples.

Although our derivations and simulations focused on z-scores computed from quantitative

traits with a simple linear regression, in practice it is common to apply summary-data fine-

mapping methods to z-scores computed in other ways, e.g., using logistic regression on a

binary or case-control trait, or using linear mixed models to deal with population stratification

and relatedness. The multivariate normal assumption on z-scores, which underlies all the

methods considered here, should also apply to these settings, although as far as we are aware

theoretical derivation of the precise form (20) is lacking in these settings (although see [12, 51,

52]). Since the model (20) is already only an approximation, one might expect that the addi-

tional effect of such issues might be small, particularly compared with the effect of allele flips

or small reference panels. Nonetheless, since our simulations show that model misspecification

can hurt performance of existing methods, further research to improve robustness of fine-

mapping methods to model misspecification would be welcome.
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Supporting information

S1 Fig. Likelihood ratio for detecting allele flips. These plots summarize the likelihood ratios

LRj for SNPs j in simulated fine-mapping data sets, separately for allele-flip SNPs with an effect

(top row, right-hand side), without an effect on the trait (top row, left-hand side), and for

SNPs without a flipped allele that affect the trait (middle row, right-hand side) and do not

affect the trait (middle row, left-hand side). The two histograms in the bottom row show likeli-

hood ratios after restricting to SNPs with z-scores greater than 2 in magnitude. The bar heights

in the histograms in the middle and bottom rows are drawn on the logarithmic scale to better

visualize the smaller numbers of SNPs with likelihood ratios greater than 1 (i.e., log LRj > 0).

(PDF)

S1 Text. Detailed methods. More description of the methods, including: the single effect

regression (SER) model with summary statistics; the IBSS-ss algorithm; computing the suffi-

cient statistics; approaches to dealing with a non-invertible LD matrix; estimation of λ in the

regularized LD matrix; likelihood ratio for detecting allele flips; SuSiE refinement procedure;

detailed calculations for toy example; and more details on the UK Biobank simulations.

(PDF)
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