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Genomic selection or genomic prediction (GP) has increasingly become an important molecular breeding technology for crop
improvement. GP aims to utilise genome-wide marker data to predict genomic breeding value for traits of economic importance.
Though GP studies have been widely conducted in various crop species such as wheat and maize, its application in cotton, an
essential renewable textile fibre crop, is still significantly underdeveloped. We aim to develop a new GP-based breeding system that
can improve the efficiency of our cotton breeding program. This article presents a GP study on cotton fibre quality and yield traits
using 1385 breeding lines from the Commonwealth Scientific and Industrial Research Organisation (CSIRO, Australia) cotton
breeding program which were genotyped using a high-density SNP chip that generated 12,296 informative SNPs. The aim of this
study was twofold: (1) to identify the models and data sources (i.e. genomic and pedigree) that produce the highest prediction
accuracies; and (2) to assess the effectiveness of GP as a selection tool in the CSIRO cotton breeding program. The prediction
analyses were conducted under various scenarios using different Bayesian predictive models. Results highlighted that the model
combining genomic and pedigree information resulted in the best cross validated prediction accuracies: 0.76 for fibre length, 0.65
for fibre strength, and 0.64 for lint yield. Overall, this work represents the largest scale genomic selection studies based on cotton
breeding trial data. Prediction accuracies reported in our study indicate the potential of GP as a breeding tool for cotton. The study
highlighted the importance of incorporating pedigree and environmental factors in GP models to optimise the prediction

performance.
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INTRODUCTION

Cotton, primarily the tetraploid species Gossypium hirsutum, is
widely grown in more than 70 countries. It is the world’s leading
renewable textile fibre crop (Paterson et al. 2012), as well as an
important source of plant oil and protein (Jabran et al. 2019). The
goal of cotton breeding is to achieve genetic gains for desirable
fibre characteristics, disease resistance and yield traits in a time
and cost-efficient manner. The Commonwealth Scientific and
Industrial Research Organisation (CSIRO) cotton breeding program
combines traditional field phenotyping and molecular marker
assisted selection. Most economically important cotton traits are
polygenic in nature making them difficult and expensive to
manipulate and improve. As a result, a complete breeding cycle,
from initial crossing to commercial release, takes a minimum of
eight to ten years (Stiller and Wilson 2014). Genomic selection or
genomic prediction (GP) is a relatively new molecular based
breeding technology (Meuwissen et al. 2001). It has the potential
to improve cotton breeding programs by efficiently allocating
resources used in the breeding process by selecting individuals
before being tested in field experiments based on genomic
estimated breeding value (GEBV), reducing the breeding cycle
interval (Crossa et al. 2017; Jannink et al. 2010) and the
identification of genotypes that can be used as parents in future
crosses to advance specific breeding objectives.

GP (Meuwissen et al. 2001) has been applied as a quantitative
molecular breeding tool for crop improvement in various species
including, but not limited to, wheat (Poland et al. 2012), maize
(Millet et al. 2019), rice (Spindel et al. 2015), and soybean (Jarquin
et al. 2014a). Briefly, GP uses a statistical predictive model based
on a training population with known genotype and phenotype
information to predict genomic breeding value of a related test
population with available genotype information. The training
population is used to estimate the model parameters, quantifying
the association between the phenotypes and genotypes. Once the
model is developed, those parameters are used to calculate GEBVs
for test population with only known genotype information. Ideally,
the prediction accuracy should be evaluated by comparing the
GEBVs to true breeding values (TBVs). However, in practice TBVs
are not available, thus phenotype scores are used as a surrogate to
assess the accuracy of prediction. This evaluation process is
important when developing and assessing a GP model.

Compared to conventional phenotype-based breeding approaches,
GP may be less costly and more time effective than the traditional
phenotype-based breeding approaches. Secondly, GP can be
conducted in the early stages of plant development such as on the
seed and/or early segregating generations of breeding populations so
that a population can be enriched for desired plant characteristics.
This process has the potential to reduce the breeding cycle (Crossa
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et al. 2017), resulting in more efficient use of costly phenotyping
resources. Finally, unlike marker assisted selection which utilises a few
large effect quantitative trait loci (QTL) for trait improvement, GP
utilises genome-wide DNA variation. Therefore, it can capture many
small QTL effects, which may cumulatively have a large contribution
to the phenotype variation. Hence, GP is more appropriate to predict
complex agronomic traits controlled by polygenic gene effects
(Goddard and Hayes 2007).

Several factors may impact the power of GP to predict
phenotype outcomes. These factors include the heritability and
genetic architecture of quantitative traits under evaluation,
population structure, the quality of phenotyping and genotyping,
the density of markers, the size of the training population, the
degree of relatedness between the training and test populations,
and the statistical models being used to conduct prediction
(Zhang et al. 2019).

Introduction of more data into the training population is usually
beneficial for prediction accuracies. However, the inclusion of
individuals that are unrelated to the test population in the training
set may reduce the prediction accuracy (Wolc et al. 2016; Edwards
et al. 2019). Hence, a training set optimisation procedure will
improve prediction accuracies (Rincent et al. 2012; Akdemir et al.
2015; Berro et al. 2019). Alternatively, the relatedness between the
training and test sets could also be considered by including the
relationship among the individuals into the statistical model.
Pairwise relationship coefficients can be inferred based on the
known pedigree, and the corresponding relationship matrix can
be incorporated as a random effect in the statistical predictive
model. When pedigree information is lacking, unsupervised
clustering approaches (Xu and Tian 2015; Pritchard et al. 2000)
can be applied to infer population or family structure, and that
information can also be incorporated into the models (Heslot and
Jannink 2015; Vandenplas et al. 2018).

