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Abstract 

Background:  Given the increasing number of people suffering from tinnitus, the accurate categorization of patients 
with actionable reports is attractive in assisting clinical decision making. However, this process requires experienced 
physicians and significant human labor. Natural language processing (NLP) has shown great potential in big data 
analytics of medical texts; yet, its application to domain-specific analysis of radiology reports is limited.

Objective:  The aim of this study is to propose a novel approach in classifying actionable radiology reports of tinnitus 
patients using bidirectional encoder representations from transformer BERT-based models and evaluate the benefits 
of in domain pre-training (IDPT) along with a sequence adaptation strategy.

Methods:  A total of 5864 temporal bone computed tomography(CT) reports are labeled by two experienced radi-
ologists as follows: (1) normal findings without notable lesions; (2) notable lesions but uncorrelated to tinnitus; and 
(3) at least one lesion considered as potential cause of tinnitus. We then constructed a framework consisting of deep 
learning (DL) neural networks and self-supervised BERT models. A tinnitus domain-specific corpus is used to pre-train 
the BERT model to further improve its embedding weights. In addition, we conducted an experiment to evaluate 
multiple groups of max sequence length settings in BERT to reduce the excessive quantity of calculations. After a 
comprehensive comparison of all metrics, we determined the most promising approach through the performance 
comparison of F1-scores and AUC values.
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Introduction
The overall prevalence of tinnitus among the general 
population ranges from 10% to 14.5% [1, 2], and 30% of 
people with tinnitus report ‘moderate’ to ‘very big’ diffi-
culties in daily life [3]. There are a variety of conditions 
that can cause tinnitus, such as jugular bulb diverticu-
lum, acoustic neuroma or defect of bone plate in sigmoid 
sinus. Medical imaging is one of the most common tools 
for detecting the presence of tinnitus. However, as radiol-
ogy reports offer a comprehensive description of visible 
lesions, lesions related to tinnitus account for only a small 
proportion compared with commonly reported degener-
ation or chronic lesions [4]. Especially in elderly patients, 
physicians may fail to notice such findings for many rea-
sons, such as lack of experience in diagnosis, moreover, 
classifying findings correlated with tinnitus requires high 
expertise in ENT radiology [5].

Hence, an automatic identification tool for action-
able reports is needed, so that physicians achieve better 
decision making without spending extra time on select-
ing appropriate patients from massive radiology reports. 
Thus, it is challenging as well as attractive to develop an 
automated approach of accurately classify the actionable 
reports.

Radiology reports are constructed with domain-specific 
terms and patterns, and most of them contain unstruc-
tured data [6]. The typical format of a free-text radiol-
ogy report consists of four sections: the demographics 
section describes basic information such as the patient’s 
name, age, gender, etc., the clinical information section 
refers to the medical history or current syndrome. The 
imaging findings section is the main body of the report 
which uses anatomic, pathologic, and radiologic termi-
nology to describe all the normal and abnormal findings 
within the scanning field. Finally, the Impression section 
includes specific diagnosis or differential diagnosis by the 
radiologist,an example of a Chinese radiology report used 
in this study is shown in Additional file 1: FigureS1. The 
written style of reports varies among radiologists, and 

they could contain a number of literature errors [7, 8]. 
Manual classification of actionable reports from a large 
database is time-consuming, error-prone, and requires 
experience to rectify possible errors [9]. Despite the use 
of prompting for structured reporting, free-text radiol-
ogy reports are still favored for their flexibility and low 
cost in major hospitals [10]; this trend necessitates the 
application of modern informatics to improve the effec-
tiveness of radiology reports in clinical workflow and bio-
medical research.

Natural language processing (NLP) techniques have 
introduced a new era for free-text analysis and data min-
ing [11, 12]. Traditional symbolic and statistical NLP 
methods may perform well on questions that can be 
defined exactly by a certain set of rules or decomposed 
simply with statistical patterns of terms in a document; 
both of them have good results in research cases, includ-
ing data mining of radiology reports [13, 14]. Deep learn-
ing methods with modified neural networks achieved 
state-of-the-art results with simplicity, flexibility, and task 
specificity on large-scale complex tasks [15–17]. The con-
volutional neural network (CNN) and recurrent neural 
network (RNN) framework has been widely used in clas-
sification tasks due to their distinguishing performance 
in representation learning. CNNs can capture features 
between consecutive words and shift-invariant classifi-
cation of input information according to its hierarchical 
structure. The RNN framework has gained attention for 
its ability to deal with variable-length input and output 
[18]; yet, RNNs typically show poor performance when 
dealing with long sequences due to the gradient vanish-
ing and exploding problem. For this problem, a variant 
of RNN named long short-term memory (LSTM) net-
work has been developed through controlling the weight 
of previous inputs by adding and regulating “gates”; the 
gates act as controllers to enable the network to retain 
long-range connections in training.

