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Abstract

Genetic architecture predisposes regions of the human genome to copy-number variants, which 

confer substantial disease risk, most prominently towards neurodevelopmental disorders. These 

variants typically contain multiple genes and are often associated with extensive pleiotropy and 

variable phenotypic expressivity. Despite the expansion of the fidelity of CNV detection, and 

the study of such lesions at the population level, understanding causal mechanisms for CNV 

phenotypes will require biological testing of constituent genes and their interactions. In this 

regard, model systems amenable to high-throughput phenotypic analysis of dosage-sensitive 

genes (and combinations thereof) are beginning to offer improved granularity of CNV-driven 

pathology. Here, we review the utility of Drosophila and zebrafish models for pathogenic CNV 

regions, highlight the advances made in discovery of single gene drivers and genetic interactions 

that determine specific CNV phenotypes, and argue for their validity in dissecting conserved 

developmental mechanisms associated with CNVs.

Introduction

Copy-number variants (CNVs) are a major contributor to complex genetic disorders, 

accounting for about 25% of individuals with autism, intellectual disability/developmental 

delay (ID/DD), epilepsy, and schizophrenia [1–3]. The most frequently-studied CNVs, such 

as duplications and deletions at 16p11.2, 16p12.1, 3q29, and 1q21.1, are associated not only 

with a diverse set of clinical features, but also with variable expressivity [3]. Dissection of 

the breakpoints of CNVs, evaluation of genes perturbed within CNVs in patient populations, 
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and modeling genes in model organisms is beginning to unravel the genetic basis as well 

as causal functional mechanisms for these disorders, the lessons of which are likely useful 

across human genetics. In this review, we will focus on a subset of well-studied CNVs and 

discuss how animal modeling in particular can contribute to our understanding of pleiotropy 

and epistasis.

The phenotypic and genotypic landscape of CNVs—current challenges.

While CNVs pose a challenge for detection and interpretation in the context of disease 

pathology, they also represent an opportunity to study two major issues in medical genetics: 

pleiotropy and variable expressivity. In some cases, single-gene mutations within the CNV, 

such as deleterious mutations in RAI1 located within 17p11.2 deletion in Smith-Magenis 

syndrome (SMS), account for the majority of the observed phenotype [4–6]. However, these 

instances are outliers, especially when a CNV is associated with pleiotropic features. For 

example, the 16p11.2 deletion is associated with ID/DD [7–9], cardiac disease [10], epilepsy 

[11], and obesity [12], and it accounts for 1% of sporadic autism [13,14]. Identifying 

the genetic basis of phenotypes associated with these variably expressive CNVs has been 

challenging for several reasons. First, CNVs associated with variable expressivity are not 

amenable to causal gene discovery using atypical deletions or chromosomal translocations 

[3,15]. Second, large-scale sequencing studies of affected individuals have not identified 

causal genes that solely explain the clinical features of the entire CNV. For example, while 

mutations in TAOK2 within 16p11.2 have been identified in individuals with autism, their 

clinical features do not recapitulate the full range of phenotypes of 16p11.2 deletion carriers 

[16]. Third, mouse models of individual CNV genes do not recapitulate the phenotypes 

observed in rodent models of the entire CNV. For example, individuals genes within 

the 3q29 and 15q13.3 deletions, including DLG1, PAK2, CHRNA7, and OTUD7A, each 

showed developmental pathologies but did not account for the full range of phenotypes of 

the whole deletion [17–21]. Fourth, the biological mechanisms for pathogenicity of CNVs 

are relatively unknown. In fact, mechanisms for RAI1 were not well described until recently, 

when studies found that RAI1 acts in specific neuronal subtypes [22] and affects synaptic 

plasticity and scaling [23]. Overall, these findings suggest that variably expressive clinical 

features of CNVs are likely due to combinatorial effects of multiple candidate genes.

Understanding CNV pathogenicity using fly and zebrafish model systems.

Fly and zebrafish models allow for high-throughput evaluation of multiple individual 

homologs and complex genetic interactions, with low husbandry costs and availability 

of genetic tools to mimic alterations of CNV gene expression. Over 75% of human 

disease genes have homologs in Drosophila melanogaster, including many genes involved 

in conserved developmental and neuronal processes [24]. Moreover, tools such as the UAS-
GAL4 system and RNA interference allow for simultaneously modulating the expression of 

multiple genes, making Drosophila a powerful system to test genetic interactions in a tissue-

specific manner. For example, the fly eye has been used to perform high-throughput analysis 

of genes involved in Rett syndrome, spinocerebellar ataxia, and intellectual disability 

disorders [25–27]. Furthermore, Drosophila models have been used for assessing multiple 

developmental, neurological, and behavioral functions, including cardiac physiology [28], 

dendritic and synaptic architecture [29–31], learning and memory [32–34], and sleep and 
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circadian function [•35,36]. Importantly, this model organism has allowed the query of 

both single genes and combinations thereof, exemplified by Grossman and colleagues who 

identified cooperative interactions between candidate Down syndrome genes, DSCAM and 

COL6A2, towards congenital heart defects [28]. Similarly, Drosophila models of 22q11.2 

deletion identified LZTR1 as a candidate gene that affects sleep activity through its 

interactions with NF1 and modulating GABA signaling [•35].