GP in cotton breeding is largely still under development as
there have been limited GP or pedigree-based studies in cotton
and largely, exiting studies have concentrated on fibre quality
traits. Gapare et al. (2018) conducted a small-scale GP study on
215 historical varieties collected from the CSIRO breeding
program. Cross validation (CV) results revealed that a number
of prediction methods including genomic best linear unbiased
prediction (Endelman 2011) and Bayesian AlphaBeta methods
(Meuwissen et al. 2001) could provide promising prediction
accuracies (i.e. up to 0.7 in terms of Pearson correlation between
GEBVs and phenotypes) for fibre length and strength. The study
also highlighted the importance of taking account of environ-
mental factors in the prediction models. Islam et al. (2020)
evaluated similar predictive methods as Gapare et al. (2018) on a
multiple parental cross population comprising 550 lines with six
fibre quality traits measured using CV. The study also yielded
high prediction accuracies up to 0.69 for several fibre quality
traits. Liu et al. (2020) proposed an alternative strategy using the
sequence variations of 474 fibre length genes and their
expression data during fibre development to conduct prediction
for fibre length. Using a training population of 128 recombinant
inbred lines, the prediction accuracy for fibre length was up to
0.83. Another relevant study by Pérez et al. (2015) used
pedigree-based relationship matrix as a basis to predict yield
using multiple environmental trials. Although it is not a GP
study, it used pedigree data in a genotype or gene-
environmental interaction model to achieve prediction accuracy
of around 0.5.

The objective of this study is to build on previous cotton GP
research to enhance the capability of a cotton GP model using fibre
quality properties (fibre length, strength, SFI, elongation, micronaire,
and uniformity), lint percentage and lint yield from 1385 cotton
breeding lines collected from the CSIRO cotton breeding program.
The study hypothesised that: (1) prediction accuracies will be
improved through the combination of genomic and pedigree
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information in cotton GP models. Prediction analyses were
conducted using parametric regression methods including Bayesian
genomic best linear unbiased predictor (BG-BLUP), Bayesian LASSO
and Bayes C, as well as combining these three models with a
random effect to account for pedigree. In addition, a non-
parametric Bayesian additive regression tree (BART) approach
(Chipman et al. 2010; Waldmann 2016) was also applied to our
data sets. All the models include year and trial information as
covariates to account for the environmental effects. The perfor-
mance of these models was evaluated in three prediction scenarios.
In scenario 1, CV was adopted to randomly divide samples into
multiple parts, and then used one part of the data in turn as the test
population, and the rest as the training population. The scenario 2
used the latest 2017 data as the test population, and the previous
data as the training, to mimic predictions based on unknown
genotypes in unknown environments. The scenario 3 considered
nine separate biparental families collected in 2017 as the test
population, and evaluated whether using the whole training set, or
only a subset of the training data that is relevant to the test set
could lead to better prediction. This study is important as adopting
novel approaches to improve prediction accuracies is essential for
deploying GP models in a commercial breeding program. Only
once accuracies reach a sufficient level (e.g. equivalent or better
than phenotype selection) can an increase in the rate of genetic
gain predicted by GP be realised.

MATERIALS AND METHODS

Phenotype data and analysis

The phenotype data used in this study included lint yield (LY; kg ha™"), lint
percent (LP; percentage of lint of seed cotton, %), and the fibre quality
parameters of fibre length (LEN; upper half-mean length of sample),
uniformity (UNI; the ratio of the mean fibre length to the upper half-mean
length, expressed as %), short fibre index (SFI; the proportion by weight of
fibre shorter than 12.7 mm), strength (STR; the force required at the breaking
point for a bundle of fibres of a given weight and fineness,
g tex "), elongation (EL; the extension ability of a bundle of fibres up to
its breaking point, expressed as a % increase over its original length), and
micronaire (MIC, a measure of air permeability of compressed fibre samples,
which is a composite indication of fibre linear density and maturity, unitless).

All phenotype data were collected from experiments conducted under
fully irrigated conditions at the CSIRO cotton breeding program’s core
research base at the Australian Cotton Research Institute (ACRI, 30° 12S,
149°36'E) located at Myall Vale, Narrabri NSW, Australia. The climate at
Myall Vale is semi-arid, characterised by mild winters, hot summers and
summer-dominant rainfall patterns, with an annual average precipitation
of 646 mm (Aust. BOM 2018). The soil of the site is a uniform grey cracking
clay (USDA soil taxonomy: Typic Haplustert; Australian soil taxonomy: Grey
Vertosol). Plant available soil water to 1.2 m at the site is between 160 and
180 mm (Tennakoon and Hulugalle 2006).

Experiments were laid out in row-column designs with four replicates,
generated from CycDesigN software (VSN International, Hemel Hempstead,
UK). Each plot consisted of three 10-12 m rows of cotton (depending on
the individual experiment). A row spacing of 1 m was used with a planting
density of about 10-12 plants m~2 Management for all field experiments
followed then or current high-input commercial practices, e.g. fully
irrigated conditions with careful weed and insect control. Plots were
furrow irrigated every 10-14 days (approximately 1MLha ' applied at
each irrigation) from December through to March, according to crop
requirements. Each experiment was managed according to its individual
requirements for irrigation, weed and pest control, with all plots receiving
the same management regime. At approximately 60% open bolls, crops
were defoliated with thidiazuron, and mature un-opened bolls were
opened with ethephon. A second application of thidiazuron and ethephon
was applied 7-10 days later.