Apart from RNN-based models, self-attention based 
transformer models have gained much attention in 

Results:  In the first experiment, the BERT finetune model achieved a more promising result (AUC-0.868, F1-0.760) 
compared with that of the Word2Vec-based models(AUC-0.767, F1-0.733) on validation data. In the second experi-
ment, the BERT in-domain pre-training model (AUC-0.948, F1-0.841) performed significantly better than the BERT 
based model(AUC-0.868, F1-0.760). Additionally, in the variants of BERT fine-tuning models, Mengzi achieved the 
highest AUC of 0.878 (F1-0.764). Finally, we found that the BERT max-sequence-length of 128 tokens achieved an AUC 
of 0.866 (F1-0.736), which is almost equal to the BERT max-sequence-length of 512 tokens (AUC-0.868,F1-0.760).

Conclusion:  In conclusion, we developed a reliable BERT-based framework for tinnitus diagnosis from Chinese 
radiology reports, along with a sequence adaptation strategy to reduce computational resources while maintaining 
accuracy. The findings could provide a reference for NLP development in Chinese radiology reports.

Keywords:  Artificial intelligence, Natural language processing, Deep learning, Radiology report, Bidirectional 
encoding representation of transformer
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providing more feasible representations by forming more 
dense correlations between words in a sequence [19]. In 
contrast to RNNs that rely on constructing the relation-
ship between words in a sequential manner, which turns 
out to be a drawback when extracting the relationship 
between two long separated words, self-attention mecha-
nisms construct the relationship information between 
tokens by building an attention-matrix; this distributes 
proper weights to each token according to the relation-
ship between tokens and importance of token informa-
tion [20]. The transformer has achieved state-of-the-art 
performances in a variety of downstream tasks, resulting 
in a significant improvement in NLP. Nevertheless, it still 
relies on the training corpus that limits its utilization.

Recently, an advancement in NLP involved a novel self-
attention based representation model namely bidirec-
tional encoder representations from transformer (BERT), 
which was proposed by Google [21]. By pre-training on 
a large plain text corpus, the BERT model can focus on 
general human language understanding and distinguish 
among different use cases for a word [22]. In combination 
with fine-tuning of downstream tasks, BERT has achieved 
state-of-the-art results for a variety of NLP tasks [23]. In 
this way, recently modified versions of BERT-based mod-
els, such as Roberta [24], Albert [25], and Ernie [26] have 

enriched innovative methods in NLP, as they were devel-
oped through extensive large corpora such wikipedia and 
have been further optimized for model structure; there-
fore, they are worthy of investigation for NLP.

In the biomedical field, BERT models focusing on med-
ical tasks were developed using large-scale biomedical 
corpora, such as ClinicalBERT [27] and BioBERT [28]. 
Additionally, recent studies have shown promising results 
using the BERT framework in the medical domain. 
Although an increasing number of Chinese BERT mod-
els have been released as open source and demonstrated 
state-of-the-art performance in NLP benchmarks [29–
31], the research in Chinese clinical text data mining, 
especially in the analysis of radiology reports, is very lim-
ited compared with the global trend; this may be associ-
ated with barriers in accessing high quality report data 
and a lack of research pipelines [32]. The existing stud-
ies that use NLP techniques to classify actionable radiol-
ogy reports are summarized in Table 1. To the best of our 
knowledge, there have been no attempts at using BERT 
and in-domain pre-training techniques in the classifica-
tion tasks of Chinese actionable reports.

The first contribution of this study is a novel approach 
in Chinese actionable report classification using BERT, 
CNN, multilayer perceptron (MLP), bi-directional LSTM 

Fig. 1  Workflow of study
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(Bi-LSTM) and Bi-LSTM-CNN. In addition, we compre-
hensively evaluated and compared the benefits of three 
recently proposed Chinese variants of the BERT model: 
chinese-roberta-wwm-ext(abbreviated as Roberta), 
mengzi-bert-base(abbreviated as Mengzi), and chinese-
bert-wwm-ext(abbreviated as Bert-wwm-ext). Second, 
with the help of in domain pre-training techniques, we 
further improved the performance of the BERT model 
with respect to accuracy (i.e., F1-score and AUC); these 
results illustrate the potential of further improvement 
with additional pre-training. Third, we conducted exten-
sive experiments using max sequence length as a hyper-
parameter in the model fine-tuning strategy; the results 
demonstrated better performance in tokenizing with 
a length of 128 and 512 compared with other lengths 
tokenizing methods. Overall, our results have identified 
key information distribution in Chinese radiology reports 
and could improve related NLP studies in health-related 
texts, especially in ultra-long text tokenizing.

