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Abstract We investigated early vegetative growth of natural Arabidopsis thaliana accessions in 
cold, nonfreezing temperatures, similar to temperatures these plants naturally encounter in fall at 
northern latitudes. We found that accessions from northern latitudes produced larger seedlings than 
accessions from southern latitudes, partly as a result of larger seed size. However, their subsequent 
vegetative growth when exposed to colder temperatures was slower. The difference was too large 
to be explained by random population differentiation, and is thus suggestive of local adaptation, a 
notion that is further supported by substantial transcriptome and metabolome changes in northern 
accessions. We hypothesize that the reduced growth of northern accessions is an adaptive response 
and a consequence of reallocating resources toward cold acclimation and winter survival.

Editor's evaluation
The article combines genetic and phenotypic approaches to show convincing evidence of local 
adaptation in early vegetative growth of Arabidopsis lineages sampled from a wide range of loca-
tions. The authors show larger initial size and slower growth of northern accessions compared to 
southern accessions when exposed to cold temperatures, suggesting that northern accessions 
potentially reallocate resources for winter survival. This study is commendable for its scope and 
comprehensive analysis of local adaptation of a highly polygenic trait in a model weed.

Introduction
Plants use a wide variety of life history strategies in adaptation to their local environment. These 
strategies have evolved to maximize fitness, but are constrained by trade-offs between components 
such as growth, survival, and reproduction (Lande, 1982; Stearns, 1992). While most life history 
studies investigate differences between species, there is also variation found within species, including 
in Arabidopsis thaliana, where life history variation has been linked to climate parameters (Estarague 
et al., 2022; Vasseur et al., 2018; Sartori et al., 2019). Less clear is how trade-offs are shaping this 
variation. In this article, we consider vegetative growth, a key component of life history, and use tran-
scriptome and metabolome data to help explore potential trade-offs. We did this specifically in cold 
temperatures meant to simulate natural conditions in the northern regions of the species distribution.

Local adaptation studies in A. thaliana have found important roles for life history traits such as seed 
dormancy and flowering time (Takou et al., 2019). Temperature is a major regulator of these traits 
and local populations are adapted to their local climate (Martínez-Berdeja et al., 2020; Simpson 
and Dean, 2002; Hepworth et al., 2018). Plant growth is also affected by temperature, and previous 
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studies have detected genetic variation underlying growth-related traits (Bac-Molenaar et al., 2015; 
Marchadier et al., 2019), as well as signals of polygenic adaptation (Wieters et al., 2021). How vege-
tative growth is adapted to local temperatures remains unclear, however.

Growth can be seen as the end sum of a vast number of physiological processes. All of these are 
genetically determined but can also be heavily influenced by environmental conditions (Bac-Molenaar 
et al., 2015; Fritz et al., 2018). Growth is therefore not only genetically a complex trait but also 
enormously plastic. The most straightforward environmental effect is when conditions are so adverse 
that growth reaches a physiological limit, making it impossible for the plant to grow any further. This 
is called ‘passive plasticity’ (Forsman, 2015; van Kleunen and Fischer, 2005). Yet, when survival is 
at stake, it may also be in the interest of the plant to actively inhibit growth upon deteriorating envi-
ronmental conditions (Claeys and Inzé, 2013), called ‘active plasticity’ (Forsman, 2015; van Kleunen 
and Fischer, 2005). Since vegetative growth ultimately determines photosynthetic surface and thus 
energy input that can be invested in the next generation, it is directly related to fitness, and is typically 
in trade-off with survival. Allocation of resources towards either growth or survival is thus an important 
balance to keep, and plants are expected to be adapted to constantly perceiving and responding to 
specific environmental changes as cues for looming adverse conditions.

Cold acclimation is a well-studied mechanism in plants, in which decreasing temperatures induce 
freezing tolerance in preparation for winter (Thomashow, 1999; Hughes and Dunn, 1996). This 
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Figure 1. Geographic origin of the 249 accessions. Map color shows winter temperature (mean temperature of coldest quarter). Accessions are 
colored according to subpopulation (1001 Genomes Consortium, 2016). Accessions from the warmest and coldest regions are from Greece and the 
Himalayas, respectively.

The online version of this article includes the following source data and figure supplement(s) for figure 1:

Figure supplement 1. Timeline of the experiments.

Source data 1. List of all 249 accessions with indication of the 8 accessions used for the transcriptome analysis.

https://doi.org/10.7554/eLife.77913
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temperature response is typically studied at 4°C, but has been observed in temperatures up to 
12°C (Bond et al., 2011). The increased freezing tolerance is accomplished by changing membrane 
composition, producing cryoprotective polypeptides such as COR15A (Artus et al., 1996; Steponkus 
et al., 1998) and accumulating compatible solutes with cryoprotective properties such as raffinose, 
sucrose, and proline (Nanjo et al., 1999; Gilmour et al., 2000; Taji et al., 2002). Main regulators of 
cold acclimation are CBF1/DREB1b, CBF2/DREB1c, and CBF3/DREB1a, three AP2/ERF transcription 
factors, for which allelic variation in CBF2 has been linked to natural variation in freezing tolerance 
(Oakley et al., 2014; Park et al., 2018; Alonso-Blanco et al., 2005). Nothing is known, however, 
about whether natural variation in freezing tolerance regulation also influences a trade-off with growth 
responses to cold temperatures.

