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A multitask deep learning approach 
for pulmonary embolism detection 
and identification
Xiaotian Ma1, Emma C. Ferguson2, Xiaoqian Jiang1, Sean I. Savitz3 & Shayan Shams4*

Pulmonary embolism (PE) is a blood clot traveling to the lungs and is associated with substantial 
morbidity and mortality. Therefore, rapid diagnoses and treatments are essential. Chest computed 
tomographic pulmonary angiogram (CTPA) is the gold standard for PE diagnoses. Deep learning can 
enhance the radiologists’workflow by identifying PE using CTPA, which helps to prioritize important 
cases and hasten the diagnoses for at-risk patients. In this study, we propose a two-phase multitask 
learning method that can recognize the presence of PE and its properties such as the position, 
whether acute or chronic, and the corresponding right-to-left ventricle diameter (RV/LV) ratio, thereby 
reducing false-negative diagnoses. Trained on the RSNA-STR Pulmonary Embolism CT Dataset, 
our model demonstrates promising PE detection performances on the hold-out test set with the 
window-level AUROC achieving 0.93 and the sensitivity being 0.86 with a specificity of 0.85, which is 
competitive with the radiologists’sensitivities ranging from 0.67 to 0.87 with specificities of 0.89–0.99. 
In addition, our model provides interpretability through attention weight heatmaps and gradient-
weighted class activation mapping (Grad-CAM). Our proposed deep learning model could predict PE 
existence and other properties of existing cases, which could be applied to practical assistance for PE 
diagnosis.

Pulmonary embolism (PE) refers to blood clots in the pulmonary arterial system of the lungs, which usually origi-
nate in the deep veins of the legs that break loose and travel to the blood vessels of the lung where they become 
lodged1. PE results in decreased blood flow and oxygen to the lung as well as decreased oxygen levels to other 
organs in the body1, 2. PE is associated with significant morbidity and mortality, and it is the third most common 
cause of cardiovascular death with an incidence of one case per 1,000 persons in the United States annually3, 4. 
Numerous risk factors predispose patients to the development of PE, including immobilization, recent surgery, 
history of clotting disorders, malignancy, obesity, pregnancy, cigarette smoking, certain medications such as 
birth control pills, medical conditions such as heart disease, among others1, 4, 5. Early identification and prompt 
treatment can greatly reduce the risk of death. Thus, accurate diagnosis is crucial in these patients1, 4–6.

Computed tomographic pulmonary angiography (CTPA) is currently the most common imaging modality 
to diagnose pulmonary embolism7. The radiologists’sensitivity for detecting PE is reported to range from 0.67 to 
0.87, with a specificity ranging from 0.89 to 0.998–11. Deep Learning methods have been developed and showed 
promising results in detecting PE with a high accuracy, which could further assist radiologists’ decisions8. For 
example, Tajbakhsh et al.12 used a 3D convolutional neural network (CNN) with manually extracted features of 
CT scans called vessel-aligned multi-planar image representation to predict the presence of pulmonary embolism, 
achieving sensitivity factors predispose of 83% at 2 false positives per volume. Yang et al.13 performed a two-
stage convolutional neural network with a candidate proposal and a false positive removal subnet. It achieved 
a sensitivity of 75.4% at two false positives per scan at 0 mm localization error. Instead of using the whole 3D 
CT scan as an input, Huang et al.14 used sliced windows as inputs to 3D CNNs as an end-to-end PE detection 
solution. This approach reached an area under the receiver operating characteristic curve (AUROC) of 0.84 on 
the hold-out internal test set and 0.85 on an external dataset for PE detection. Moreover, Huang et al.15 proposed 
a multimodal fusion with deep learning models, combining CTPA image data and electronic medical records. 
The best model achieved an AUROC of 0.947 on the entire hold-out test set. However, all these studies only 
considered datasets with a binary classification indicating the existence of PE. The RSNA Pulmonary Embolism 
CT (RESPECT) dataset16 introduced a more challenging problem by containing several study-level labels to 
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predict. Xu’s method17 achieved first place in the corresponding Kaggle competition18. Their proposed model 
used a CNN network to extract features for slices and then utilized RNN to process sequences of features for 
final prediction. However, this solution lacked comprehensive evaluations and had relatively low AUROC scores 
(Table 1). Suman et al.19 also proposed a similar pipeline on the RESPECT dataset and tested their model on a 
curated external dataset, where the AUROC of positive studies reached 0.949. However, the curated dataset was 
balanced in positive and negative samples, which was unlikely in real scenarios and publicly unavailable, thus 
could not be used to compare as a baseline.