Phenotype data were collected from 1385 lines across 42 experiments
conducted between 1993 and 2017 (Table 1). Lines were predominantly at
the F, to Fg generation, depending on the initial self-generation of
breeding families used for single plant selection and then derived
breeding lines are tested in the stage-by-stage performance test trials
(Liu and Constable 2017). The lines were both conventional and genetically
modified (GM); including a mix of released cultivars as well as breeding
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Table 1. Details of the lines studied.
Year No. Lines No. Biparental crosses No. Experiments Notes

Conventional Transgenic
1993/2013 215 - 87 21 37 released cultivars, 178 breeding lines
2014/2015 171 - 1 3 Preliminary to advanced stage material
2015/2016 244 1452 37 7 Preliminary to advanced stage material
2016/2017 216 60° 15 5 Preliminary to advanced stage material
2017/2018 274 60° 17 6 Preliminary to advanced stage material

*Transgenic lines with B3F traits.
PTransgenic lines with B3XFlex traits.

lines undergoing different stage performance testing. Most of the 1385
lines (~85%) were phenotyped post-2014, and 215 lines included
previously published phenotype data (Gapare et al. 2018). Note that some
of the 215 lines collected pre-2014 were phenotyped in multiple years and
experiments, and all the lines collected in or after 2014 were only
phenotyped once. In total, this results in 1907 phenotype observations.

At harvest, seed cotton was mechanically harvested from the middle
row of each plot with a spindle picker (modified Case International 1822)
and weighed. The outside rows were not harvested and acted as buffers to
minimise the edge effect and inter-plot competition. LP was determined
from a 300 g sub-sample of the seed cotton that was ginned in a 20 saw
gin with a pre-cleaner (Continental Eagle, Prattville, AL U.S.A), and was
subsequently used to calculate lint yield (kg ha™"). Lint samples were
collected and tested for fibre quality using a Spinlab High Volume
Instrument (HVI) model 1000 (Uster Technologies AG, Uster, Switzerland).

Individual experiment’s phenotype data were analysed using linear
mixed models taking account of dimensional spatial variation, see Liu et al.
(2015) for details. Briefly, the model is described as [Eq. 1]:

Y =Xt+Zpfy +Z:B + ZP +e, (M

where y is a vector of plot observation and 1 represents a vector of fixed
genotypic (i.e. line) effects, B, is a vector of random effects of replicates (i.e.
complete block), X; and Z, are the corresponding design matrices. 8, and
B. are the vectors of random effects for rows and columns of the
experiment with their corresponding design matrices of Z, and Z_. Finally, €
is a vector of plot errors. Plot errors in the model are assumed to be
autocorrelated along experiment dimensions, i.e. row and column, and
modelled by the first order separable autoregressive process (AR1)
covariance model. The best linear unbiased estimates of test lines from
individual trial analysis were pooled together and used as the phenotype
value in the GP analyses.

Genotype data

DNA isolation and SNP genotyping and calling were performed as per
Gapare et al. (2018). Leaves from 10-12 plants from each line were
combined for DNA extraction using the DNeasy PlantMini Kit (Qiagen)
according to the manufacturer’s instructions. All DNA samples were
quantified using a NanoDrop 1000 (Thermo Scientific) and normalised to
the same concentration (Zhu et al. 2016). DNA at 50 ng/pL for each of lines
was processed according to lllumina protocols and hybridised to the
CottonSNP63K array at CSIRO Agriculture and Food (Brisbane, Australia)
according to the manufacturer’s instructions. Chips were scanned using
the lllumina iScan and analysed using the GenomeStudio Genotyping
Module (v2.0, lllumina). Genotype calls for each SNP were performed based
on the cluster file generated specifically for the CottonSNP63K array
(Hulse-Kemp et al. 2015). The SNP calling was performed as for a diploid
species so at each locus there are three possible genotypes—AA, AB, and
BB. Filtering was performed to return polymorphic SNPs with call rate
above 85% and minor allele frequency higher than 2.5%. A set of 12296
polymorphic SNPs were used for model training and GPs. These SNPs were
distributed across all the 26 chromosomes of cotton with a density of 6
SNPs/Mbp. The missing genotype values at each marker were imputed
based on known genotypes at its flanking markers using a Hidden Markov
Chain model (Browning and Browning 2007), implemented in the R
package “Synbreed” (Wimmer et al. 2012). Principal component analysis
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(PCA) was conducted on the genotype data using our own R code to
investigate the genetic diversity among the samples.

The BG-BLUP model
The linear mixed effect (LMM) model can be specified as [Eqgs. 2-4]

Yi = Bo+ui+Wa+2y+e;, (2)

where y; is the phenotype record of the ith individual (i=1,..., n; n is the
total number of individuals), B, is the model intercept, e; is the residual
error: e = [ey, ... ,en] ~ N(0,102) (mutually independent for i=1,...,n), 62
is the residual variance, u; is the random effect of SNP markers which
follows a normal distribution Eq. 3

u:[u1,...,u,,]~N(O,0§G)7 (3)

where 03 is the additive genetic variance, G is the genomic relationship
matrix (GRM) Eq. 4 (referred as Method 1 in Van Raden 2008) estimated by

P (x: — 2p:) (x — 2D

G = lz (xi — 2p;) (x5 — 2p)) 7 @

Pi= 2p;(1 - py)
where x;; is the genotype value of the ith individual and jth SNP, coded as
—1, 0, and 1 for the three genotypes AA, AB and BB, respectively, p;
represents the minor allele frequency of the jth marker. In the Eq. (2), W
and Z are the design matrices of experiments and years (Table S1) from
which those individuals are collected, and a and y are the corresponding
random effects of experiments and years, with both following normal
distributions: a ~ N(0,102) and y ~ N(0,102).