Here, we investigated the role of growth in adaptation to cold temperatures by comparing vege-
tative growth of 249 accessions (Figure  1) grown in daily maximum temperatures of 16 and 6°C 
for a period of 3 weeks following seedling establishment (Figure 1—figure supplement 1). Rosette 
growth of each plant was measured twice a day during temperature treatments using automated 
phenotyping. The experiment generated rosette growth estimates at a high temporal resolution in 
two ecologically realistic temperature conditions in a wide set of accessions, allowing us to look for 
patterns of local adaptation.

Results
Estimating plant growth
Our highly replicated experiment yielded dense (two measurements per day) time-series growth data 
for over 7000 individual plants (5 replicate plants × 249 accessions × 2 treatments × 3 replicate 
experiments). These data were used to model plant growth and estimate growth parameters for 
further analysis. Unlimited growth should be exponential, but plant growth is known to slow down 
with increasing size, and therefore a power-law function, ‍

dM
dt = rMβ

‍, with ‍β < 1‍ is typically a better fit 
than a pure exponential function (for which ‍β = 1‍ — in the equation, M is the size, r is the growth rate, 
and ‍β‍ is a scaling factor that allows rate of size increase to change with size). Growth according to a 
power-law function typically describes early stages of plant growth especially well (Paine et al., 2012), 
and our rosette size measurements were no exception (see ‘Materials and methods’). To calculate the 
rosette size from a power-law function at a given time point, only three parameters are required: the 
initial size (‍M0)‍, growth rate (‍r)‍, and ‍β‍. Note that (‍M0)‍ is the rosette size at the start of the temperature 
treatment 14 days after stratification (Figure 1—figure supplement 1) and is thus not affected by 
the temperature treatment. We used a nonlinear mixed model to obtain estimates for the initial size, 
growth rates, and ‍β‍. Accession was added as fixed effect for initial size and growth rate, tempera-
ture and accession × temperature interactions were added as fixed effects for growth rate only. ‍β‍ 
was considered to be constant over accessions and temperatures. The ‘temperature response’ of 
the growth rate was calculated for each accession as the slope between the growth rate at 16 and 
6°C. As expected, all accessions grew faster when it was warmer. The observed phenotypic variation 
(Figure 2—figure supplement 1) is to a large extent explained by genetic variation; broad-sense 
heritabilities are 0.41 for initial size, and 0.57 and 0.32 for growth rate at 16 and 6°C, respectively.

Growth parameters correlate with the environment of origin
If growth rates are locally adaptive, they may reflect the environment of origin of each accession. 
To investigate this, we correlated our estimated growth rates with climate data. The climate vari-
ables showing the strongest correlations with the different growth parameters were linked to winter 
temperatures (Figure 2—figure supplement 2), also when correlations were corrected for population 
structure (Figure 2—figure supplement 2). In particular, the mean temperature during the coldest 
quarter (henceforth referred to as ‘winter temperature’) was most strongly correlated with our param-
eter estimates, and we focus on it in what follows.

Initial size
Accessions from colder climates generally had higher initial rosette size (M0), 2 weeks after germi-
nation, than accessions from warmer climates (‍r = −0.39‍), but then grew more slowly during the 
temperature experiment – regardless of temperature regime (Figure 2, Figure 2—figure supplement 

https://doi.org/10.7554/eLife.77913
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Figure 2. Correlations of growth parameters with winter temperature. (A) Initial size. (B) Growth rate at 16°C. (C) Growth rate at 6°C. (D) Temperature 
response of growth rate. Colors indicate genetically defined subpopulations of the accessions (1001 Genomes Consortium, 2016).

The online version of this article includes the following figure supplement(s) for figure 2:

Figure supplement 1. Variation among accessions of initial size (M0), growth rate (‍r ‍), and the temperature response of the growth rate.

Figure supplement 2. Correlations between growth parameters and (bio)climate variables.

Figure supplement 3. Population structure-corrected correlations between growth parameters and (bio)climate variables.

Figure supplement 4. Correlations of growth parameters with winter temperature, excluding accessions defined as Asian subpopulation.

Figure supplement 5. Seed size correlations.

Figure supplement 6. Growth rate’s temperature response variation.

https://doi.org/10.7554/eLife.77913
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3). Because during the first 2 weeks the plants were growing at 21°C, it is impossible to disentangle 
early growth from growth at a warmer temperature.