Similar to Drosophila, zebrafish have emerged as valuable model for functional 

genomic studies, with a vertebrate body plan and conserved patterns of cell movement, 

differentiation, and organogenesis. Zebrafish have orthologs for ~ 70% of human genes, a 

number that rises to 84% when considering genes associated with human clinical traits [37]. 

Body transparency during early development and completion of organogenesis by five days 

post fertilization allows for the direct observation of developmental processes in real time. In 

addition, the ability to create stable transgenic lines with tissue specific expression advanced 

the utility of zebrafish for translational studies [38]. Although imperfect and subject to 

the need for extensive validations to ensure reagent specificity, transient suppression and 

overexpression systems have proven particularly useful in CNV dissection, allowing for 

scaled assessment of most genes within a CNV – a feat difficult to accomplish with 

stable mutants in any species. Systematic analysis of CNV genes using transient dosage 

perturbation during development has enabled unraveling of distinct pathologies, including 

neuroanatomical [39], behavioral [26, •35,40,41], and comorbid craniofacial defects [•42]; 

as well as manifestations in other vital organs [28,43].

Insights into mechanisms: ‘minimal overlap’ and genetic interactions.

Given the challenges of mapping individual genes to specific clinical features of variably-

expressive CNVs, recent studies have used animal models to evaluate the role of conserved 

homologs of each CNV gene towards quantitative neuronal phenotypes. Systematic 

evaluation of hundreds of pairwise interactions using Drosophila have been instrumental 

in understanding the genetic etiology of CNV regions, including 16p11.2 [•44], 3q29 [45], 

and 22q11.2 [•46,47]. Using quantitative neuronal and cellular assays, several studies have 

demonstrated that interactions between CNV homologs can act as either suppressors or 

synergistic or additive enhancers of phenotypes observed for individual homologs [48]. For 

example, Grice and colleagues showed that genes within CNVs identified from individuals 

with autism, including DLG1, PAK2, and TBX1, synergistically lead to synaptic and sleep 

behavior defects [49]. Similarly, Drosophila models of SLC25A1 and MRPL40, genes 

located within 22q11.2 deletion, and SLC25A4, a transcriptional target for SLC25A1, 

interact toward defects in synaptic development, plasticity, and function [45,•46]. In addition 

to identifying distinct interaction patterns for genes across different CNV regions, such 

studies have also uncovered putative biological mechanisms affected by these interactions. 

For example, homologs of NCBP2, on 3q29, exacerbated the neurodevelopmental and axon 

targeting defects of 14/16 other 3q29 homologs, suggesting that it potentially acts as a key 

modifier within the deletion [45]. Apoptosis was identified as a likely cellular mechanism 

mediating these defects due to interaction of 3q29 homologs, which was further validated by 

rescue of the observed defects by the apoptosis inhibitor DIAP1 [45]. Several candidate 

genes in CNV regions are likely involved in processes critical for early development, 
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as a screen of about 60 CNV homologs for defects during fly wing development found 

NCBP2, POLR3E, PPP4C, and other candidate genes that disrupted conserved signaling 

pathways, such as Wnt, Notch, and Hedgehog [50]. Thus, Drosophila studies have found 

that interaction patterns of CNV homologs differ by CNV region and are modulated by key 

neurodevelopmental mechanisms.

Similarly, zebrafish models have been leveraged to identify complex molecular mechanisms 

leading to structural malformations, such as neuroanatomical and renal defects. For instance, 

both deletions and duplications in 17p13.1 have been linked to global developmental delay, 

intellectual disability and microcephaly phenotypes in children [51–53]. Analysis of affected 

individuals with overlapping CNVs in 17p13.1 defined a critical interval of approximately 