In Frequentist statistics, the model parameters including the variance
components 03 and o2 could be estimated by the restricted maximum
likelihood algorithm (Harville 1977). Alternatively, the LMM could be
formulated into a Bayesian posterior model as [Eq. 5-6]

P(BOv u,a, Y, O'g‘y) = P(Y‘ﬁm U,G,V, Og)P(ﬁO)

x P(u)P(a)P(y)P(02) ®

where p(y|B,3) is the likelihood, specifying the Eg. (2) in the probability

form:
1 i — By — Ui — Wa — Zy)?
_exp _i—Bo—ui _ a—2y) . (®)
2mad 203

n
P(y‘ﬁw u,a,y, 05) = H
i=1

and P(B,,u,02) = P(B,)P(u)P(02)P(a)P(y) is the prior distribution of the
parameters. The prior of the random effect u: P(u) is as specified in (3),
where the variance component 05 together with the residual variance o2
are further assigned with Scaled inverse chi-squared distribution hyper
priors, as suggested in Pérez and de los Campos (2014, File S1). Briefly, the
degree of freedom (df) parameter is set to be 5, and the scale parameter is
specified as So=var(y) x (1 — R?) x (df + 2) and Sg = var(y) x R?x (df + 2)/
mean(diag(Q)) for og and og, respectively, where R? is specified as 0.5.
These settings correspond to the assumption that 50% of the phenotype
variance is explained by the genomic variance component, which is
suggested by Pérez and de los Campos (2014). Based on our experiment
(results not shown), using alternative R? values would not lead to any
drastic change in heritability estimation and the GP results.
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On the basis of the variance components estimated from the Eq. (2), the
genomic heritability of a trait can be calculated
32
hZ — 09
02+ 02+ 0%+ 07

This is a Bayesian alternative to the popular GCTA approach (Yang et al.
2011) for estimating genomic heritability of quantitative traits.

The BG-BLUP combined with pedigree
To incorporate the pedigree information, the BG-BLUP model (2) can be
extended as [Eq. 7-8]

yi=By+ui+vi+Wa+2Zy+e, (7)

where all terms are defined in the same way as in Eq. (2), except that v; is a
newly added random effect that has the covariance structure representing
the pedigree-based relationship matrix A, so that the prior of v; is specified
as

P(v) ~ N(0, 62A) ®)

The pedigree-based matrix A was calculated based on the genealogical
information of the lines in the study tracing back to five generations (Fig.
S1), using the R package “pedigree” (Coster 2015). Like the variance
component og, the variance component o2 can also be assigned with a
scaled inverse chi-squared distribution prior (Pérez and de los Campos
2014). Now, the scale parameters for variance components are o2, o and
02 that are specified as So = var(y)x ( —R% - 3 (df+2) Sg =
var(y) x RZ x (df + 2) /mean(diag(G)) and
Sa= var(y) x R%x (df + 2)/mean(diag(A)), respectively, where Rf] = 04
and R 0.1, corresponding to the model assumption that 40% of
phenotype variance explained by genetics, and 10% explained by the
pedigree information, based on the assumption that the genetic relation-
ship would capture more phenotypic variation than the pedigree
relationship (Fraimout et al. 2021). In addition, based on our numerical
experiment (results not shown), changing those prior values would not
lead to drastic change in the prediction results.

Bayesian LASSO

Additional to the BG-BLUP model building the relation between
phenotypes and GRM, a multiple locus model could also be applied
directly to evaluate the association between phenotypes and different
markers as

p
Yi=Bo+ Y xiB+Wa+2y+e,
]

or alternatively, in a likelihood form [Eq. 9]:

( Yi—Bo — Z,L iy — Wa *ZV>2

Pvi6.2) H [ 207 ’
(9)
where B; (j=1,..., p) is the regression coefficient representing the additive

genetic effect of the marker j, and the other symbols including y; x;; B, and
02 are defined the same way as in Eq. (2). Given the fact that the number of
SNPs is larger (i.e. p>n), it is essential to keep only the SNPs with non-
negligible effects, and to exclude SNPs with small effects out of the model.
In Bayesian statistics, this can be achieved by using shrinkage prior A on
regression parameters (O’'Hara and Sillanpaa 2009).

The regression parameter B; (j=1,..., p) is the additive genetic effect of
marker j, which is assumed to follow a double exponential (DE) prior
distribution [Eq. 10]:

P(B) = Aexp(-A[B;|) (10)

The DE distribution has a heavier tail than the normal distribution, and it
can shrink the effects of unimportant markers towards zero. The parameter
A\ determines the degree of shrinkage, i.e. how many markers will be
excluded from the model. The DE distribution could be further represented
as a scale mixture distribution of a normal distribution of 8 and an
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exponential distribution, which inspires the following hierarchical prior
setting of the regression parameter g; in Bayesian LASSO [Eq. 11-12]:

P(B) = N(B10.07). an

P(of) = Exp (sz A;) (12)

The shrinkage factor A% is further assigned with a hyper prior of a
Gamma distribution Gamma (A?[s, r), and so it can be estimated as other
model parameters. The shape and rate parameters of the Gamma prior was
specifiedtos=1.1andr = m (Pérez and de los Campos 2014),
where MSx represents the sum of the variances of genotype values of each
SNP, and R =0.5.