One reason for this pattern is likely to be the differences in seed size between accessions. Using 
unpublished seed size measurements for a subset of 123 Swedish accessions from previous exper-
iments, we found that seed size is positively correlated with initial size (‍r = 0.28‍; Figure 2—figure 
supplement 5A), and also with winter temperature (‍r = −0.75‍; Figure 2—figure supplement 5B), 
at least for the subset of 123 Swedish accessions. In a random-effect model, winter temperature 
explained 32.7% of the variation in initial size, whereas seed size explained 11.9%. Winter temperature 
is still significantly associated with initial size when seed size is taken into account (‍p−value<1e − 04‍). 
The precise role of seed size in initial growth is surely a topic that would benefit from further studies, 
but for the purpose of this study, it is clear that seed size alone cannot explain the geographic pattern 
we observe for M0 and that there must be a role for variation in growth rate during the very initial 
phases of seedling growth.

Growth rates
While the initial sizes correlate negatively with winter temperature, we observed the opposite relation 
for the growth rates. Despite being larger initially, accessions from colder climates grew more slowly 
during both the 16°C (‍r = 0.33‍) and 6°C (‍r = 0.28‍) treatments (Figure 2). The higher growth rates of 
accessions from warmer climates prove that resources are not limiting, suggesting that the northern 
lines are actively inhibiting their growth, and that growing slower may be beneficial in colder climates, 
perhaps in preparation for winter. Accessions from colder climates were also less sensitive to the 
temperature experiment in the sense that the temperature response of the growth rate increased 
with winter temperature of origin (‍r = 0.28‍; Figure  2D). Even though accessions from the Asian 
and north Swedish subpopulations were more variable in their growth rate temperature response 
(Figure 2—figure supplement 4A), the correlations still hold when removing either Asian or northern 
and southern Swedish subpopulations (Figure 2—figure supplement 6B, Figure 2—figure supple-
ment 4D), and when looking specifically within the northern and southern Swedish subpopulations 
(Figure 2—figure supplement 6).

Cold acclimation response
Just like the observed geographic pattern of the growth rates, metabolite measurements taken at the 
final day of our experiment and presented in an earlier publication (Weiszmann et al., 2020) showed 
clear differences between accessions from cold and warm regions, and many of these differences 
involved metabolites with a known role in cold acclimation. Since the transcriptomic component of 
cold acclimation is well studied, we analyzed the expression profiles of 251 previously described 
cold-acclimation genes (Figure 3—source data 1) in eight accessions that were representative in 
terms of their growth and metabolome profiles (Figure  3—figure supplement 1). The selected 
genes are described in the literature as being differentially expressed upon exposure to cold, and 
their expression is under control of at least one of the known transcription factors regulating cold 
acclimation: CBF1, CBF2, CBF3, HSFC1 (Park et al., 2015), or ZAT12 (Vogel et al., 2005). In our 
experiment, expression of these genes is likewise more affected by temperature than expected by 
chance (Figure 3; ‍χ

2
‍-test: ‍p − value<0.001‍) and separates the two accessions from the coldest region 

(northern Sweden) from the rest in the 16°C treatment, and the three accessions from the warmest 
regions (Spain and Azerbaijan) from the rest in the 6°C treatment. Expression of different subsets 
of the selected cold-acclimation genes shows clear correlations with winter temperature of origin 
(Figure 3—figure supplement 2, Figure 3—figure supplement 3). In particular, the genes that were 
previously found to be upregulated upon cold exposure showed higher expression in accessions from 
cold climates (Figure 3—figure supplement 4). Since the expression of these cold-acclimation genes 
has been linked to the strength of cold acclimation in previous experiments (Park et al., 2015; Vogel 
et al., 2005), these accessions likely differ in their ability to cope with freezing temperatures upon 
cold treatment.

Growth is polygenic and shows signs of local adaptation
We used genome-wide association to investigate the genetic architecture underlying variation for 
the different growth parameters. As expected, these traits appear to be highly polygenic, and there 

https://doi.org/10.7554/eLife.77913
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Figure 3. Expression of 251 previously described cold-acclimation genes. Expression is shown as the gene-wide z-scores of the normalized counts. The 
z-scores allow for grouping genes with a similar expression behavior over the different accessions in both temperatures. The top bar indicates winter 
temperature (°C) for each accession’s origin. Both dendrograms along y-axis and x-axis, respectively, show hierarchical clustering of genes, and of 
accessions in both temperatures.

The online version of this article includes the following source data and figure supplement(s) for figure 3:

Figure supplement 1. Growth parameters and metabolic distance of RNA-sequenced accessions in relation to local mean temperature of coldest 
quarter.

Figure supplement 2. Cluster-specific expression in relation to winter temperature.

Figure supplement 3. Proportion of genes in each cluster for which expression significantly correlated with winter temperature (‍fdr < 0.05‍).

Figure supplement 4. Gene expression correlations with winter temperature.

Figure supplement 5. Gene expression correlations with winter temperature compared to background genes.

