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Abstract 

Background:  Next-generation sequencing provides comprehensive information about individuals’ genetic makeup 
and is commonplace in precision oncology practice. Due to the heterogeneity of individual patient’s disease condi-
tions and treatment journeys, not all targeted therapies were initiated despite actionable mutations. To better under-
stand and support the clinical decision-making process in precision oncology, there is a need to examine real-world 
associations between patients’ genetic information and treatment choices.

Methods:  To fill the gap of insufficient use of real-world data (RWD) in electronic health records (EHRs), we generated 
a single Resource Description Framework (RDF) resource, called PO2RDF (precision oncology to RDF), by integrating 
information regarding genes, variants, diseases, and drugs from genetic reports and EHRs.

Results:  There are a total 2,309,014 triples contained in the PO2RDF. Among them, 32,815 triples are related to 
Gene, 34,695 triples are related to Variant, 8,787 triples are related to Disease, 26,154 triples are related to Drug. We 
performed two use case analyses to demonstrate the usability of the PO2RDF: (1) we examined real-world associa-
tions between EGFR mutations and targeted therapies to confirm existing knowledge and detect off-label use. (2) We 
examined differences in prognosis for lung cancer patients with/without TP53 mutations.

Conclusions:  In conclusion, our work proposed to use RDF to organize and distribute clinical RWD that is otherwise 
inaccessible externally. Our work serves as a pilot study that will lead to new clinical applications and could ultimately 
stimulate progress in the field of precision oncology.
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Background
Advancement in next-generation sequencing technolo-
gies and lowered testing costs have contributed to a 
much wider embracement of Precision Oncology [1] 
in oncology clinical practice. The potential of Precision 

Oncology is to enable oncologist practitioners to make 
better clinical decisions by incorporating individual 
cancer patients’ genomic information and clinical char-
acteristics. The anticipation of Precision Oncology is to 
improve the selection of targeted therapies, avoid side 
effects from ineffective or toxic therapies, and therefore 
reduce healthcare costs while improving patient out-
comes [2–5].

With increasing needs for Precision Oncology knowl-
edge and evidence, specialized knowledgebases such 
as OncoKB [6], CIViC [7] and other more general 
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pharmacogenomics or Precision Medicine knowledge-
bases include PharmGKB [8] and ClinVar [9] were estab-
lished to curate comprehensive scientific evidence on 
genes, mutations, drugs, their combined effects on dis-
eases or phenotypes. OncoKB annotates the oncogenic 
effects and clinical significance of somatic variants [6]. To 
date, it has curated 5293 unique mutations in 628 cancer-
associated genes and 54 tumor types with 92 associated 
treatment options. Levels of evidence were evaluated 
based on evidence sources that ranged from US Food 
and Drug Administration (FDA) labeling, National Com-
prehensive Cancer Network guidelines, disease-focused 
expert group recommendations, and scientific literature 
[6]. OncoKB provides 300 mutation-treatment associa-
tions that were considered actionable. CIViC is also an 
expert-curated knowledgebase for interpretation of clini-
cal relevance of both inherited and somatic variants in 
tumors [7]. To date, CIViC contains 3530 curated inter-
pretations of clinical relevance for 3075 variants affect-
ing 437 genes among which 2250 are treatment-related. 
The interpretations were curated from published litera-
ture, primarily over the last five years. Each interpreta-
tion was associated with one or two evidence records. 
While knowledgebases attempt to generate and evalu-
ate evidence based on literature, it is hard to general-
ize individual findings from the literature. For example, 
even though CIViC curated 2250 are treatment-related 
evidence, only 16 assertions (knowledge generated from 
available evidence) regarding 9 genes and 13 mutations 
were confirmed and published.

Due to the heterogeneity of the Precision Oncology 
patient cohort, sample sizes for patients in the  Preci-
sion Oncology literature are often small, and patient 
characteristics are unique. Therefore, it’s especially dif-
ficult to conduct large-scale clinical trial research or 
synthesize evidence into knowledge based on different 
Precision Oncology studies. In a real-world setting, not 
all targeted therapies are initiated despite the existence 
of actionable mutations. With the increasing accessibil-
ity of digital real-world data (RWD), using RWD to gen-
erate real-world evidence (RWE) can be an alternative, 
low-cost option to bridge the evidentiary gap between 
clinical research and practice. RWD is defined as data 
that is routinely generated or collected in the course of 
health care delivery [10]. Under the twenty-first century 
Cures Act, the FDA developed a program to evaluate the 
use of RWE to support approval of new indications for 
approved drugs or to satisfy long-term drug safety sur-
veillance [11]. However, there are challenges to the effec-
tive utilization of RWD. One of the challenges includes a 
limited number of patients with a complete set of clini-
cal characteristics within one institution. Therefore, it is 
desirable to increase the interoperability of RWD so that 