Bayes C

Another popular way to achieve shrinkage estimation is to assign a spike
and slab prior (Ishwaran and Rao 2005) to the regression parameters as
follows [Eq. 13]:

P(BI) o< (1= ¥))l(g-0) T ¥iN(B}|0.07). (13)

where y; is a binary indicator variable to tell whether the genetic effect of
SNP j should be non-negligible and follow a normal distribution, or
whether the effect is small and assigned with a zero value. In formula (13),
the indicator variable y; and the variance component o are further
assigned with priors of Bernoulli: Bern(y|m) and Inverse chi-squared:
IG(0g|df,So), respectively. In the Inverse gamma prior IG(0|df,So), the
parameters df =5 and S = var(y) x R? x (df + 2)/MSx, with R*=0.5. In the
Bernoulli prior Bern(yj{m), the parameter 1 was further assigned with a Beta
prior Beta(m | po, M), With pg =50, and m, = 0.5 The spike and slab prior
(13) is often referred as the Bayes C model (Habier et al. 2011) in the GP
literature.

Adding pedigree into the Bayesian LASSO and Bayes C model
To account for the pedigree information, a random effect u could be
further added into the likelihood (9) as [Eq. 14]

2
(1730727:1X0Bj7W072V*U/‘)

2 ,
202

P(y|B,02)

S
(14)

where the random effect u following a normal prior as:
u~N(0,02A),

where A is the pedigree-based relationship matrix. The prior information
for all other parameters in (14) could be assigned in the exact same way as
in Bayesian LASSO or Bayes C.

Thus, both the Bayesian LASSO (or Bayes C, which has a different prior
setting for marker effects) and BG-BLUP model utilise the same covariance
matrix A constructed from the pedigree analysis, to account for the family
structure. However, the two model classes use different way to model the
dependency between genotype and phenotype data. Bayesian LASSO or
Bayes C used a multiple locus model with a shrinkage prior to estimate the
additive effects of SNPs. The BG-BLUP model used the SNP data to
estimate the GRM to study the genotype-phenotype association.

The posterior distribution of all the three models can be evaluated using
the Markov Chain Monte Carlo (MCMC) algorithm, in particular the Gibbs
sampling, as presented in de los Campos et al. (2009) and Pérez and de los
Campos. (2014). Practically, the MCMC was implemented by the R package
BGLR (Pérez and de los Campos. 2014). The algorithm generated 50,000
posterior samples, with the first 10,000 samples as burn-in, and every 20th
of the rest were stored to reduce the serial correlation.

Bayesian additive regression tree

Bayesian additive regression tree (BART) (Chipman et al. 2010; Hill et al.
2020) is a more flexible model structure compared to the linear regression,
presented as [Eq. 15]

y; = f(xi) + e, (15)
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where f represents a summation of many regression trees as
m
X) = Zg(& T, Mk)7
k=1

where T represents a binary decision tree with a set of terminal nodes and
interior decision rules, uy € Mk(I =1, ..., bx) are a set of parameter values
associated with each terminal nodes of T, and e; is the Gaussian residual
error as in (2).The decision rules associated with T, are binary splits of the
genotypes X to (x € Ay) and (x¢Ax), where A is a subset of x. The function
g then assigns each py, to x as

g(x, Tk,Mk) = Uy ifx € Au
In BART, a regularised prior is assigned to each tree Ty and its terminal
notes My, and assumed independence between different components:
m
H p(Tic, Mi)

p((T1,M1), (T2, M2), ..., (T, Mm)) =

Il
::13

p(Te)p(Mk|Tk)

Il
T ,’:13 T

(Tk) H/ (ulTk),

where the prior p(T)) consists of three parts: (i) the probability that a node
at the depth d is non-terminal given by a(1+d)~® where a = 0.95, and B=
2 as suggested in Chipman et al. (2010) and (ii) a uniform distribution
specified for the variables x; (j=1,...,p) which are assigned at each interior
node for splitting, and (iii) a uniform distribution on the splitting rule
assignment in each interior node. The p(uk,|Tk is a normal distribution
N(O, ou), with the variance fixed to be o2 i, and k=2, and the
number of trees M is fixed to be 200 as Wafdmann (2016).

The prior tends to generate a lot of small trees with simple structure, and
therefore can avoid the over-fitting problem. Compared to the G-BLUP,
Bayes LASSO or Bayes C methods, the benefit of BART is that it can
implicitly model not only the additive effects, but also the non-additive
genetic effects such as dominance effects and gene-gene interaction
effects (Waldmann 2016).

The BART model could be evaluated using Gibbs sampling with a few
Metropolis Hasting sampling steps, which can be implemented using the R
package BayesTree (Chipman and McCulloch 2016). Here we generated
equivalent amount of MCMC samples as for the other three models.

Assessment of prediction accuracy

Three different scenarios were considered to evaluate the prediction
accuracy of different approaches. In Scenario 1, a fivefold-CV and an
additional 50-fold-CV were used by randomly dividing the samples into
multiple parts (i.e. either 5 or 50) with equivalent sizes, and in turn using
each part of the data (of 277 lines) as the test population, and the rest (of
1108 lines) as the training data. In fivefold-CV, the training and test set
comprise 1108 and 277 lines, respectively. And in 50-fold-CV, the training
and test sets comprise 1357 and 28 lines, respectively. In CV, the average
predictive performance over different folds is considered as prediction
accuracy. In Scenario 2, all the lines phenotyped at seasons 1993-2016
were used as the training population to build the model. The lines
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phenotyped in the most recent (2017/2018) season were used as the test
population to calculate the prediction accuracy. This scenario reflects a
likely approach of utilising GP in a breeding program where samples
collected in previous years are used as the training data to generate GEBVs
from the most recent season. Scenario 3 used the same training population
as in Scenario 1, but it focused on predicting separately on each single
biparental family collected at 2017/2018 (Schopp et al. 2017; Brauner et al.
2020). For the training data set, we considered either using the whole set
of samples up to 2016/2017, or only a subset of samples that are closely
relevant to each test population defining by the relationship coefficients
between samples calculated based on pedigree. We used relationship
coefficients thresholds of both 0.125 and 0.25, representing the first cousin
(i.e. sharing one grandparent) and half-sibling relations (i.e. sharing one
parent), respectively. This approach explored whether an appropriate
training population existed for single biparental family in terms of attaining
a better prediction accuracy.