Source data 1. Cold-acclimation genes and their expression cluster membership as shown in Figure 3.

https://doi.org/10.7554/eLife.77913
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were no genome-wide significant associations (Figure  4—figure supplement 1). The strongest 
association was found for overall growth rate at 16°C (Figure 4A). Inflated significance levels after 
correcting for population structure are consistent with what we would expect from a polygenic trait 
(Figure 4B) and were also observed for the other traits, except for growth rate at 6°C (Figure 4—
figure supplement 1). Plausible candidates within 10 kb of the most significant SNP (chr5: 23334281; 

‍− log1 0(p − value) = 6.85‍) include CIPK21 and MYB36. CIPK21 encodes a CBL-interacting protein 
kinase that is upregulated in cold conditions and is involved in the salt and osmotic stress response 
(Pandey et al., 2015). MYB36 is a key regulator of root endodermal differentiation (Liberman et al., 
2015). Slightly more distant, 22 kb away, is ‍COL5‍, encoding a transcription factor that is part of the 
gene network that is regulated by AN3, a regulator of cell proliferation in leaf growth (Vercruyssen 
et al., 2014).

To test for potential polygenic adaptation, we compared the phenotypic divergence to the 
expected neutral genome-wide genetic divergence. This can be done using a ‍QST − FST ‍ test (Prout 
and Barker, 1993; Whitlock, 2008; Spitze, 1993); however, this test is not well suited for species with 
complex population structure, and so we used a variation that was designed to detect adaptive differ-
entiation for traits measured in structured GWAS panels (Josephs et al., 2019). Instead of looking 
at divergences between predefined populations, this method uses principal components (PCs) of the 
genetic relatedness matrix as axes of potential adaptive differentiation. Adaptive differentiation is 
then detected as a correlation between the focal phenotype and any of these relatedness PCs that is 
significantly different than expected under neutrality.

Adaptive differentiation was detected for initial size and for growth rate at 16°C and its tempera-
ture response. These traits show adaptive differentiation along different genetic axes (Figure 5). Initial 
size shows significant adaptive differentiation along PC6 (‍p − value<0.05‍), whereas growth rate at 16°C 
and its temperature response showed significant adaptive differentiation along PC5 (‍p − values<0.05‍). 
Adaptive differentiation was not significant along the other axes of genetic differentiation (PC1–4, 
PC7–10). The adaptive differentiation for initial size along PC6 seems to stem from higher initial 
sizes in Swedish accessions compared to central European accessions. The adaptive differentiation 
along PC5 seems to be driven by the lower growth rate temperature responses in Asian and northern 
Swedish accessions in contrast to higher growth rates in a subset of southern Swedish accessions. 
The accessions in our set that come from northern Sweden and Asia hail from the coldest climates. 
Thus, these results suggest adaptive differentiation driven by adaptation to cold winters. Given the 

Figure 4. Genome-wide association study (GWAS) results for the growth rate at 16°C. (A) Manhattan plot showing the significance of the association 
between the phenotype and each of the tested SNPs (‍MAF > 10%‍). The Bonferroni-corrected threshold is shown with a dashed red line. (B) QQ-plot 
showing the relation between observed and expected ‍− log 10(p − value)‍ distributions. Red line shows the observed relationship. The gray line and 
band show the expected relationship under the null hypothesis of no differentiation between both distributions.

The online version of this article includes the following figure supplement(s) for figure 4:

Figure supplement 1. Genome-wide association study (GWAS) results for the initial size, growth rate at 6°C, and the temperature response of the 
growth rate.

https://doi.org/10.7554/eLife.77913
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seemingly strong influence from the Asian accessions, we repeated the analysis without them. Also 
in this analysis we detected significant adaptive differentiation (‍p − values<0.05‍) for initial size, growth 
rate at 16°C, and its temperature response (Figure 5—figure supplement 1).

Discussion
This study explores natural variation of rosette growth in nonfreezing temperatures. We detect genetic 
variation for the different growth parameters, and environmental correlations that suggest local adap-
tation. GWAS analyses reveal, not surprisingly, a polygenic trait architecture. We speculated that 
the slower growth measured in accessions from colder climates reflects relocation of resources from 
growth towards cold acclimation. Both metabolome and gene expression data are consistent with 
accessions from colder climates preparing for a harsh winter. In our temperature experiment, we see 
that the growth of northern lines is affected less than southern lines by switching from 16°C to 6°C.

Our conclusion that slower growth is likely adaptive in populations facing fiercer winters is in line 
with recent results of Wieters et al., 2021, who concluded that the reduced growth in northern lines 
was adaptive and not a consequence of an accumulation of deleterious mutations at the species 
border. If slower growth were indeed a consequence of accumulated deleterious mutations, we would 
expect to see slower growth also during the initial seedling establishment, which we measured here 
as the initial size. On the contrary, we saw a fast seedling establishment for accessions from colder 
regions. We speculate that the fast seedling establishment is a potential adaptation for short growth 
seasons, which often coincide with colder climates (high latitude or high altitude). This fast seedling 
establishment seems to be partly supported by larger seeds. These larger seeds may provide more 
nutrients to initiate faster seedling establishment, while this is of less importance in warmer climates 
with longer growth seasons. Further work is needed to disentangle initial growth from seed size 
effects and confirm that there is a causal relationship between seed size and fast seedling establish-
ment, whether this is due to seed nutrient storage, and whether it is adaptive.
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Figure 5. Adaptive differentiation of initial size, growth rate at 16°C, and the temperature response of growth rate along different axes of genetic 
differentiation. Plots represent the phenotypes and axes of genetic differentiation for which we detected significant adaptive differentiation; initial 
size and PC6 (A), growth rate in 16ºC and PC5 (B), and the growthrate's temperature response and PC5 (C). Accessions are colored according to 
their respective admixture groups, as specified in 1001 Genomes Consortium, 2016. The gray ribbon represents the expected correlation between 
phenotype and axis of genetic differentiation under neutrality with a 90% confidence interval. The neutral expectation is based on axes of genetic 
differentiation within populations (see ‘Materials and methods’ and Josephs et al., 2019 for further details). The blue line represents the observed 
correlation between phenotype and axis of genetic differentiation. Percentages refer to the genetic variation explained by the respective principal 
component.