In this work, we develop a model that not only detects PE using 3D CTPA images but also predicts the 
position of PE (left, right, or central), PE condition (acute or chronic), and whether the right-to-left ventricle 
diameter (RV/LV) ratio is greater or less than 1 in a specific CT image (RV/LV ratio ≥ 1 suggests the presence of 
right heart strain) using the RESPECT dataset. Our proposed model consists of a two-phase pipeline to robustly 
detect and identify PE position, condition and other properties. The first phase uses a 3D CNN for feature 
extraction and a temporal convolutional network (TCN)20 with attention mechanisms in the second phase to 
perform sequential learning. First, we split the 3D CT scan image into smaller 3D windows to train a deep 3D 
CNN model. This can capture local contextual information of 3D windows containing several 2D slices. The 
second-phase model utilizes the learned features in the first step to learn the PE attribute at a study level, we treat 
the selected features from 3D windows as a sequence and use TCN for sequential learning. In addition, PE only 
exists in a small subset of studies in our dataset. We, therefore, utilize attention mechanisms to assign weights 
for features in a sequence, where higher weights indicate higher probabilities of the existence of PE. We train 
different attention modules for different attributes of PE, since each attribute may focus on different subsets of 
the whole scan. Besides, integration of CNN and the attention layer introduces interpretability to our model 
by highlighting the specific region that our model focuses on for prediction. The results of the two phases are 
reported in the “Results” section, and the classification performances, interpretation outcomes, limitations, and 
contributions are discussed in the “Discussion” section. The details of our dataset, model, and implementation 
are described in the “Methods” section.

Results
Since the data are imbalanced, it would be improper to evaluate the model by prediction accuracy. Thus, we draw 
the receiver operating characteristic (ROC) curves for each study-level label and compute the AUROC as well. 
In addition, we produce and examine the sensitivity vs. specificity plots to determine the thresholds of positiv-
ity for nine study-level labels. Besides the study-level results obtained after the whole pipeline, ROC curves, 
AUROC scores, and sensitivity vs. specificity plots are used to evaluate the second-phase training that classifies 
3D windows for the window-level label and studies for the nine study-level labels.

First phase: feature extraction.  The target of the first-phase training is to learn the features for 3D CT 
scan windows that will be used as inputs for the second phase. Therefore, the learned features from the test sam-
ples, extracted from the penultimate layers, are visualized in a 2D embedding space by t-distributed stochastic 
neighbor embedding (t-SNE)21. The two classes are separated well as visualized in Fig. 1. We further analyze 
the separation by Manhattan distances in the 512-d feature space. We calculate the means for positive samples 
and negative samples in the 512-d space, denoted as CP and CN respectively. The average Manhattan distance 
from all the positive samples to CP is 70.15, and that from all the negative samples to CN is 75.70. The distance 
between CP and CN is 97.21, which indicates that the positive and negative samples are separated well in the 
512-d feature space. These well-separated and distinctive clusters among embedded features obtained in the first 
phase indicate the high quality of feature selection and information embedding in the first-phase model. There-
fore, these features could be utilized further in the downstream second-phase training. In addition, the ARUOC 
on the test set for window-level classification of the first-phase training is 0.9134.