In all these three scenarios, the Pearson correlation coefficient between
the GEBV and the phenotypes was considered as the measurement of
prediction accuracy.

RESULTS

In this study, we conducted GP analyses on a total of 1385 lines
using eight statistical methods. The methods were BG-BLUP,
Bayesian LASSO, Bayes C and a non-parametric BART, used either
only genomic data or combined genomic data with pedigree
information. The prediction accuracies were then evaluated in
three different scenarios.

Phenotype and genomic variation
A summary of phenotype variation including mean, standard
error, minimum value, maximum value of phenotypes for each
trait was given in Table 2. Genomic heritabilities estimated by BG-
BLUP were 0.59 for LEN, 0.35 for UNI, 0.30 for SFI, 0.59 for STR, 0.46
for EL, 0.42 for MIC, 0.26 for LY, and 0.41 for LP (Table 2).
Principal component analysis (PCA) results (Fig. S2) of genomic
data revealed no clear separation between the samples collected
in different years.

Prediction scenario 1 (Cross validation)
When using the fivefold-CV to evaluate the predictability of the
models, the accuracies were 0.72-0.77 for LEN, 0.47-0.60 for UNI,
0.43-0.48 for SFl, 0.65-0.71 for STR, 0.60-0.62 for EL, 0.50-0.58 for
MIC, 0.59-0.65 for LY, and 0.66-0.68 for LP (Fig. 1a; Table S2). The
performance of BG-BLUP, Bayesian LASSO, Bayes C was compar-
able to each other. BART's performance was worse than the other
three methods for UNI, but was comparable to other traits.
Inclusion of pedigree information in all the methods improved the
prediction accuracies by 1-3% for different traits (Table S2).

The 50-fold-CV's accuracies were 0.78-0.80 for LEN, 0.49-0.60
for UNI, 0.51-0.53 for SFI, 0.67-0.71 for STR, 0.55-0.60 for EL,
0.65-0.67 for MIC, 0.58-0.6 for LY, and 0.59-0.64 for LP. Similar as

Summary of phenotype variation across traits including the mean, standard error, minimum value, and maximum value of original

phenotypes and the adjusted phenotypes by checks in each trial to reduce the phenotype variation caused by management and environment.

Table 2.

LEN UNI SFI
Mean 1.23 84.2 5.54
SD 0.05 1.21 1.95
Min 1.10 80.6 23
max 1.41 88.5 9.9
Mean_adjust 1.03 1.00 0.94
SD_adjust 0.04 0.01 0.16
Min_adjust 0.93 0.96 0.35
Max_adjust 1.20 1.05 1.7
Genomic H? 0.59 0.35 0.30
95% Credible intervals for H? (0.53, 0.66) (0.28, 0.41) (0.22, 0.37)
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STR EL MiC LY LP
314 14.6 52 2683 49.3
1.73 1.74 0.36 525 235
26.3 0.9 4.25 1326 324
49.6 14.6 5.2 3693 49.3
1.01 0.96 0.99 1.00 0.99
0.05 0.10 0.06 0.12 0.04
0.88 0.35 0.70 0.44 0.76
1.69 138 1.17 1.63 1.12
0.59 0.46 0.42 0.26 0.41
(0.53, 0.65) (0.39, 0.53) (0.35, 0.49) (0.19, 0.33) (0.29, 0.52)
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The prediction accuracies and standard errors of scenario 1. (a Fivefold cross validation; and b 50-fold cross validation). Methods

under evaluation were Bayesian genomic best linear unbiased predictor (BG-BLUP), Bayesian LASSO, Bayes C, Bayesian additive regression tree
(BART), and these four models further adding pedigree or structure information as random effects. Traits being analysed included fibre length
(LEN), uniformity (UNI), short fibre index (SFI), fibre strength (STR), fibre elongation (EL), fibre micronaire (MIC), lint yield (LY) and lint

percentage (LP).

in the fivefold-CV, the inclusion of pedigree in all the Bayesian
approaches slightly improved the prediction accuracies (Fig. 1b;
Table S3).

Prediction scenario 2

By using all samples sourced prior to the 2017/18 (1051 lines) as
the training population to build the model and the 2017/18 season
samples (334 new lines) to evaluate the prediction, the prediction
accuracies of the eight methods ranged 0.39-0.42 for LEN,
0.08-0.14 for UNI, 0.14-0.20 for SFI, 0.35-0.38 for STR, 0.41-0.48
for EL, 0.19-0.28 for MIC, 0.14-0.25 for LY, 0.30-0.36 for LP (Fig. 2;
Table S4). BG-BLUP and Bayesian LASSO, Bayes C and BART
achieved almost identical accuracies for LEN, STR and LP (Table
S4), though they are formulated under different model assump-
tions. The BART method gave higher prediction accuracies for EL,
MIC and LY. Bayesian BLUP performed better for UNI. Bayes LASSO
performed better for SFI. Adding pedigree information as a
random effect to BG-BLUP, Bayesian LASSO, Bayes C or BART,
resulted in the highest accuracies for SFl, STR and LP, but had
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compromised the accuracies of EL and MIC prediction; however,
all these changes were small in magnitude (Table S4).

Prediction scenario 3

Here nine biparental families collected from the year 2017/18
were treated as separate test populations to evaluate whether
using the families which are closely related to the test population
in the training population could improve the prediction.