The online version of this article includes the following figure supplement(s) for figure 5:

Figure supplement 1. Adaptive differentiation of initial size, growth rate at 16°C, and the temperature response of growth rate along different axes of 
genetic differentiation.

https://doi.org/10.7554/eLife.77913
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The adaptation of growth to local climates is likely to be influenced by a trade-off with cold acclima-
tion. General growth-survival trade-offs have long been observed and are described in general ecolog-
ical strategy schemes such as Grime’s C-S-R triangle (Grime, 1979) and the leaf–height–seed scheme 
(Westoby, 1998). Specific trade-offs between growth and cold/frost survival were observed for wheat 
(Hayes and Aamodt, 1927; Quisenberry, 1931), alfalfa (Castonguay et al., 2006), Dactylis glom-
erata (Bristiel et al., 2018), and multiple tree species (Koehler et al., 2012; Loehle, 1998; Molina-
Montenegro et al., 2012; Savage and Cavender-Bares, 2013). Here, we observed higher expression 
of genes involved in cold acclimation in accessions from colder regions. This is clearest at 6°C, but is 
also happening at 16°C, suggesting that activation of cold acclimation is stronger in accessions from 
cold climates and may be triggered more easily. More generally, it establishes that geographic differ-
entiation exists in the expression of known cold-response genes. Accessions from warm climates may 
instead activate cold acclimation as a stress response rather than as a preventive measure. Even though 
this is based on a limited set of 8 accessions, metabolome measurements in all 249 accessions lead to 
the same conclusion. Metabolites involved in cold acclimation such as raffinose, sucrose, and proline 
were found in higher concentrations in accessions from colder climates (Weiszmann et  al., 2020). 
We believe that accessions from colder environments are relocating more energy and resources from 
growth towards preparations for upcoming freezing temperatures, which is a clear example of active 
plasticity (Forsman, 2015; van Kleunen and Fischer, 2005). Even though we have no direct survival 
measurements, we speculate that this results in stronger cold acclimation and consequently increased 
freezing tolerance in the accessions from colder regions. Indeed, accessions originating from colder 
environments show increased freezing tolerance upon cold acclimation (Zhen et  al., 2011; Zuther 
et al., 2012; Hannah et al., 2006; Horton et al., 2016). This fits with observations of northern and 
colder regions favoring slower growing, more stress-tolerant plants (Vasseur et al., 2018; Estarague 
et al., 2022). Also, biogeographic studies in A. thaliana found that winter temperatures are a major 
determinant of suitable habitats for this species (Hoffmann, 2002; Yim et al., 2022), and reciprocal 
transplant experiments detected an important role for freezing tolerance in fitness variation in northern 
sites (Ågren and Schemske, 2012). The high variability we observed in our data does, however, show 
that there is more at play than selection for cold resistance alone. What these factors are we can 
only speculate about. Phenotypes are shaped by a mixture of neutral and adaptive processes, with a 
plethora of trade-offs between traits. Investigating phenotypes at different organismal scales in specific 
and realistic environments will further elucidate how phenotypes and, ultimately, life history strategies 
are shaped. We speculate that the reduced growth plasticity observed for accessions from colder 
climates is due to the stronger growth reduction at 16°C in these accessions compared to accessions 
from warmer climates. They may well be anticipating winter, whereas accessions from warmer climates 
do not, and hence show a stronger difference between 16 and 6°C. Although both metabolite and 
gene expression data suggest an involvement of cold acclimation, we note that it is impossible to 
rule out that accessions from colder climates grow slower due to reduced resource efficiency as they 
become larger or, for example, increase leaf thickness (Adams et al., 2016). Further work is needed to 
understand the mechanism underlying the growth response observed here.