Figure 1.   t-SNE plot for all the extracted features of the training set from the first-phase training. The features 
are extracted from the fine-tuned 3D ResNet-18 model and are 512-d vectors, which are then embedded in 
the 2D space by t-SNE for visualization. The two groups of positive (orange) and negative (blue) samples are 
separated well in the 2D space.
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Second phase: fine‑grained classification.  The second-phase learning takes the features of 3D win-
dows of a CT image as inputs and predicts the window-level labels and the study-level labels, providing the final 
prediction of the PE detection task.

Prediction performance indicated by ROC curves and AUROCs.  The ROC curves of the window-level label 
and nine study-level labels on the test set for the second training are shown in Fig. 2. The AUROC on the test 
set for the window-level label increases from 0.9134 of the first-phase training to 0.9258 after the second-phase 
training. Most of the study-level labels are predicted with AUROCs above 0.85. The AUROCs for central PE and 
right PE are 0.9477 and 0.9233, respectively. This high performance demonstrates that the model has a great 
advantage in not only predicting the existence of PE, but also the properties of PE. Table 1 shows the classifica-
tion performance comparison using AUROC on the same hold-out test set between our model and two previous 
approaches: (1) Xu’s method17 in terms of the window-level label and nine study-level labels; and (2) PENet14 in 
terms of the window-level label and one study-level label indicating negative for PE. Both models are re-trained 
using the same training and validation set as ours. The comparison shows that we outperformed their results for 
all labels by a large margin.

Sensitivities and specificities.  Figure 3 shows the sensitivity vs. specificity plots of the test set on the window-
level label (whether PE exists) and nine study-level labels. The sensitivities and specificities are calculated as 
follows:

sensitivity =
number of true positives

total number of positive smaples in the dataset
=

number of true positives

number of true positives+ number of false negatives

specificity =
number of true negatives

total number of negative smaples in the dataset
=

number of true negatives

number of true negatives+ number of false positives

a b

Figure 2.   Plots of ROC curves. ROC curves for the window-level (a) and nine study-level (b) predictions on 
the test set in the second phase. The values of AUROCs are reported in the parentheses.

Table 1.   AUROC results on the test set with 95% DeLong confidence intervals. Our method is compared with 
Xu’s method and PENet on the same train-validation-test split of the RESPECT dataset. *Different settings. 
Ours and PENet are window-level results, while Xu’s is image-level.

Metric: AUROC Ours (TCN+Attention) Xu’s17 PENet14

PE Present* 0.9258 (0.9183–0.9333) 0.8052 (0.8022–0.8082) 0.8547 (0.8473–0.8622)

Negative for PE 0.8936 (0.8693–0.9180) 0.5923 (0.5546–0.6301) 0.7452 (0.7116–0.7787)

Indeterminate 0.8619 (0.7901–0.9337) 0.7440 (0.6375–0.8505) –

Chronic 0.6866 (0.5995–0.7737) 0.6479 (0.5649–0.7308) –

Acute & Chronic 0.8580 (0.8012–0.9149) 0.5876 (0.4710–0.7041) –

Central PE 0.9477 (0.9263–0.9692) 0.6262 (0.5486–0.7038) –

Left PE 0.8918 (0.8622–0.9214) 0.5739 (0.5290–0.6188) –

Right PE 0.9233 (0.9009–0.9457) 0.6054 (0.5645–0.6463) –

RV/LV>=1 0.8708 (0.8346–0.9070) 0.5922 (0.5383–0.6463) –

RV/VL<1 0.8511 (0.8176–0.8846) 0.5570 (0.5102–0.6039) –
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We select the probability thresholds according to the sensitivity vs. specificity plots of the validation set, and 
the selected thresholds aim to maximize both sensitivity and specificity. For example, the probability threshold 
of 0.15 for left PE results in a sensitivity of 0.81 and a specificity of 0.86. The thresholds for the nine study-level 
labels are reported in Table 2. We can see in Fig. 3 that the sensitivity of detecting PE from a window level reaches 
0.86 with a specificity of 0.85, and 0.82 with a specificity of 0.90 on our test set, which is competitive with the 
radiologists’sensitivity for detecting PE ranging from 0.67 to 0.87 with a specificity of 0.89 to 0.99 generally8.