The prediction accuracies for the Bayesian LASSO based on the
whole training population (average over the 9 biparental families)
were 0.23 for LEN, 0.25 for UNI, 0.14 for SFl, 0.4 for STR, 0.3 for EL,
0.22 for MIC, 0.13 for LY, and 0.38 for LP (Fig. 3; Table S5). Adding
pedigree to Bayesian LASSO produced better prediction accura-
cies for all of the traits except EL. Using only the families that have
relationship coefficients at least 0.125 (i.e. equivalent as sharing
one common grandparent) with the test population in the training
population yielded best prediction accuracies for MIC and LP
(Table S5). Using the families that have relationship coefficients at
least 0.25 (i.e. as sharing one parent) produced best prediction
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Fig. 2 The prediction accuracies of the scenario 2: the lines
phenotyped at seasons 1993-2016 were used as the training
population, and the data collected in the 2017/2018 season were
used as the test population. Methods under evaluation were
Bayesian G-BLUP, Bayesian LASSO, Bayes C, BART, and these three
models further adding pedigree or structure information as random
effects, and BART. Traits being analysed included fibre length (LEN),
uniformity (UNI), short fibre index (SFI), fibre strength (STR), fibre
elongation (EL), fibre micronaire (MIC), lint yield (LY) and lint
percentage (LP).
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accuracies for UNI, SFI, STR, and LY. The whole training data set
performed best for LEN and EL.

DISCUSSION

In this paper, we presented a GP study on both fibre qualities and
yield traits of cotton (G. hirsutum) with 1385 samples collected
from the CSIRO cotton breeding program. This study is on a much
larger scale than the previous two GP studies on the same species
(Gapare et al. 2018; Islam et al. 2020). From a statistical modelling
perspective, we focused on evaluating several Bayesian regression
methods including BG-BLUP, Bayesian LASSO, Bayes C, and BART.
In all the methods, year and experiment information were added
as covariates to account for the environmental effects. The former
three methods have already been widely used in the GP literature
(Crossa et al. 2017; Wang et al. 2018), while the BART approach is
less well known in the field (Waldmann 2016). Since the trait data
were collected from multiple biparental families, we calculated the
relationship matrix based on pedigree information, and used that
matrix in conjunction with the genomic data in the model and
observed an improvement in prediction accuracies.

(a)
Scenario 3: Fibre Length
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Fig.3 The prediction accuracies of the scenario 3. a fibre length (LEN), and b strength (STR). This approach used each biparental family from
season 2017/2018 as the separate test population. The training population was either all the lines phenotyped before 2017, or the families
phenotyped before 2017 which are closely relevant to the target population (i.e. the related coefficient no <0.125 or 0.25).
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Prediction accuracies over three scenarios

Scenario 1 aims to evaluate the predictive ability of different
predictive approaches by using cross-validation (CV), which are
also used in many other GP studies (Runcie and Cheng 2019). In
contrast, Scenario 2 reflects a likely approach when utilising GP in
a breeding program, where samples collected in the past are used
as the training population to generate GEBVs for the new samples
from the most recent season. The prediction accuracies for traits in
Scenario 1 were significantly higher than those in Scenario 2,
which can be explained by how the training and test population
being defined. In Scenario 2, the training and test data comprised
samples from different biparental families generated in different
years, and additionally their phenotypes were subject to different
environments (e.g. climate variability across testing seasons). But
in Scenario 1, the training and test populations were randomly
defined so both have samples collected from the same families
and phenotypes measured at the same environments, resulting in
more accurate predictions. Our results are aligned with results
from existing literature shown that the prediction accuracies of
new genotypes in new environments (i.e. Scenario 2 were
considerably lower than the prediction by using CV (i.e. randomly
defining the training and test population, i.e. Scenario 1) (Jarquin
et al. 2014b; Gillberg et al. 2019). Another observation was that the
prediction accuracies in Scenarios 1 and 2 were both highly
correlated with the square root of the genomic heritabilities across
traits. For example, the Pearson correlation coefficients between
prediction accuracies by GB-BLUP in Scenario 1 (50-fold-CV) and
Scenario 2 and the squared root of heritabilities are 0.80 and 0.82,
respectively. Note that the square root of the heritability of a trait
was considered as the theoretically expected value of the
prediction accuracies could be achieved by GP (Estaghvirou
et al. 2013).

The Scenario 3 is related to Scenario 2 but with a focus on
calculating GEBVs for within family samples instead of between
family samples. Results highlight that the prediction accuracies
vary dramatically across different biparental families. This may
reflect the complexity of the relationship structure among those
families. The pedigree-based relationship matrix had two roles
here. First, it was used to tune the training population to select
training samples that are closely relevant to the target family.
Second, it was also used as a random effect in Bayesian regression
models for the predictive analysis. Conducting a training set
selection by using samples that are closely relevant to the target
population showed an improvement of prediction accuracies for
most of the traits, but the optimal threshold to determine the level
of relatedness cannot be determined based on our results.

The results of Scenario 3 may be limited by the sample size
within each biparental family, i.e. ~20 individuals. Such a limited
number of individuals in the test population may result in some
alleles which are helpful in explaining the phenotypic variation in
the training populations not to be included in the test population
due to genetic drift, which may result in some redundant SNPs
and reduce the predictive power for some families. Moreover,
samples were collected from populations which had undergone
significant phenotype-based selection (i.e. truncation). This
reduces the phenotypic range of traits, making it difficult to
obtain accurate predictions using genomic data (Table S6).