160 kbp containing nine genes. Transient overexpression of all nine human transcripts in 

zebrafish identified seven genes as contributors to head-size defects, with the majority of 

the genes (6/7) inducing microcephaly in the reciprocal suppression experiments [53]. The 

authors observed that most genes tested within 17p13.1 gave rise to a patient-relevant 

phenotype for both the deletion and duplication, and interaction studies performed by 

suppressing or overexpressing gene pairs using suboptimal doses identified defects that 

recapitulated or exceeded the effect of single genes. A similar paradigm also emerged from 

more recent studies of DiGeorge syndrome, caused by 22q11.2 deletion and characterized 

by variable expressivity of multiple features, including cardiac malformations, immune 

deficiency, and neurodevelopmental and urogenital defects [54–56]. Lopez-Rivera and 

colleagues performed genome-wide search in patients with congenital kidney anomalies 

without characteristic DiGeorge symptoms, and identified heterozygous deletions of a 

specific 370 kbp interval within 22q11.2 in about 1.1% of the patients [57]. Functional 

studies in zebrafish revealed that loss of function of snap29, aifm3, and crkl resulted in 

convolution defects of the proximal pronephros and overall shortening of the renal tubules 

[57]. Inactivation of Crkl in a mouse model further induced developmental defects similar 

to those observed in patients with congenital renal defects. These results suggested that 

renal defects associated with this CNV are driven primarily by CRKL and its interactions 

with other genes in the phenotype-specific critical interval [57]. In essence, the amalgam 

of clinical studies and the presence of multiple dosage-sensitive genes within these CNVs 

highlight the concept of ‘minimal overlap’, where each CNV is hallmarked by a penetrant 

trait driven either by a single gene or a small subset of dosage-sensitive genes, which are 

further modulated by complex genetic interactions.

Modeling the 16p11.2 CNV: causality and epistasis.

The concepts described above are best exemplified by a series of studies of the 16p11.2 

CNV, a reciprocal lesion that has benefited from extensive genetic and animal modeling. 

In the 16p locus, five chromosomal breakpoints have been identified to be prone to 

recombination events, which give rise to different size deletions and duplications. The 

boundaries of the unstable region, defined by breakpoints 1 and 5 (BP1-BP5), is 1.7 Mbp 

and contains 64 genes. The two most frequent (and thus studied most intensely) subregions 

are the distal BP2-BP3 220 kbp region, containing 9 genes, and the proximal BP4-BP5 

600 kbp region, containing 29 genes. Both CNVs are associated with neurodevelopmental 

defects and other comorbid features such as craniofacial, skeletal, and metabolic phenotypes.
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The majority of animal work has focused on the proximal BP4-BP5 CNV and its 

involvement in neurodevelopmental defects [•44,58,•59]. Iyer and colleagues reduced 

expression of individual homologs of 16p11.2 genes in Drosophila and identified a 

range of developmental phenotypes, including early larval and pupal lethality for 7/14 

homologs as well as robust wing defects for 12/14 homologs (Fig. 1) [•44]. Several of 

the genes, including KCTD13, CORO1A, MAPK3, and ALDOA, led to severe neuronal 

defects in motor function, neuromuscular junction morphology, axon targeting, and cellular 

defects (Fig. 1) [•44]. Furthermore, homologs of 16p11.2 genes, including KCTD13, 
PPP4C, MAPK3, and DOC2A, interacted with each other by enhancing or suppressing 

cell proliferation phenotypes in developing Drosophila neuronal tissues [•44]. Genetic 

interactions identified from Drosophila studies were further validated in the context of 

human brain-specific gene interaction networks (Fig. 2), with human 16p11.2 genes showing 

strong connectivity with each other in the network [•44,60]. In fact, connector genes in 

the 16p11.2 deletion network were enriched for cell proliferation functions, corroborating 

results from Drosophila and zebrafish functional assays [•44]. These studies also found 

additional interactions among CNV genes that did not have conserved homologs in 

Drosophila, such as MAZ and MVP within 16p11.2, and between homologs in different 

CNV regions, including an interaction between TAOK2 in 16p11.2 and TUFM in distal 

16p11.2 (Fig. 2).

Using zebrafish models, Blaker-Lee and colleagues explored the impact of 22 homologs 

of proximal 16p11.2 genes and found that a majority of the genes contributed to 

neuroanatomical (90% of genes), tail (~72% of genes), and touch response defects 

(~63%) (Fig. 3) [58]. A subsequent study identified KCTD13 as a major driver for 

the neuroanatomical defects observed with both deletion and duplication of this region 

[•59]. While additional KCTD13 cases [•59,61] and transcriptomic analysis of animal and 

cellular models further supported this finding [•44,62], follow-up studies have complicated 

the interpretation [63]. Further studies using pairwise interaction models did not find a 

major driver for ventricle morphology defects, but instead detected complex interactions 

between a subset of six loci, including fam57a, kif22, asphd1, hirip3, kctd13, and sez6l2 
(Fig. 3) [•64]. Similarly, systematic analyses of the distal 16p11.2 region showed that 