Materials and methods
Study overview
Figure  1 presents the workflow of the study, which is 
mainly composed of five sections: (1) data collection 
and labeling, (2) data preprocessing and partition, (3) 
text representation and pre-training, (4) classifier train-
ing, and (5) performance evaluation comparison. In the 
discussion section, the perspective of this study and the 
future utilization of the proposed model is summarized.

Data collection and labeling
We retrospectively collected the Electronic Healthcare 
Recording (EHR) data from patients who were admitted 

with tinnitus and received temporal bone CT exami-
nations between September 2014 and December 2021 
from a tertiary hospital in Beijing, all the radiology 
reports were written in Chinese and stored in PACS 
(Picture Archiving And Communication System) devel-
oped by DJ HealthUnion. Patients with the intention of 
a subsequent visit after initial treatment were excluded 
from the study as their reports may contain postopera-
tive features.

In temporal bone imaging, the critical part is the iden-
tification of imaging findings, which fully covers the 
feature of lesions in imaging and varies greatly due to 
complexity of related diseases. In contrast, the impres-
sion section may not offer useful information in this task 
because imaging is insufficient to give a clinical diagnosis 
of tinnitus. Therefore, imaging finding blocks were seg-
mented and used in this study. Additionally, all patients’ 
private information was removed from reports.

Reports were reviewed and manually labeled by two 
radiologists with at least three years of experience in tem-
poral bone CT reports. The labeling criteria were based 
on the diagnosis framework of tinnitus by Cima et  al. 
[44]. Three classes were manually labeled as follows: nor-
mal, tinnitus unrelated finding, or tinnitus related find-
ing. The details of labeling criteria are listed in Table  2. 
Before the start of the experiment, a Kappa test was 
conducted to verify the consistency of labeling perfor-
mance using a sample of 300, which eventually resulted 
in a Kappa value of 0.79. The details of the Kappa test are 
listed in Additional file  1: Table  S1. In the labeling pro-
cess, discrepancies were addressed by a senior expert to 
achieve consensus; the reports that were not eventually 
defined were excluded from the study.

Table 1  Summary of NLP studies focusing on actionable radiology reports (ML: Machine Learning, DL: Deep Learning, BERT: 
Bidirectional Encoding Representation of Transformer).

Author(s) Language Number of 
radiology reports

Algorithm Section of report Research objective

Carrodeguas et al. [33] English 2306 ML/DL Impression Classifying recommendation

Helibrun et al. [34] English 851 Rule-based Impression Detecting critical finding

Lou et al. [35] English 6000 ML Not mentioned Classifying recommendation

Esteban et al. [36] English 3401 Software Findings, impression Classifying recommendation

Morioka et al. [37] English 1402 Rule-based Not mentioned Classifying disease condition

Fu et al. [38] English 1000 Rule-based ML/DL Not mentioned Classifying disease condition

Nakamura et al. [39] Japanese 63646 BERT Order, findings, impression Detecting critical finding

Jujjavarapu et al. [40] English 871 ML Not mentioned Classifying disease condition

Liu et al.. [15] Chinese 1089 BERT/ML Findings Classifying disease condition

Zhang et al. [41] Chinese 359 BERT Pre-training Findings Classifying disease condition

Zaman et al. [42] English 1503 BERT Pre-training Findings Classifying disease condition

Liu et al.. [43] English 594 BERT Not mentioned Classifying certainty

Proposed study Chinese 5864 BERT Pre-training DL Findings Classifying disease condition
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After the screening, a total of 5864 reports were ulti-
mately considered and annotated. They were then divided 
into 70% for training (n = 4104), 15% for validation (n = 

880), and 15% for testing (n = 880) datasets. The label 

Table 2  Data labeling criteria

Classification Potentially clinically important findings Label instruction

Normal finding (labeled as 0) NA The scenarios when all organs are described as normal

Irrelevant finding (labeled as 1) Bone: If any lesion is observed and should be reported; 
meanwhile, the clinician is confident that the image 
finding provided limited information for diagnosis of 
tinnitus.

Any Degeneration

Brain:
-Brain degeneration

Nose and Sinus:
-Nasosinusitis (frontal sinus, sphenoid sinus, ethmoid sinus, 
maxillary sinus (except acute inflammation involving adjacent 
bone structures))

-Nasal turbinate hypertrophy

-Deviation of nasal septum

-Sinus cyst

External/middle ear: -
Chronic middle ear mastoiditis (except acute inflammation 
involving adjacent bone structures)

-Auditory canal cerumen

-Low middle cranial fossa

Relative finding (labeled as 2) Bone: - If one or more image findings should be reported 
in detail, and lead to a certain diagnosis for further 
examination or clinical evaluation. Or the image find-
ing addressed a need for urgent communication with 
clinicians for timely treatment. Since there is variability 
in language expression, the labeler’s judgment is used 
as reference.