data can be integrated across multiple institutions. Large-
scale consortiums such as The Cancer Genome Atlas 
(TCGA) [12] and Genomics Evidence Neoplasia Infor-
mation Exchange (GENIE) [13] aim to create central-
ized databases to address this issue. Another approach 
to enhance interoperability is by using Wide Web Con-
sortium (W3C) technologies, which provide a set of 
widely established standards [14]. The Resource Descrip-
tion Framework (RDF) is a recent W3C-recommended 
semantic web tool designed to standardize the definition 
and use of metadata [15]. It provides a data model that 
can be extended to address sophisticated ontology rep-
resentation techniques [15]. In this paper, we describe 
our work that focused on increasing the interoperabil-
ity of RWD by proposing a novel framework to capture 
RWD and then represent it using RDF. Based on RWD 
collected from an institutional oncology cohort, we gen-
erated a PO2RDF that can potentially be used for down-
stream analysis e.g., drug response monitoring, adverse 
event surveillance. We demonstrated two potential use 
cases of PO2RDF: (1) an examination of real-world asso-
ciations between EGFR mutation and the prescription 
of targeted therapies. (2) An examination of differences 
in prognosis for lung cancer patients with/without TP53 
mutations.

Methods
In this study, we generated an integrative and standard-
ized data resource for RWD of Precision Oncology via 
multiple steps, (1) we semi-automatically collected RWD 
that belongs to key elements (e.g., gene, variant, dis-
ease, drug) in a previously proposed precision oncology 
knowledge model from EHRs; (2) we normalized the col-
lected data using for further data integration; (3) we inte-
grated collected data using a schema by Genetic Testing 
Ontology (GTO)[16], which captures the semantic mean-
ing and semantic relations in the collected data; and (4) 
we generated PO2RDF using D2RQ[17]. The workflow 
performed in this study is shown in Fig. 1.

Oncology cohort
Our cohort includes a total of 2,593 patients with Foun-
dation Medicine tumor mutation tests (FoundationOne 
CDx and FoundationOne Heme). Foundation Medicine 
offers three different types of tumor panels and cov-
ers a range of 709 genes. All patients in the cohort have 
been granted research authorization and are aged above 
18. This research project was approved by the Mayo 
Clinic Institutional Review Board (IRB# 13-009317) and 
was following the ethical standards of the responsible 
committee on human experimentation.
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Data retrieval
Based on the institutional oncology cohort, we semi-
automatically collected RWD from genetic reports and 
electronic health records (EHRs). Patient IDs were linked 
to integrate data in genetic reports and EHRs by com-
paring (1) patient clinic number, (2) first and last name, 
and (3) date of birth. According to our previously pro-
posed precision oncology knowledge model [18], three 
types of data elements were extracted: “genetic infor-
mation” (“gene” + “variant”), “disease” and “drug”. Data 
sources that were used to retrieve three data elements 
are listed in Table  1. While “genetic information” was 
extracted from genetic reports only, “disease” and “drug” 
were retrieved from multiple sources, including genetic 
reports, a unified data platform (UDP), a structured clini-
cal data warehouse of Mayo Clinic [19], and unstructured 
clinical notes. “Disease” was from both genetic reports 
and UDP. We extracted only cancer-related diagnosis 
information. When there is discordance between genetic 
report and UDP, we resort to genetic report as our gold 
standard. We combined “drug” information from UDP 
and an  unstructured database. In this way, we assumed 
we had the most complete drug profile for each patient. 
For the extraction of “drug” concepts from unstructured 
clinical notes, we leveraged a dictionary from HemOnc.
org [20] that curated comprehensive oncology medica-
tion knowledge. Sentences in patients’ clinical notes that 
mentioned drug concepts were extracted using a natu-
ral language processing (NLP) system called MedTagger 

[21]. MedTagger enables a series of NLP processes, 
including dictionary-based concept indexing, keyword 
mention lookup, and regular expression matching [22]. 
Both the drug brand name and chemical name were 
looked up and were normalized to chemical names.

Data normalization
To facilitate data manipulation and integration, we per-
formed data normalization on RWD extracted from 
multiple sources. In this study, we mapped “gene”, “vari-
ant”, “disease” and “drug” concepts to the Unified Medi-
cal Language System (UMLS) [23] via the batch process 
function offered by the MetaMap API[24]. The mapping 
results generated by the MetaMap include the UMLS 
preferred terms along with mapping scores. For variants 
that cannot be mapped to UMLS concepts, we manually 
normalized variant names to HGVS-nomenclature [25].

Data integration
We leveraged schema from a previously developed 
ontology – GTO to integrated the collected RWD. GTO 
defined seven primary classes, namely ‘Diseases’, ‘Gene’, 
‘Variant’, ‘Test’, ‘Phenotype’, ‘Risk’ and ‘Drug’ and the rela-
tionships among them [16]. We utilized four of GTO’s 
primary classes, namely ‘Diseases’, ‘Gene’, ‘Variant’ and 
‘Drug’ and selected object properties include ‘Associ-
atedWithGene’ (Domain: ‘Disease’ and Range: ‘Gene’), 
‘MayTreatedBy’ (Domain: ‘Disease’ and Range: ‘Drug’), 
‘HasContraindicationWith’ (Domain: ‘Drug’ and Range: 
‘Disease’), and  ‘AssociatedWithVariant’ (Domain: ‘Gene’ 
and Range: ‘Variant’).