Discussion
Our proposed two-phase deep learning model for PE detection and identification of its properties could be a 
helpful tool for radiologists. This method can help to predict the presence of PE, highlighting regions of inter-
est with varying degrees of certainty so that the patient receives a faster and more accurate diagnosis. This tool 
can help to identify life-threatening PEs, specifically those that are central and acute. It is essential to identify 

Specificity

Figure 3.   Sensitivity vs. specificity plots. Sensitivity (blue) vs. specificity (orange) for the window-level label 
(‘pe_present_on_window’on the top indicating whether the PE is present in a certain window) and nine study-
level labels over the test set.
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these PEs early since they are associated with higher mortality. This tool can also help rule out PE and different 
subtypes of existing PE, thereby allowing radiologists to prioritize studies and triage patient care appropriately.

To introduce interpretability and highlight the features selected by the model during prediction, we use Grad-
CAM22. Here, we focus on the position of the present PE and show selected samples of the true-positive and false-
negative results according to the probability thresholds determined in Table 2. Figure 4 illustrates the selected 
Grad-CAM images and original images for the three positional labels: central, left, and right PE. In addition to 

Figure 4.   Interpretation with Grad-CAM and attention weights. True positive (a–d) and false negative (e,f) 
samples of Grad-CAM and original image for positional labels. For each sample, the processed CT image (right) 
and the corresponding attention-mapped image are paired (left). The red arrow points to the precise location of 
the PE identified by an experienced radiologist. The heatmap below shows the attention weights of all windows 
in the study containing the image above, while the orange square marks the exact window that includes the 
image. Darker colors in the heatmap illustrate larger attention weights.

Table 2.   Thresholds for the window-level and nine study-level labels and the correspondent sensitivity and 
specificity on the validation set. *Window-level existence.

Probability threshold Sensitivity Specificity

PE Present* 0.15 0.86 0.85

Negative for PE 0.80 0.81 0.80

Indeterminate 0.05 0.93 0.59

Chronic 0.05 0.62 0.63

Acute & Chronic 0.05 0.80 0.80

Central PE 0.05 0.87 0.87

Left PE 0.15 0.81 0.86

Right PE 0.15 0.84 0.82

RV/LV>=1 0.15 0.87 0.82

RV/LV<1 0.15 0.73 0.70
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the Grad-CAM visualization, we also show the attention weights as the saliency map over the sequences of 3D 
windows, where darker colors indicate higher attention weights.

Figure 4a–d show the true positive samples. This demonstrates that the model could locate the position of a 
PE properly. Figure 4a,b are the right lower lobe sub-segmental PEs. The PE in Fig. 4a is located in a peripheral 
pulmonary artery branch. It is centrally located in the artery and almost completely occludes the blood vessel, 
indicating that it is acute. The PE in Fig. 4b is also acute, and it occludes the right lower lobe pulmonary artery 
branch. Figure 4c indicates a tiny, left lower lobe pulmonary embolism in a peripheral branch that is acute and 
does not occlude the vessel. Figure 4d shows a large PE within the left main pulmonary artery, which is acute 
and occludes the blood vessel. This kind of centrally located PEs is associated with a higher mortality rate. The 
attention maps of all the examples above show that the attention weights over the corresponding windows are 
high, leading our model to pay more attention to those windows with PE present. Some of the selected windows 
may not have the exact highest attention weight in the sequence, which seems to be a “shift”, but they are gener-
ally much higher than the vicinity and are very close to the highest weights if not the same. Also, one sequence 
could have more than one window showing defects, and we only selected one of the windows to illustrate the 
details, because it involves great human labor to annotate the actual defects, and we could only select a small 
subset of the images for annotation instead of annotating all of them. Although our model achieves promising 
results, there are still many false-negative samples that we need to inspect. Figure 4e,f are two examples of false-
negative predictions. Our model fails to detect a small left lower lobe segmental and sub-segmental PE located in 
Fig. 4e. It does not occlude the blood vessel, and contrast passes around it. In addition, the attention map shows 
that our model fails to pay attention to the corresponding window that contains this image. Figure 4f displays 
a right upper lobe segmental PE that is acute but not detected by our model. The attention map shows that the 
attention weight of the corresponding window are not the highest.