Sigmoid sinus bone wall deficiency

-Superior semicircular canal dehiscence

-Auditory ossicle abnormality

-Bone fracture

-High jugular fossa

Brain:
-Neoplasms

-Intracranial hemorrhage

-Cerebral infarction

-Cerebral herniation

Nose and sinus cavity:
-Neoplasms

-Nasosinusitis (morphologically altered bone or sinus tract 
obstruction)

External/Middle ear:
-Tympanic lesion (inflammation, neoplasm or perforation)

-Otosclerosis

-Cholesteatoma

-Other neoplasm observed within the imaging field
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was controlled as a hierarchical indicator. The details 
for labeling and text preprocessing are illustrated in Fig-
ures 1 and 2.

Data preprocessing
All reports were preprocessed before further modeling, 
the punctuations and linguistic tags were first removed 
from the text using a preprocessing pipeline. In unstruc-
tured radiology reports, although radiologists typically 

Fig. 2  Details of report annotation and text preprocessing. Yellow characters represent findings irrelevant to tinnitus; red characters represent 
findings relevant to tinnitus and should be actionably reported in communication with physicians. *All reports were written in Chinese, and English 
translations are presented in the figure for illustration
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present information based on standard free-text tem-
plates of reporting, they may contain linguistic and com-
putational symbols such as end-of-line (EOL), blank 
character (BC) or line break (LB). These are considered 
noisy data and lengthen the text; this phenomenon is 
more common when collecting data from long term his-
torical datasets. Then, a Chinese stopword corpus is uti-
lized to filter meaningless stopwords from the text; those 
words may contain Chinese auxiliary words used for lit-
eral sense of formality. Finally, comments that were noted 
in the report were removed from the text; the comments 
were used for internal communication between the 
workstation and radiologists to notify them of remarka-
ble events in clinical workflow, and are not essential com-
ponents of radiology reports.

Text representation
Word embedding is an essential technique in NLP used 
to represent language based characters or words in 
quantitative values before further analysis. Typically, the 
embedded words could be represented in neighboring 
high-dimensional spaces according to the similarity of 
their actual meaning. Word embedding can be achieved 
through different embedding techniques, and each with 
its own pros and cons. In this study, we utilized two 
major methods for Chinese language embedding: Word-
2Vec and BERT.

Word2Vec as embedding method
Word2Vec is an algorithm that generates a high-dimen-
sional vector according to the given input when accepting 
a certain training corpus; this means that words with sim-
ilar literal meaning may stay in a relatively closer space to 
each other, and this feature enables the generated matrix 
to maintain certain information within the text. Further-
more, the Word2Vec algorithm also has shortcomings 
since it cannot accept new words if it is not included in 
the training process. In this study, we accepted one of the 
main architectures in the Word2Vec-Skip-Gram model 
as an embedding method, the details of embedding 
parameters is provided in  Additional file 1: Table S2.

BERT as embedding method
The BERT has been recently proposed by researchers in 
Google. The novelty of BERT is the application of the 
bi-layer transformer architecture - an attention-based 
mechanism that can accurately extract contextual rela-
tionships in words to realize unsupervised learning by 
combining text input and output through the decoder-
encoder framework. The BERT was initially proposed 
after being trained on ultra large datasets such as Wiki-
pedia, and an optimal performance may be achieved after 
fine-tuning datasets of downstream tasks.

Classifier training
In our study, we used four recent state-of-the-art NLP 
classifiers: CNN, MLP, Bi-LSTM and a hybrid Bi-LSTM-
CNN. As previously stated, CNN has the advantage of 
maximizing and extracting local features of neighbor-
ing words by convolutional and maxpooling layers, 
whereas Bi-LSTM models could store features of words 
in whole sentences by using cells and gates from both left 
and right directions to combine past and future context 
information from long-sentence radiology reports. The 
MLP model is a baseline deep learning model that is uti-
lized for comparison, while the Bi-LSTM-CNN model 
is proposed as a hybrid neural network. After hyperpa-
rameter grid search, the optimum model performance 
is presented; the detailed description of those training 
parameters is listed in Table 3.

Fine‑tuning of BERT‑based models
As the BERT model can be applied to a variety of differ-
ent natural language processing downstream tasks and 
only requires minimal adjustments, fine-tuning BERT 
with our labeled radiology reports has offered a great 
opportunity to exploit the advantages of the BERT frame-
work and achieve competitive results. In the biomedical 
field, the fine-tuning technique has attracted much atten-
tion in classification tasks [21,45], however, the attempts 
in NLP tasks of Chinese radiology reports seems sparse. 
However, recently proposed novel variants of BERT-
based Chinese embedding models have offered greater 
potential for further boosting NLP research in Chinese. 
To evaluate the benefits of BERT fine-tuning ,in the clas-
sification of tinnitus in Chinese radiology, BERT-base 
and the 3 variant models were used for fine-tuning in this 
stage.