Comparison to previous cotton genomic prediction studies

Gapare et al. (2018) used CV to evaluate prediction accuracies on
215 historical lines (a subset of the data set used in this study).
They obtained prediction accuracies of 0.67 and 0.35 for LEN and
STR, respectively. The prediction accuracies of these two traits in
our study were considerably higher. This may be explained by the
larger size of the training population in our study. Another
explanation is that unlike Gapare et al. (2018) who used only
genomic information to generate predictions, we have also
incorporated pedigree into the models. We have shown that
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pedigree data provides complimentary information to the models.
Thus, improved prediction accuracies can be achieved when
genomics and pedigree are used in combination, as they are able
to jointly describe the relatedness of individuals composited in
both the training and predictive population (Velazco et al. 2019).
From a breeding point of view, the training populations used in
this study are predominantly recently developed CSIRO breeding
lines. Given the continuity of germplasm enhancement activities
in our breeding program, many elite individuals in these training
populations were used as parents for new breeding crosses, from
which lines in the testing populations are derived. Therefore, the
relatedness between the training and testing populations is higher
in this study compared to Gapare et al. (2018)’s study. This higher
relatedness between the training and testing populations is likely
to have influenced the improved prediction accuracies.

Another study (Islam et al. 2020) also conducted CV on 550 lines
of a multiple parental cross (MAGIC) population produced in the
US, and obtained maximum accuracies of 0.50 for LEN, 0.48 for
UNI, 0.50 for SFl, 0.55 for STR, 0.68 for EL, and 0.35 for MIC (Fig. 2 in
Islam et al. 2020). Except EL, all other traits had higher accuracies
in our study. However, it is important to note that the study using
a MAGIC population may not be comparable to ours due to the
nature of the populations studied and the testing environments,
as well as dissimilar genotyping and phenotyping methods.

Comparison between predictive models and between CV
strategies

The four Bayesian regression methods being considered in this
study have different model assumptions. The BG-BLUP model
assumes the genetic effects of different markers to follow a
normal distribution with a common variance. Bayesian LASSO and
Bayes C assume markers to follow a prior distribution with
individual variance. Accordingly, BG-BLUP is most suitable to
analyse a polygenic trait with all markers having small genetic
effects. Alternatively, Bayesian LASSO and Bayesian C work most
efficiently for oligogenic traits with small number of markers
having major effects, and the rest having small effects (Li and
Sillanpda 2012). The fact that these methods have similar
predictive performance on our data set may indicate that the
traits being analysed here have a polygenic genetic architecture
so that the Bayesian LASSO and Bayes C methods do not show
advantage over the BG-BLUP model.

The BART model is a non-parametric method similar to other
machine learning methods which have been proposed for GP
such as random forest and boosting (Li et al. 2018). BART implicitly
models the genetic effects in regression decision trees. Compared
to the three parametric methods, the benefit of BART is that it can
also account for non-additive effects such as dominance effects
and gene-gene interaction effects.

BART's performance varies across traits and scenarios. From our
analyses in Scenario 1, although BART did not provide the best
accuracies among the methods for most of the traits, it indeed
outperformed others for EL, MIC and LY, indicating some non-
additive effects may influence those traits. However, because it is a
non-parameterised method, BART cannot be used to identify the
SNPs associated with those non-additive effects.

Furthermore, it must be also highlighted that adding the
pedigree-based relationship matrix into the regression models
improves predictions in all three scenarios. Using pedigree as a
random effect is useful to account for the complex correlation
structure between multiple families in the data, which cannot be
fully explained by genetic data. This observation supports results
published in GP research in other crop species (Velazco et al.
2019).

Another interesting technical perspective is to determine an
optimal number of folds in CV (i.e. prediction Scenario 1). Our
results showed that the prediction accuracies estimated by 50-
fold-CV is systematically higher than the accuracies estimated by
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fivefold-CV, although the difference is small in magnitude. The
accuracies estimated by both 50-fold-CV and fivefold-CV are all
highly correlated with the square root of genomic heritability (as
shown above), which indicates both approaches are suitable for
evaluating prediction accuracies for GP. One major difference is
however that the standard error of prediction accuracies over
folds in 50-fold-CV is much larger than that of the fivefold-CV.
Moreover, the computation cost of 50-fold-CV is much more
expensive. Hence, the use of small number of folds in CV should
be a better choice for evaluating a model’s predictability.

CONCLUSION

This research presents the first GP study using samples collected
from multiple years and locations from a commercial cotton
breeding program. It highlights that GP models, particularly when
combined with pedigree information, provide significant potential
to predict accurate GEBVs (i.e. maximum prediction accuracies of
0.50-0.76, depending on the target trait). However, as no
prediction model constantly outperformed all other models across
the prediction scenarios and traits presented in this work, it is
important to apply a set of different models to new data sets. In
addition, it must be acknowledged that the circumstances where
GP could be deployed in a commercial breeding program (i.e.
Scenarios 2 and 3) the prediction accuracies were not consistently
high. We expect that the inclusion of environmental covariates
and other ‘omics’ data may help improve the accuracy of GPs.
Particularly when considering complex, polygenic traits where
interactions between genes and environment have significant
effects on phenotype outcomes. The study can be further
extended by including environmental factors such as climate
variables into the statistical models; building a genotype (gene)-
by-environmental interaction model to conduct prediction ana-
lyses (Jarquin et al. 2014b; Crossa et al. 2017; Rogers et al. 2021),
and; the extension of prediction models to simultaneously predict
multiple correlated traits (Moeinizade et al. 2020).

DATA AVAILABILITY

The genotype and phenotype data as well as the pedigree-based relationship matrix
used in this study are available from the CSIRO Data Access Portal https://doi.org/
10.25919/k18n-nk98.
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