This study also has important limitations. The Grad-CAM for interpretability is only performed on the first-
phase training, not going through the parameters of the sequential model in the second phase. In addition, the 
study-level labels are hierarchical, and some labels may be directly determined by others. For example, a study 
labeled negative for PE should also be labeled negative for left PE. However, in our model, we do not consider 
the dependency between the labels and the predicted study-level labels could be inconsistent.

In conclusion, our contribution can be summarized as follows:

•	 Our two-phase method can detect PE and predict several attributes of existing PE at a study level.
•	 We split each 3D CT scan image into several smaller windows, ensuring that the model learns local contextual 

information.
•	 By implementing multitask attention mechanisms before predicting the study-level labels of PE, our proposed 

model could focus on specific items in a sequence corresponding to certain attributes for a certain label 
instead of the whole sequence for all the labels.

•	 We also visualize and interpret our model using gradient-weighted class activation mapping (Grad-CAM)22 
and label-specific attention heatmaps to provide insight into the modeling process, alleviating the“black-
box”problem of deep learning models.

Our proposed deep learning approach could be a useful tool to facilitate radiologists in PE diagnosis. Future 
works will include designing more efficient 3D CNN to extract informative features, applying better sequential 
models for the second-phase learning, and solving the hierarchical dependency of the property labels.

Methods
This section will introduce our method in terms of its architecture (3D CNN in the first phase for feature detec-
tion and TCN for classification in the second phase) and various modules (attention mechanism, loss functions, 
and interpretation methods). Briefly, the first-phase training extracts features for 3D windows, and the second-
phase training takes the extracted features from 3D windows as sequential inputs for final prediction.

Dataset.  The utilized dataset is obtained from the Kaggle competition RSNA STR Pulmonary Embolism 
Detection16, 18. There are 7279 studies in total, and each study consists of multiple 2D slices. The number of 2D 
slices ranges from 63 to 1083 for the whole dataset, but in 80% of studies, the number of 2D slices ranges from 
190 to 296. The dataset has both study-level and slice-level labels. Each slice has a label indicating whether there 
are any forms of PE present in the slice, while each study has another nine labels indicating other aspects of PE 
at a study level, such as whether the study is negative for PE, the position of PE (left, right, central), the RV/LV 
ratio (greater or less than 1), whether the PE is acute or chronic, and whether the PE is indeterminate. The whole 
dataset is split into 1000 validation studies, 1000 test studies, and 5292 train studies. The positive rates for the 
nine study-level labels on the train, validation, and test set are reported in Table 3.

Data processing.  Figure 5 illustrates the data processing steps. Each study contains an average of 246 slices, 
and the slices are sorted by the z-axis position from bottom to top to ensure the orders. The raw DICOM pixels 
are transformed to Hounsfield unit (HU) according to the intercept and slope from the raw data for each study: 
HU pixel = raw pixel× slope+ intercept . Since each slice has a different thickness, we also resample the slices 
in each study to ensure the thicknesses are in the same magnitude, i.e., 1 mm for all three dimensions. The labels 
are also resampled in the same way as the corresponding slices. In addition, lung segmentation23 is performed on 
each slice to decrease the noise, and then we localize the lung area in each study by a 3D bounding box derived 
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from the segmentation masks (Fig. 5a). The labels are also truncated, and only those for the slices inside the 
bounding box remain.