Recently, many variants of BERT in Chinese have 
been published such as hfl/chinese-bert-wwm-ext 
(BERT-wwm-ext) and hfl/chinese-roberta-wwm-ext 
(Roberta) by Cui et  al. [46], and Langboat/mengzi-
bert-base (Mengzi) recently published by Zhang et  al. 
[47]. These models were trained on large scale corpora, 
pre-trained with optimized strategy such as whole 
word masking, and achieved state-of-the-art (SOTA) 

Table 3  Hyperparameters of model training

Model Layers Epochs Batch size Optimizer

CNN 16 20 32 Adam

MLP 16 20 32 Adam

Bi-LSTM 16 20 32 Adam

Bi-LSTM-CNN 32 20 32 Adam

BERT (variants) -fine tune 768 10 8 Adam

BERT-pre-training 768 10 8 Adam
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performance in multiple official benchmarks such as 
GLUE, MNLI and QNLI. It is therefore attractive to 
testify the benefits of these models in Chinese medical 
domain tasks and evaluate their performance by fine-
tuning. In this study, BERT-base-Chinese (BERT), hfl/
chinese-bert-wwm-ext (BERT-wwm-ext), hfl/chinese-
roberta-wwm-ext (Roberta), and Langboat/mengzi-
bert-base (Mengzi) were enrolled in the framework and 
compared. Additionally, the hyperparameters of each 
model are provided in Additional file 1:Table S3.

For fine-tuning, one full-connection(FC) layer was 
added after BERT in combination with a softmax layer 
for the label output. For major hyperparameters, the 
max sequence length was set to 512, the training batch 
size was set to 16, and the training epoch was set to 10. 
The hyperparameters were chosen based on the mem-
ory and computing power of our GPU resources. We 
fine-tuned the mainstream BERT-based models in Chi-
nese text NLP tasks: BERT-base-Chinese (BERT), hfl/
chinese-bert-wwm-ext (BERT-wwm-ext) and hfl/chi-
nese-roberta-wwm-ext (Roberta) along with Langboat/

mengzi-bert-base (Mengzi). The basic architecture of 
BERT based models is illustrated in Fig. 3.

In‑domain pre‑training of BERT
For further exploration of the potential of BERT-based 
models in language representation, and as it has been 
proven that pre-training can effectively improve model 
performance with limited data, we hypothesize that an 
in-domain pre-training task (IDPT) could be consid-
ered as a way for greater utilization of BERT in this task. 
The IDPT could be regarded as a process of transferring 
learning to integrate the domain-specific knowledge into 
the original BERT model, in this way, the initial weights 
of BERT could be adjusted adequately to maximize per-
formance and accuracy in domain specific tasks [48]. 
Hence, in order to transfer the domain-specific knowl-
edge and language representation of tinnitus to form 
a domain-specific healthcare BERT model, we used a 
large-scale database of tinnitus related clinical notes for 
IDPT of BERT.

In the IDPT stage, we collected 3873 clinical cases 
and 1431 radiology reports, which accounts for about 1 

Fig. 3  Illustration of architecture in BERT based models. The English subtitle is a translation of a sentence in a Chinese radiology report
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million words. For the preprocessing stage, the space and 
newline symbols were removed from the corpus to form 
the corpus data; thereafter, no further processing was 
performed. The pre-trained tinnitus-BERT model was 
trained in a way described in literature [48], the hyper-
parameters, computing resource and training time in the 
IDPT stage is listed in Table 4.

Token length optimizing strategy (TLOS) based on max 
sequence length
Max sequence length is a critical hyperparameter in the 
BERT model. For long sequence embedding, the token 
overflowing the max sequence length would be cut, while 
short sequences would be “padded” (i.e., filled with zeros 
or specific number) to the same length; this mechanism 
aims for constant length alignment of all input text. The 
Chinese-based BERT models use each character as a 
token; however, the token length of sequences in within 
each group varies widely. Figure  4 shows the disparity 
with two “peaks” along with the “long tail” in token distri-
bution number, whereas the statistics in Table 5 show this 
variation more precisely. Previous studies have suggested 

that report length is affected by the amount of confidence 
the radiologist has in their analysis, we hypothesize that 
the token length in this study may lead to further investi-
gation of patterns of Chinese radiology reports[49].

This phenomenon may be caused by the following rea-
sons: (1) for patients with multiple or complex lesions, 
detailed reporting of radiological manifestation is needed, 
and many radiologists typically write an individual sec-
tion of the foremost imaging findings before all findings 
for timely attention, thus prolonging the whole report; (2) 
the standards of reporting across historical timelines may 
have changed, as the EHR system may have progressed 

Table 4  Training time, computing resource and hyperparameters in IDPT

Data size Train epochs Train batch_size Eval batch_size Eval strategy Eval steps GPU Pre-training time per epoch

10.7 MByte 10 16 16 Steps 100 Nvidia GTX1070 32 min

Fig. 4  Token length distribution in training dataset

Table 5  Token length distribution in all training datasets.