There is strong evidence from QTL mapping that genetic variation in the CBF2 gene is one of the 
drivers for adaptation to freezing stress (Oakley et al., 2014; Gehan et al., 2015). Here, we looked at 
growth phenotypes and did not detect associations with the CBF loci. In the transcriptome analysis, we 
did pick up a role for CBF and other known cold-acclimation genes. The most significant locus detected 
in our GWAS analysis (for growth rate at 16°C) lies in the vicinity of COL5, a gene that is part of a leaf 
growth regulatory network (Vercruyssen et al., 2014) and whose expression is induced by both cold 
treatment and CBF1, CBF2, and CBF3 overexpression (Park et al., 2015). It is however unclear what its 
exact regulatory role in growth in cold conditions might be. In summary, we detected adaptive differenti-
ation for growth between accessions from warm and cold climates. Our transcriptome data and previous 
metabolome data suggest that resources are relocated from growth to cold acclimation in accessions 
from colder regions. This allows these accessions to be fully prepared for the coming of winter.

Materials and methods
Plant growth and phenotyping
Seeds of 249 natural accessions (Figure 1—source data 1) of A. thaliana described in the 1001 
genomes project (1001 Genomes Consortium, 2016) were sown on sieved (6  mm) substrate 

https://doi.org/10.7554/eLife.77913
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(Einheitserde ED63). Pots were filled with 71.5 g ± 1.5 g of soil to ensure homogenous packing. The 
prepared pots were all covered with blue mats (Junker et al., 2014) to enable a robust performance 
of the high-throughput image analysis algorithm. Seeds were stratified (4 days at 4°C in darkness) 
after which they germinated and left to grow for 2 weeks at 21°C (relative humidity: 55%; light inten-
sity: ‍160µmol m−2 s−1

‍; 14 hr light). The temperature treatments were started by transferring the seed-
lings to either 6 or 16°C. To simulate natural conditions, temperatures fluctuated diurnally between 
16–21°C, 0.5–6°C, and 8–16°C for the 21°C initial growth conditions and the 6 and 16°C treatments, 
respectively (Figure 1—figure supplement 1). Light intensity was kept constant at ‍160µmol m−2 s−1

‍ 
throughout the experiment. Relative humidity was set at 55% but in colder temperatures it rose uncon-
trollably to maximum 95%. Daylength was 9 hr during the 16 and 6°C treatments. Each temperature 
treatment was repeated in three independent experiments. Five replicate plants were grown for every 
genotype per experiment. Plants were randomly distributed across the growth chamber with an inde-
pendent randomization pattern for each experiment. During the temperature treatments (14–35 days 
after stratification), plants were photographed twice a day (1 hr after/before lights switched on/off), 
using an RGB camera (IDS uEye UI-548xRE-C; 5MP) mounted to a robotic arm. Rosette areas were 
extracted from the plant images using Lemnatec OS (LemnaTec GmbH, Aachen, Germany) software. 
Plant growth profiles were visually inspected, and datapoints with smaller rosette areas than earlier 
time points (negative growth) were discarded from further analyses. At 35 days after stratification, 
whole rosettes were harvested, immediately frozen in liquid nitrogen, and stored at –80°C until further 
analysis.

Nonlinear modeling
Nonlinear modeling was used to describe plant growth in a minimum number of parameters. In a first 
step, we constructed a simple nonlinear model with plant size being explained by either the exponen-
tial (Equation 1a, Equation 1b) or the power-law function (Equation 2a, Equation 2b), with individual 
plant as a random effect for each of the model parameters; M0, ‍r‍, and ‍β‍. With ‍β‍ being only present 
in the power-law model. Models were constructed using the nlsList and nlme functions from the nlme 
package (3.1.152; Pinheiro et al., 2021) for R (4.0.3; R Development Core Team, 2017). Exponential 
and power-law SelfStart functions were used from Paine et al., 2012. Based on Akaike information 
criterion and likelihood ratio test generated by the anova function (Table 1), we decided to use the 
power-law model for further analyses.

	﻿‍
dM
dt

= rM
‍�

(1a)

	﻿‍ Mt = M0ert
‍� (1b)

	﻿‍
dM
dt

= rMβ

‍�
(2a)

	﻿‍ Mt = (M1−β
0 + rt(1 − β))1/(1−β)

‍� (2b)

In a second step, we constructed a model with fixed effects for the different power-law parameters. 
For initial size (M0), we added accession as fixed effect. Temperature treatment only started from the 
initial time point onwards, and thus could not have an effect on the initial plant size. The growth rate, 
on the other hand, should be affected by temperature; therefore, we included accession, tempera-
ture, and their interaction as fixed effects for growth rate (‍r‍). No fixed effects were added for ‍β‍. The 
idea here is that it is an adjustment factor for decreasing growth rates (when ‍β < 1‍) with increasing 
plant sizes, which is general for plant growth, or at least for our data in this case. Individuals nested 
within experiment were added as random effects for each of the model parameters. The correlation 

Table 1. ANOVA table for the comparison between the exponential and power-law model with degrees of freedom (df), Akaike 
information criterion (AIC), Bayesian information criterion (BIC), and log-likelihood (logLik) for each model.
The likelihood ratio statistic (L.ratio) and p-value are given for the likelihood ratio test that was used to compare these models.