Furthermore, we treat the processed slices in each study as a 3D image and then split the whole image into 
several small 3D windows (Fig. 5b). Each window contains 10 slices, and the shape is thus 10×H ×W , where 
H and W are the height and width of the slices, respectively. We transform each 3D window into three channels 
by clipping the HU pixel according to different window levels (Fig. 1c)24. In practice, we set the window level (L) 
and window width (W) tuples (L, W) of the boundaries to be (−600, 1500) (lung), (100, 700) (PE), and (40, 400) 
(mediastinal)6. The upper and lower boundaries for clipping the image are L±W/2 respectively, which are 
(−1350, 150) , (−250, 450) , and (−160, 240) . The clipped image is then normalized to the range of [0, 1].

First phase: 3D CNN.  Figure 6 shows the overall pipeline that we used for training. The model in the first 
phase is a 3D CNN extracting features from 3D windows of pre-processed image slices (Fig. 6a). The average 
number of split 3D windows in each study is 32. If one of the slices in a window has PE on it, the label for the 
window is 1, otherwise 0. The purpose of the first-phase training is to learn features that could capture useful 
information from the 3D windows and then send them into the second phase for further training. As a result, we 
use the pre-trained 3D ResNet-18 model25 provided by PyTorch26. The 3D ResNet-18 model, which is a simple 

Table 3.   Positive rates for nine study-level labels

(%) Train Validation Test

Negative for PE 67.1 68.1 68.7

Indeterminate 2.3 1.5 1.8

Chronic 4.0 3.9 4.1

Acute & Chronic 2.1 1.5 2.1

Central PE 5.6 5.4 5.3

Left PE 21.1 22.4 20.6

Right PE 25.9 25.7 25.2

RV/LV>=1 12.9 14.2 11.5

RV/LV<1 17.6 16.2 18.0

3D scan 3D windows

PE

Lung

Original Three channels 
of different 

window level

Medias�nal

a

b c

Lung localiza�on

Spli�ng into windows Adding channels

Figure 5.   Illustration of data processing. (a) Localizing the lung areas according to lung segmentation masks. 
(b) Splitting the whole 3D CT scan into smaller 3D windows. (c) Converting single-channel images into 
3-channel images.
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and effective backbone for classifying videos or 3D images and is efficient to implement, meets the purpose of 
the first phase well to extract informative features (as shown in Fig. 1). We then fine-tune the pretrained 3D 
ResNet-18 model by replacing the output of the last layer with a scalar to fit our binary labels and retraining the 
model initialized by pretrained weights using the 3D image windows (i.e., a cubic extracted from the original 
image) of our own dataset. After training, we extract the outputs of penultimate layers as learned features for the 
3D windows, which are treated as inputs to the second phase of the model for sequential learning. The size of the 
extracted feature is 512 which is pre-defined in the 3D ResNet-18 architecture. As a result, we get a 512-d feature 
for each 3D window. More implementation information is reported in the “Implementation details” section.

Loss function.  The loss function for the first phase is the binary cross-entropy loss. For each 3D window 
I ∈ R

C×D×H×W , the output logit is thus z ∈ R , and the ground truth label is y ∈ {0, 1} . The loss for window i 
can be described as

where σ(·) is the sigmoid function. For each mini-batch of size M, the loss function is then defined as

Second phase: sequential model with attention.  The second phase (Fig.  6b) of training uses the 
features extracted in phase 1 from 3D windows of a CT image in each study as sequential inputs. The sequence 
length is set to 40. If a sequence has less than 40 elements, zeros are padded to the end of the sequence; other-
wise, the sequence is resized to the length of 40. To extract more information from the context, we subtract each 
feature of a certain 3D window from the features of its two neighbors and use these two differences as additional 
inputs by concatenating them to the original feature to form a new 1536-d feature. Then the sequences of new 

l(zi , yi) = −[y · log σ(zi)+ (1− yi) · log(1− σ(zi))]