Label Average token length 
(±standard deviation)

Number 
of 
samples

Normal finding 0 182.92±12.62 1100

Unrelated finding 1 237.73±28.45 2851

Related finding 2 262.52±47.13 1913
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with further requests for more detailed reporting; (3) there 
is a variance in the writing style of different radiologists, 
particularly considering the differences in experience and 
skills.

A long sequence would consume more GPU memory 
and computational resources, especially when deploying 
large models such as BERT[50], and clinical departments 
would not commonly deploy high performance GPUs and 
RAMs. To address this uncertainty, we hypothesize that 
the foremost section of radiology reports be considered as 
a priority in classification; this could be testified by using 
max sequence length as a variable to evaluate the per-
formance of models in encoding. In this experiment, we 
applied the sequence length values of 128, 256, 328, 468 
and 512 (default), and compared the results to test our 
conjecture.

Results
Evaluation method
The performance of each method was evaluated using the 
receiver operating characteristic (ROC) curve, along with 
accuracy, precision, recall and F1-score. Further, true pos-
itive (TP) and false positive (FP) are the number of posi-
tive cases correctly and incorrectly predicted, while true 
negative (TN) and false negative (FN) are the number of 
negative cases correctly and incorrectly predicted. Equa-
tions  1 (1)-(4) describe the performance metrics, and the 
confusion matrix of results is presented in Additional file 1: 
Table S4.

(1)Accuracy =
TP+ TN

TP+ TN + FP+ FN

(2)Precision =
TP

TP+ FP

(3)recall =
TP

TP+ FN

Eqs 1: Equation for performance metrics

Experiment 1:BERT finetuning model in comparison 
with Word2Vec based deep learning models
As a main goal of this study is to test the benefit of 
using BERT fine-tune in radiology classification task, 
the first experiment compares the results of the pro-
posed Word2Vec embedding and classifiers: CNN, MLP, 
Bi-LSTM, Bi-LSTM-CNN with the BERT-based fine-
tuning approach for classifying normal, tinnitus unre-
lated, and tinnitus related actionable radiology reports 
using collected data. The results are shown in Tables  6, 
7, and the ROC curve is shown in Figure  5. The BERT 
fine-tune model outperformed the Word2Vec based 
models, BERT fine-tune achieved both the highest AUC 
of 0.868 and F1-score of 0.760; however, the difference 
between BERT fine-tune and second highest model (i.e., 
Word2Vec+CNN) is not larger than 1%. In addition, the 
approaches which combined BERT with classifiers were 
also evaluated, and the results are shown in Figure 6.

Experiment 2: evaluation of BERT fine‑tune and BERT 
in‑domain pre‑training(IDPT) and comparison with BERT 
original
The IDPT technique is applied in this study to further 
exploit the advantage of using BERT frameworks in 
pre-training. We compared the performance of the clas-
sification task certainty using three stages of BERT mod-
els: BERT original,BERT fine-tune and BERT-IDPT. The 
ROC curve and AUC values are shown in Figure  7 and 
the metrics are shown in Table 7. Compared to the results 
of BERT fine-tune, the BERT IDPT model obtained a sig-
nificant improvement with AUC of 0.948 and F1-score 
of 0.841. In addition, the results demonstrated that after 
fine-tuning, the BERT model was efficiently adjusted to 
fit the task, when compared with original state, the AUC 
of the BERT fine-tune model increased from 0.419 to 
0.868.

(4)F1-score =
2

1/precision+ 1/recall

Table 6  Training Time and Hyperparameters in TLOS

Token length Train epochs Batch size Optimizer Learning rate Training time 
per epoch (Min)

128 10 16 Adam 2e-5 12±0.24

256 10 16 Adam 2e-5 23±0.70

328 10 16 Adam 2e-5 31±0.47

468 10 16 Adam 2e-5 39±1.21

512 10 16 Adam 2e-5 43±0.62
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Experiment 3: Evaluation of BERT Variants models 
with fine‑tuning
To evaluate the benefits of using novel BERT-variant 
models in Chinese radiology reports classification, we 
compared the results of the four models after fine-tuning, 
the ROC curve and AUC values are shown in Figure 8 and 
the metrics are shown in Table 7. As a result, the Mengzi-
model yielded the best AUC of 0.878 and F1-score of 
0.764. Meanwhile, Roberta and BERT-wwm-ext achieved 

a relatively equal score compared to the BERT model. In 
general, the results are promising but not supportive to 
demonstrate a comprehensive improvement.

Experiment 4: token length optimizing strategy (TLOS) 
based on max sequence length
As a result, the BERT model with full sequence length 
(512) achieved the highest AUC value and F1-score but 
also cost the longest training time-43 minutes per epoch. 