LAT overexpression was sufficient to cause neuroanatomical defects. In fact, genetic 

interactions between LAT and proximal 16p11.2 genes that contribute to microcephaly 

further exacerbated the observed phenotype (Fig. 3). Furthermore, chromatin conformation 

studies confirmed that genes within the proximal and distal regions physically align in 3D 

space [65], which potentially explains the increased severity of microcephaly in patients 

with deletions encompassing both regions [66]. In another study, Qiu and colleagues 

explored morphometric data from affected individuals along with mouse, rat, and zebrafish 

models to dissect the genetic drivers of these phenotypes. Morphometric features obtained 

from 3D facial imaging of CNV carriers revealed opposite effects between deletion and 

duplication carriers, while the genetic effects clustered to genomic regions corresponding 

to major processes of craniofacial development [•42]. Overexpression of KCTD13 along 

with MVP and MAPK3 in zebrafish resulted in significant decrease of the ceratohyal 

angle. In contrast, reciprocal loss of mapk3 alone or in combination with mvp and kctd13 
resulted in increase of the ceratohyal angle [•42]. Finally, the mirror effects of 16p11.2 
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deletions and duplications were recapitulated in both mouse and rat models, supporting 

results from zebrafish studies. Thus, systematic analysis of Drosophila and zebrafish models 

unraveled the complexity of genetic interactions contributing to neurodevelopmental features 

often observed in patients with 16p11.2 CNVs. Several individual genes were sufficient 

to negatively affect major developmental processes, including cell proliferation and axon 

tracking, while genetic interactions of genes in both proximal and distal regions modulated 

the observed phenotype.

Challenges of using Drosophila and zebrafish models for studying CNVs.

Drosophila and zebrafish models allow for high-throughput evaluation of conserved 

homologs of genes within CNV regions and their interactions toward developmental 

phenotypes. The fact that findings from fly and zebrafish studies, such as complex 

interactions within the 16p11.2 deletion, show concordance with each other [•42, •44, 

•64] strengthens the utility of these models. At the same time, we must also highlight the 

limitations associated with studying CNV disorders using these approaches. For instance, 

model systems cannot recapitulate a subset of clinical and behavioral features of complex 

disorders observed in humans. In addition, the presence of multiple orthologs for a single 

human gene or a single ortholog for multiple human genes makes it challenging to 

properly address phenotypes observed due to single gene modulation, while overexpression 

experiments that mimic increased copy-number genomic events are an imperfect dosage 

proxy prone to false positives and negatives. Moreover, phenotypes due to disruption of 

individual genes can also be enhanced or suppressed by the genetic background of the model 

system, while gene interaction networks may be species-specific and may not recapitulate 

interactions in mammalian models or humans [67]. For example, NCBP2 was not identified 

as a strong candidate in a mouse model of 3q29 deletion, suggesting species-specific 

effects [17]. Despite these challenges, Drosophila and zebrafish models provide a robust 

genetic tool that can complement mammalian models of the entire deletion, and can aid in 

fine-mapping the phenotypes observed in whole deletion models to individual homologs and 

their interactions. In a world in which CNV identification will continue to accelerate due to 

the ever-increasing abundance of genomic data from humans, such tools to methodically 

study the contribution of genes and their interactions as they pertain to causality and 

pleiotropy will continue to offer a level of resolution that bulk genomic studies will struggle 

to achieve.
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Figure 1. Drosophila homologs of 16p11.2 genes exhibit complex genetic interactions.
Summary of 14 fly homologs of 16p11.2 genes for developmental, neuronal, and cellular 

phenotypes. Shaded gray boxes indicated presence of a phenotype, and the lines (red and 

blue) connecting the genes above the boxes indicate interaction patterns between homologs 

of 16p11.2 genes.
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Figure 2. Genetic interactions between CNV genes.
Circos plot shows predicted interactions of genes within seven CNV regions in a human 

brain-specific interaction network, along with functionally-validated gene interactions from 

Drosophila experiments. Thin black lines represent all connections between CNV genes in 

the network (n=255). Highlighted interactions are the top 50 strongest interactions in the 

network, including red lines that represent interactions between different CNVs and dark 

blue lines that represent interactions within the same CNV. Light blue lines represent 50 

interactions that were separately identified using Drosophila experiments.
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Figure 3. Zebrafish homologs of 16p11.2 genes exhibit single genetic drivers and complex genetic 
interactions.
Summary of 39 16p11.2 genes for neuroanatomical, craniofacial, gross morphological, and 

tissue-specific phenotypes in zebrafish. Black dots indicated presence of a phenotype, and 

lines (blue) connecting the genes above the dots indicate interactions between 16p11.2 

genes.
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