L1st =
1

m

M∑

i=1

l(zi , yi)

(learnable)

Concatena�on

…

…

3D scan 3D windows

3D CNN

TCN

…

… …
A�en�on

PE present

Study-level label

Training phase 1 Training phase 2

Max Pooling

…

× 9

3D CNN

3D CNN

TCN A�en�on

PE present

PE present

Query

× × × × ×

…
Keys & Values

…Dot Product

A�en�on Weights
…

so�max

Weighted 
Sum

…

Dilated Convolu�on Layer

Normaliza�on

ReLU

Dropout

Dilated Convolu�on Layer

Normaliza�on

ReLU

Dropout
+

× n1D 
Conv

a b

c

d

tanh

Figure 6.   Illustration of the overall pipeline. (a) First-phase training framework to extract features. (b) Second-
phase sequential training architecture. (c) Details of temporal neural network (TCN)20 in training phase 2. (d) 
Attention mechanism used in training phase 2.
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features are sent to a TCN20 to capture the overall sequential information. Afterward, the outputs of TCN are 
used for slice-level prediction, i.e., predicting whether there exists PE on each slice. Meanwhile, nine attention 
heads are attached to the outputs of the TCN for the downstream prediction of nine study-level labels. Finally, 
the sum of the outputs of TCN weighted by the attention scores is treated as final embeddings, and we predict 
each of the nine study-level labels by a two-layer multilayer perceptron (MLP). More implementation informa-
tion is reported in the “Implementation details” section.

Temporal convolutional neural network (TCN).  The basic residual block of TCN is shown in Fig. 6c. It uses 
dilated convolutional layers to increase the receptive field. In addition, the inputs of the block are added to the 
outputs as the original residual block27. This allows the block to learn residuals to the identical mapping instead 
of the entire transformation, which could ensure the stabilization of deeper networks and increase the expressive 
power20, 27. Each block consists of two dilated convolution layers with dilation d and kernel size k, and each layer 
is followed by weight normalization, ReLU activation, and dropout. If the output and the residual input have 
different dimensions, a convolution layer with a kernel size equal to 1 will be added to ensure the dimensions 
are the same when adding. Then the basic residual block is stacked by n levels, and for the i-th level’s block, the 
dilation is set to be d = 2i . In our implementation, the kernel size is k = 3 , the number of levels is n = 2 , and the 
dropout ratio is 0.2. The padding for each convolution operation is (k − 1) · d and the stride is 1 to make sure 
the output has the same sequence length as the input. The number of output channels is 128. After transpose, we 
get 128-d embeddings from the input 1536-d features. The embeddings are either used to classify window-level 
labels or are sent into several attention mechanisms to obtain study-level predictions.

Attention mechanism.  The input feature sequences are treated as both keys and values in the attention mecha-
nism (Fig. 6d). We denote the feature sequence after the TCN as a matrix X ∈ R

n×d , where n is the length of 
the sequence, and d is the dimension of each feature in the sequence (in this case, n = 40 and d = 128 ). We set 
the query vector wq ∈ R

d as a parameter to learn through the training, which has the same dimension of each 
feature. The attention weights a ∈ R

n are obtained from the activation of dot product of keys and queries, and the 
outputs e ∈ R

d are the weighted sums of the inputs by attention weights on the sequence level:

In the “Visualization and interpretation” section, we also use the attention weights to illustrate the importance 
of each 3D window that contributes to a certain output label.