Table 7  Comparison of model performance metrics

The highest index is highlighted in bold

Embedding Classifier Accuracy Precision Recall AUC​ F1-score

Word2Vec CNN 0.729 0.744 0.729 0.767 0.733

MLP 0.644 0.643 0.644 0.711 0.644

Bi-LSTM 0.737 0.740 0.737 0.677 0.738

Bi-LSTM-CNN 0.728 0.729 0.728 0.692 0.728

BERT CNN 0.770 0.788 0.777 0.908 0.781

MLP 0.719 0.714 0.719 0.874 0.712

Bi-LSTM 0.777 0.792 0.780 0.888 0.774

Bi-LSTM-CNN 0.698 0.696 0.698 0.861 0.690

Fine-tune 0.760 0.761 0.759 0.868 0.760

IDPT 0.842 0.843 0.842 0.948 0.841
BERT-wmm-ext Fine-tune 0.756 0.756 0.756 0.883 0.754

Mengzi Fine-tune 0.751 0.751 0.751 0.846 0.750

Roberta Fine-tune 0.767 0.767 0.767 0.878 0.764

Fig. 5  ROC curve and AUC values of BERT fine-tune and deep learning models. FPR:False Prediction Rate; TPR: True Prediction Rate.
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However, we noticed that the second highest score was 
yielded for the shortest sequence length (i.e., 128-token 
group), with a relatively equal AUC score of 0.868 (ver-
sus 0.878 in the 512-token group); also in addition, the 
F1-score in the 128-token group was 0.736 compared 
with 0.760 in the 512-token group. However, the accu-
racy declined when the sequence length increased from 
128 to 468, with the lowest score in the 468-token group. 
The metrics are shown in Table 8, the Training Time and 
Hyperparameters in TLOS are descripted in Table 6, the 
ROC curve and AUC values are shown in Figure 9, and 
the relationship between accuracy and token length is 
shown by a dot plot in Figure 10.

Discussion
Radiology reports are an essential component of big med-
ical data. Previous studies have fully demonstrated the 
feasibility of extracting evidence from radiology reports 
to assist clinical diagnosis and prognosis and promote 
automatic communication between physicians, radiolo-
gists and patients[37,39,42].However, the full potential 
of NLP remains to be further discovered, whereas deep 
learning-based algorithms have nearly revolutionized 
the paradigm of medical imaging. Radiology reports are 
primarily intended to provide information to assist with 

diagnosis; this information must be interpreted by physi-
cians before being transmitted to patients. However, this 
may not be guaranteed because of the busy schedules of 
physicians and lack of expertise who are knowledgeable 
about tinnitus diagnosis and treatment, which can nega-
tively affect doctor-patient interactions and potentially 
adversely impact patient outcomes[51]. In addition, there 
is still controversy regarding the appropriate imaging of 
tinnitus[52]. Despite the consensus declaration of multi-
ple medical societies[1,4,44], large-scale real-world evi-
dence for quantifying the effectiveness of imaging results 
is urgently needed to justify their opinions. Therefore, it 
is necessary to promote the research into the application 
of NLP-based technology to tinnitus radiology reports.

The language representation method is one of the high-
lights of NLP studies. Recent NLP studies in actionable 
radiology reports include two types of approaches: (1) 
rule/pattern-based framework, and (2) deep learning/
BERT-based framework. Many studies that have used 
the former technique report promising results with pre-
defined patterns while having poor generalization ability 
in other tasks. Meanwhile, BERT-based approaches have 
gradually performed well with more skillful fine-tuning 
and pre-training strategies. However, the studies focusing 
on Chinese radiology reports are rare.

Fig. 6  ROC curve and AUC values of BERT combined with deep learning models. FPR:False Prediction Rate; TPR: True Prediction Rate.
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From the same starting point, Aaron et  al. reported a 
machine learning-based classification of temporal bone 
imaging reports for the identification of inner/middle/
outer and mastoid abnormalities[53]. Although this 
method has achieved good results, it fails to classify the 
abnormal patients with clinical significance. In contrast 
to previous studies that use BERT to classify actionable 
radiology reports with term-specific strategy or covering 
multiple pathological characteristics, our study has three 
novelties: (1) a framework of fine-grained labeling strat-
egy to improve practical value in clinical scenarios, (2) 
the utilization of a relatively large disease-specific corpus 
in-domain pre-training strategy to improve the model 
performance; and (3) the feasibility of using shorter 
sequence length to accelerate model building while main-
taining its performance. These innovations may con-
tribute to further use of BERT in Chinese medical text 
analysis through NLP technology.