Model df AIC BIC logLik Test L.ratio p-Value

Exponential 1 6 –668551.6 –668488.1 334281.8 - -

Power-law 2 10 –870605.0 –870499.1 435312.5 1 vs. 2 202.061 <0.001

https://doi.org/10.7554/eLife.77913
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structure intrinsic to measuring the same individuals over time was accounted for by adding the first-
order continuous autoregressive correlation structure (corCAR1). The estimated fixed effects of this 
model were then used to obtain initial size estimates for each accession and growth rate estimates for 
each accession in both temperatures. These estimates were used for all further analyses apart from 
broad-sense heritability calculations (see below). For each accession, we calculated the growth rate 
response as the slope between the growth rate at 6°C and the growth rate at 16°C. The slope was 
obtained from linear regression with the lm function in R (4.0.3; R Development Core Team, 2017) 
using temperature as an ordered categorical variable (6°C < 16°C).

Climate correlations
The different phenotypes were correlated with each of the different (bio)climate variables down-
loaded from https://www.worldclim.org (Fick and Hijmans, 2017). Correlations were calculated as 
Pearson’s correlations using the cor function in R (4.0.3; R Development Core Team, 2017). Popula-
tion structure may confound the correlation between phenotype and climate. Therefore, we included 
additional phenotype–climate correlations with correction for population structure (Figure 2—figure 
supplement 3). For the population–structure-corrected correlations, we used a mixed-effects model 
as implemented in the lmekin function from the coxme (2.2.16; Therneau, 2020) package with pheno-
type as dependent variable, climate variable as fixed effects, and the kinship matrix as random effect. 
The kinship matrix was based on the SNPs from the 1001 genomes consortium (1001 Genomes 
Consortium, 2016) and was calculated using ’mixmogam’ (https://github.com/bvilhjal/mixmogam; 
Vilhjalmsson, 2019) based on Kang et al., 2010. In this analysis, phenotype and climate variables 
were standardized, so that regression coefficients were comparable to correlation coefficients. Even 
though the strength and significance of the correlations weaken upon population structure correction, 
the growth parameters still demonstrate the same pattern, being most strongly correlated with winter 
temperatures.

 

Seed size correlations
We used the seeds produced by Kerdaffrec et al., 2016 and limited our measurements to the set 
of 123 Swedish accessions that overlapped with our growth dataset. After seed stratification for four 
days at 4°C in darkness, mother plants were grown for 8 weeks at 4°C under long-day conditions 
(16 hr light; 8 hr dark) to ensure proper vernalization. Temperature was raised to 21°C (light) and 16°C 
(dark) for flowering and seed ripening. Seeds were kept in darkness at 16°C and 30% relative humidity, 
from the harvest until seed size measurements. For each genotype, three replicates were pooled and 
about 200–300 seeds were sprinkled on 12 × 12 cm2, transparent Petri dishes. Image acquisition was 
performed as described in Exposito-Alonso et al., 2018 by scanning dishes on a cluster of eight 
Epson V600 scanners. The resulting 1200 dpi .tiff images were analyzed with the ImageJ software 
(2.1.0/1.53c). Images were converted to eight-bit binary images and thresholded with the setAuto-
Threshold("Defaultdark”) command, and seed area was measured in mm2 by running the Analyse 
Particles command (inclusion parameters: ‍size = 0.04 − 0.25‍). All scripts used for image processing 
are available at https://github.com/vevel/seed_size; Kerdaffrec, 2022. The variance decomposition 
for initial size into variance explained by winter temperature and seed size was done with a random-
effect model where initial size was explained by winter temperature and seed size, using the lmer and 
VarCorr functions from the lme4 package (1.1.27.1; Bates et al., 2015) in R (4.0.3; R Development 
Core Team, 2017). The seed size-corrected correlation between initial size and winter temperature 
was estimated with the lme function from the nlme package (3.1.152; Pinheiro et al., 2021) in R (4.0.3; 
R Development Core Team, 2017), and the correction for seed size was done by including seed size 
as a random effect.