Loss function.  The loss function for each predicted label is the binary cross-entropy loss as used in the first 
phase. Suppose in a mini-batch containing M studies and each study containing Ni windows, zij (j = 1, 2, . . . ,Ni) 
denotes the output logit for the window j in study i, and zik (k = 1, 2, . . . , 9) denotes the logit for the study-level 
label k in study i. The window-level loss for the 3D window j in study i is defined as

where w is the weight and qi is the proportion of positive image windows in study i. The study-level loss of study 
i for the k-th study-level label is

where wk is the weight for the label k which is pre-defined in the Kaggle competition’s evaluation method, 
accounting for the relevant importance of the label28. Thus, for a mini-batch containing M studies with Ni win-
dows in study i, the final loss for a mini-batch is

Visualization and interpretation.  We first capture the attention weights on 3D windows for each of 
the nine labels. This helps us focus on specific features in the sequences and thus directs us to the original 3D 
window corresponding to those features. Furthermore, we use Grad-CAM22 to visually explain the 3D CNN 
with those selected windows as inputs. Grad-Cam is a localization technique for CNN-based networks, which 
computes the gradients flowing into the final convolutional layer from a certain target to output heatmaps that 
highlight specific areas of interest. These areas of interest could be interpreted as the important regions in an 
image which the network focuses on to predict the target.

Implementation details.  The two-phase models are trained and tested using a single NVIDIA A100 Ten-
sor Core GPU. The optimizer used for the first-phase training is Adam with a learning rate of 0.0004, and the 
batch size is 16 selected by hyperparameter tuning (Fig. 7a). We train the model 20 epochs and select the one 
with the maximum AUROC on the validation set among all the AUROCs of 20 epochs for testing. We also resize 
the original 2D image slices to 224× 224 and then apply 3D random crop and 15◦ rotation to the 3D windows 
to get 10× 192× 192 3D images when training, while we directly resize each 2D image slices to 192× 192 for 
validation and testing. For the second-phase training, we use Adam optimizer with an initial learning rate 0.0005 

a = softmax(tanh(X · wq))

e = a · X

lwindow(zij , yij) = −w · qi · [yij · log σ(zij)+ (1− yij) · log(1− σ(zij))]

lstudy(zik , yik) = −wk · [yik · log σ(zik)+ (1− yik) · log(1− σ(zik))]

L2nd =
1

∑M
i=1(Ni + 9)

M∑

i=1

[

Ni∑

j=1

lwindow(zij , yij)+

9∑

k=1

lstudy(zik , yik)]



10

Vol:.(1234567890)

Scientific Reports |        (2022) 12:13087  | https://doi.org/10.1038/s41598-022-16976-9

www.nature.com/scientificreports/

decayed every 20 training steps by a multiplicative factor 0.9. The batch size is 64 and the number of epochs for 
training is 200. We select the dropout ratio as 0.2 and the number of output channels in TCN as 128 by hyper-
parameter tuning (Fig. 7b). The model with the minimum loss value on the validation set among all the losses of 
200 epochs is selected for testing. To select the best model on validation set, we compare the loss in each epoch 
with the minimum one in all previous epochs, and save the model if the loss in the current epoch is less than the 
previous minimum one, instead of using early stopping or performing manually via observation.

Statistical analysis.  The evaluation of the first-phase training includes the t-SNE analysis of the extracted 
features from the training set, and the evaluation of the second-phase training includes the AUROC, sensitiv-
ity, and specificity. The 95% DeLong confidence intervals for AUROCs are calculated to measure the variability. 
We also draw the plots of ROC and sensitivity vs. specificity for all the labels on the test set to better display our 
results. In addition, the probability thresholds for predicting positive samples are determined by the sensitivi-
ties and specificities on the validation set, which ensure high sensitivities while keeping reasonable specificities.

Data availability
The data that support the findings of this study are obtained from Radiological Society of North America (RSNA) 
and are publicly available from RSNA STR Pulmonary Embolism Detection Kaggle competition (https://​www.​
kaggle.​com/​compe​titio​ns/​rsna-​str-​pulmo​nary-​embol​ism-​detec​tion/​data). We also acquired institutional review 
board approval under protocol HSC-SBMI-13-0549. Since it is a public dataset, we do not need to go through 
ethical approval.
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