Skip to main content
. 2022 Jul 30;22:200. doi: 10.1186/s12911-022-01946-y

Table 7.

Comparison of model performance metrics

Embedding Classifier Accuracy Precision Recall AUC F1-score
Word2Vec CNN 0.729 0.744 0.729 0.767 0.733
MLP 0.644 0.643 0.644 0.711 0.644
Bi-LSTM 0.737 0.740 0.737 0.677 0.738
Bi-LSTM-CNN 0.728 0.729 0.728 0.692 0.728
BERT CNN 0.770 0.788 0.777 0.908 0.781
MLP 0.719 0.714 0.719 0.874 0.712
Bi-LSTM 0.777 0.792 0.780 0.888 0.774
Bi-LSTM-CNN 0.698 0.696 0.698 0.861 0.690
Fine-tune 0.760 0.761 0.759 0.868 0.760
IDPT 0.842 0.843 0.842 0.948 0.841
BERT-wmm-ext Fine-tune 0.756 0.756 0.756 0.883 0.754
Mengzi Fine-tune 0.751 0.751 0.751 0.846 0.750
Roberta Fine-tune 0.767 0.767 0.767 0.878 0.764

The highest index is highlighted in bold