Transcriptome profiling
35  days after stratification, rosette tissue of all plants were harvested and flash frozen in liquid 
nitrogen. Random samples from each replicate experiment for both temperatures were taken for 
eight accessions to profile the transcriptome with RNA-sequencing. The eight accessions were 
selected to represent the climatic variation in the full panel (Figure 3—figure supplement 1, Figure 
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1—source data 1). Total RNA was extracted using the KingFisher Duo Prime System (Thermo Fisher 
Scientific) together with a high-performance RNA bead isolation kit (Molecular Biology Service, VBC 
Core Facilities, Vienna). To determine the quantity of RNA, we used Fluorometer Qubit 4 (Invitrogen) 
and Qubit RNA BR Kit (Invitrogen). For each sample, 1 µg of total RNA was treated with the poly(A) 
RNA Selection Kit (Lexogen) and eluted in 12 µl of Nuclease-Free Water. Libraries were prepared 
according to the manufacturer’s protocol in NEBNext Ultra II Directional RNA Library Prep Kit (New 
England Biolabs) and individually indexed with NEBNext Multiplex Oligos for Illumina (New England 
Biolabs). The quantity and quality of each amplified library were analyzed by using Fragment Analyzer 
(Agilent) and HS NGS Fragment Kit (Agilent). Libraries were sequenced with an Illumina HiSeq2500 
in paired-end mode with read length of 125 bp. Sequencing was performed by the Next Generation 
Sequencing Facility at Vienna BioCenter Core Facilities (VBCF), member of the Vienna BioCenter 
(VBC), Austria. Samples were distributed over four independent libraries. This was due to failed 
samples that needed replacement. Detailed info on which samples belong to which library is listed 
in SRA (https://www.ncbi.nlm.nih.gov/sra/PRJNA807069). Gene expression was quantified by using 
quasi-mapping in salmon (1.2.1; Patro et al., 2017). The salmon indices were built separately for each 
accession as we incorporated the SNP variation from the 1001 Genomes Consortium, 2016 into the 
reference transcriptome. The heatmap was built using pheatmap (1.0.12; Kolde, 2019) in R (4.0.3; 
R Development Core Team, 2017). The clustering was done by complete clustering on Euclidean 
distances for both rows and columns. The gene clusters were defined by cutting the dendrogram in 
seven groups. With a -test, we tested for overrepresentation of a temperature effect on the expression 
of the 251 selected cold-acclimation genes (‍d f = 1‍) compared to the remaining 18,784 background 
genes. We used the ​chisq.​test function in R (4.0.3; R Development Core Team, 2017). Differen-
tial expression analysis was conducted with the DESeq2 package (1.30.0; Love et  al., 2014) in R 
(4.0.3; R Development Core Team, 2017). A full model was used, with expression depending on 

‍replicate + accession + temperature + replicate : temperature + accession : temperature‍ , after which signifi-
cance of each model coefficient was defined with a negative binomial Wald test. Differential expres-
sion for each accession was then extracted by specifying the respective contrasts using the lfcShrink 
function in DESeq2 with the adaptive shrinkage estimator (Stephens, 2017). Genes were considered 
differentially expressed when the adjusted p-value was <0.05.

Metabolome profiling
Besides transcriptome profiling of eight accessions, we also conducted metabolome profiling on 
all 249 accessions. Samples for metabolome measurements were taken from the same experiments 
described in this study and, just like the transcriptome samples, were taken 35 days after stratification. 
Results and detailed methodology are described in Weiszmann et al., 2020.

Broad-sense heritabilities
Broad-sense heritabilities (‍H2‍) were calculated as the ratio between phenotypic variation explained 
by genotype (‍Vg‍) and the total phenotypic variation (‍Vp‍), which is the sum of ‍Vg‍ and phenotypic varia-
tion explained by environment (‍Ve‍). These variances were obtained from a mixed model by including 
accession as a random effect (estimate for ‍Vg‍). Because our accession estimates were corrected for 
experiment effects, we removed the variance explained by experiment by including experiment as 
a fixed effect. In order to estimate the variance within each accession (‍Ve‍), the dependent variables 
in this model were the growth parameter estimates for each individual plant, in contrast to the esti-
mates for each accession that were used in all other analyses. These individual plant estimates were 
obtained from the same model, but took the random effects into account. The variance explained by 
accession was then taken as an estimate for ‍Vg‍, the residual variance was taken as ‍Ve‍. For initial size, 
we calculated heritability over all experiments, and growth rate heritabilities were calculated for each 
temperature independently. The mixed model was constructed with the lmer function in the lme4 
package (1.1.27.1; Bates et al., 2015) in R (4.0.3; R Development Core Team, 2017).

Genome-wide association mapping
Genome-wide association mapping was done for each of the growth parameters in both temperatures 
and also the temperature response for the growth rate. We used a mixed model with phenotype as 
dependent variable, genotype as fixed effect, and genetic relatedness as random factor. Nonimputed 
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SNPs obtained from the 1001 Genomes Consortium, 2016 were used as genotypes. This model was 
run in GEMMA (0.98.3; Zhou and Stephens, 2012), with kinship matrix calculated as the centered 
relatedness matrix, as implemented in GEMMA.

Testing for adaptive differentiation
Adaptive differentiation was tested with the method described by Josephs et  al., 2019 and the 
accompanying quaint package (0.0.0.9; https://github.com/emjosephs/quaint; Josephs, 2020) in R 
(4.0.3; R Development Core Team, 2017). The kinship matrix was calculated using the make_k func-
tion in the quaint package. Genetic PCs were then calculated from the eigen decomposition of the 
kinship matrix. Adaptive differentiation of each phenotype along the first 10 PCs was tested with the 
calcQpc function in the quaint package. PCs 11–248 were used to build the expected phenotypic 
differentiation under neutrality.

Supplementary information
Scripts can be found at https://github.com/picla/growth_16C_6C/; Clauw, 2022. Scripts for seedsize 
analysis can be found at https://github.com/vevel/seed_size; Kerdaffrec, 2022.

All RNA-sequencing were uploaded to SRA under http://www.ncbi.nlm.nih.gov/bioproject/807069. 
All generated phenotyping data are filed under 10.5281/zenodo.6076948.
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