In the first experiment, we demonstrated the benefit 
of using BERT compared to other deep learning models 
including Bi-LSTM, CNN and hybrid Bi-LSTM-CNN. 
Although the results did not show large difference in 
F1-score (BERT:0.760, CNN: 0.733), BERT fine-tuning 
achieved a higher AUC value of 0.866(CNN:0.767). In 
experiment 2, we further used transfer learning in BERT 

by pre-training an in-domain corpus that elevated the 
F1-score (BERT: 0.760 versus BERT-IDPT: 0.841) and 
AUC (BERT: 0.868 versus BERT-IDPT:0.948); this indi-
cated competitive performance in the classification task.

Pre-training is an important technique in NLP field, 
this approach has recently attracted increasing attention, 
especially in healthcare related fields. For instance, Zhang 
et al. [41] designed and evaluated the feasibility of using 
pre-training models to extract key information from 
Chinese radiology reports fort lung cancer staging, the 
model achieved an F1 of 85.96%,while our study achieved 
an F1 of 84.10%. More recently, Nakamura et  al. [39] 
applied BERT without IDPT to classify actionable Japa-
nese radiology reports, and attempted to predict a posi-
tive/negative “actionable tag”, the results seem promising 
with highest AUC of 0.95. In comparison with previous 
studies on radiology report classification, the labeling 
methods applied in this study were more complex, which 
require both physicians’ clinical experience and priori 
anatomic knowledge of radiology. Moreover, we utilized 
IDPT to the improve the BERT model with domain spe-
cific knowledge, which has reported to be state-of-the-art 
performance.

Finally, we define this study as customized research 
with practical purpose, considering that the large 

Fig. 7  ROC curve and AUC values of BERT original, BERT-finetune and BERT-IDPT model.FPR:False Prediction Rate; TPR: True Prediction Rate.
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computational demand of BERT in long sentence 
processing may not be fully satisfied under common 
deployment situations. Based on the authors’ working 
experience as radiologists, we propose a max sequence 
token adaptation strategy to assess the performance 
with partial embedding. The results showed that the 
128-token embedding achieved a relatively equal per-
formance compared with whole sentence embedding 
(F1-score of 0.736 in 128 tokens versus 0.760 in 512 
tokens, AUC of 0.866 in 128 tokens versus 0.868 in 
512 tokens). This result may be partially explained by 
the tacit occupational habit of radiologists to record 
the most emergent finding in an individual paragraph 
before normal findings.

Lastly, this study has several limitations that need to 
be discussed. First, although the data size of this study 
(5864 reports for training, 3873 clinical cases and 1431 
radiology reports for in domain pre-training) is rela-
tively large compared to related studies (presented in 
Table 1), the bias should be considered as it is a single-
center study. More data from multiple centers and bias 
correction may enable more efficient transfer learning 
of BERT to yield promising results in real world sce-
narios, which we will pursue in the near future. Second, 
we developed and evaluated the BERT-based frame-
work to identify actionable radiology reports from 
temporal bone imaging. However, the generalizability 
of this model to other types of radiology reports, such 

Fig. 8  ROC curve and AUC values of BERT and Variant models. FPR:False Prediction Rate; TPR: True Prediction Rate.

Table 8  Comparison of BERT finetune with different max sequence lengths

Model Max sequence length Accuracy Precision Recall AUC​ F1-score

BERT fine-tune 128 0.741 0.738 0.741 0.866 0.736

256 0.71 0.707 0.71 0.843 0.708

328 0.616 0.627 0.616 0.797 0.601

468 0.551 0.557 0.551 0.759 0.546

512 0.760 0.761 0.759 0.868 0.760
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Fig. 9  ROC curve and AUC values of the BERT model using different max sequence lengths. FPR:False Prediction Rate; TPR: True Prediction Rate.

Fig. 10  Comparison of accuracy in the BERT model using different max sequence lengths
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as head CT, MRI, and so on needs to be further evalu-
ated with more fine-tuning strategies. Furthermore, it 
is worth noting that our proposed framework is a semi-
automated pipeline that requires no further remod-
eling of the base architecture. In this regard, physicians 
with clear purpose of research demand should ben-
efit by merely focusing on the labeling criteria. Third, 
the hyperparameters of this model, such as batch size, 
training epoch or learning rate are limited by comput-
ing resources. To pre-train a wider range of data and 
realize more comprehensive results, a more advanced 
operating environment would be necessary. Some 
examples could be ClinicalBERT, which was trained 
by 2,000,000 clinical notes from the MIMIC-III data-
base and BioBERT that was trained using all PubMed 
publications.

Conclusion
In this study, we proposed a BERT based framework 
using an in domain pretraining technique to classify 
actionable radiology reports in tinnitus patients. The 
experimental results show that our model outperforms 
the benchmark deep learning base models, BERT-base 
model and BERT variants. Additionally, we proposed 
a max-sequence-length adaption method for process-
ing long text Chinese radiology reports. This study may 
promote the using of BERT in clinical decision support 
and academic research.
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