We inherited GTO’s data properties, especially iden-
tifiers that link to external knowledgebases such as 
Online Mendelian Inheritance in Man (OMIM) [26] 
and National Drug File Reference Terminology (NDF-
RT) [27]. In addition, we added additional identifiers in 
the data property that link to other precision oncology 

Fig. 1  Workflow of RDF representation of real-world precision oncology data. (1) Data Retrieval: ‘patient’, ‘gene’, ‘variant’, ‘drug’, ‘disease’ information 
were retrieved from multiple data sources. (2) Data Normalization: raw data retrieved from multiple data sources were mapped to standardized 
terminologies including UMLS, etc. (3) data was integrated using a schema by Genetic Testing Ontology. 4) PO2RDF was generated using D2RQ

Table 1  Data retrieval sources

Gene Variant Disease Drug

Genetic reports Y Y Y

UDP Y Y

Clinical notes Y
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knowledgebases, such as CIViC_Entrez_ID for identi-
fying ‘Gene’ and CIViC_DOID for identifying ‘Disease’ 
in CIViC. We also incorporated drugs’ brand names 
(Brand_Name) and categories (Drug_Category) accord-
ing to HemOnc as additional data properties. We also 
created a new data class ‘Patient’ to our data schema. The 
defined data properties for each class, along with some 
explanation are shown in Table 2.

‘Disease’ and ‘Gene’ relationships were considered valid 
for diagnosis up to one year before genetic tests. ‘Drug 
and ‘Gene’ associations (object properties) were con-
sidered valid for drug prescriptions up to one year after 
genetic tests and include targeted therapies only. ‘Dis-
ease’ and ‘Drug’ associations (object properties) were 
considered valid for drug prescriptions after disease diag-
nosis. For an individual patient, we only count each ‘Dis-
ease’ and ‘Drug’ associations once.

PO2RDF generation
For the PO2RDF generation, we applied D2RQ, which 
transforms data in the relational database to RDF. The 
mapping tool of D2RQ creates a default mapping file by 

analyzing the schema of an existing database. To map 
our data  to the GTO schema, we manually customized 
the mapping file accordingly. The data is then published 
in RDF through the D2RQ server and can be queried via 
a D2RQ SPARQL endpoint. We also took an RDF dump 
from D2RQ into Virtuoso [28] to run federated que-
ries. Figure 2 shows detailed RDF representation of two 
patients. “Variant” elements were not represented due to 
space limit.

Use cases
To demonstrate the usability of PO2RDF, we retrieved 
triples involving ‘Gene’ and ‘Drug’ from PO2RDF. We 
then performed association rule analysis [29] to evalu-
ate the significance of real-world associations between 
mutated genes and selected oncology drugs. First, we 
examined drugs associated with the gene “EGFR”, which 
is most commonly identified and targeted in lung can-
cer [30], colorectal cancer [31, 32] and melanoma [33] 
patients. EGFR inhibitors were initially approved to treat 
non-small cell lung cancer (NSCLC) and appear to be 
most effective in patients with adenocarcinoma histology 

Table 2  Description of data properties and related object properties

Class Data property Related object property

Patient Patient_ID, Date_of_Birth, Race, Ethnicity, Sex, Death HasMutGene, HasVariant, HasDisease, TreatedBy

Gene Gene_Name, UMLS_CUI, OMIM_ID, CIViC_Gene_ID, OncoKB_Gene_ID, 
PharmGKB_Gene_ID

AssociatedWithGene, AssociatedWithVariant, MayTargetedBy

Variant Var_Name, UMLS_CUI, ClinVar_ID, dbSNP_ID, CIViC_Var_ID, OncoKB_Var_ID, AssociatedWithVariant

Disease Disease_Name, UMLS_CUI, OMIM_ID, CIViC_DOID, OncoKB_Disease_ID, 
PharmGKB_Disease_ID, Stage_At_Diagnosis

AssociatedWithGene, MayTreatedBy, HasContraindicationWith

Drug Drug_Name, Brand_Name, Drug_Category, UMLS_CUI, NUI (NDF-RT Unique 
Identifier), CIViC_Drug_ID, OncoKB_Drug_ID, PharmGKB_Drug_ID

MayTreatedBy, HasContraindicationWith, MayTargetedBy

Fig. 2  Example of RDF Representation of Two Patients’ Data (Purple square: ‘Patient’, Red circle: ‘Gene’, Orange circle: ‘Drug’, Blue circle: ‘Disease’). 
Patient 1 was diagnosed as lung adenocarcinoma, had variants in EGFR, TP53, CHEK2 gene and was prescribed Osimertinib after receiving 
the genetic report. Patient 2 was diagnosed as melanoma, had variants in EGFR, TP53, DNMT3A, CDKN2A/B, RAF1 gene and was prescribed 
Pembrolizumab after receiving the genetic report
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[30]. Even though current FDA drug approved indica-
tions for EGRF inhibitors are mostly for NSCLC, they 
are also used off-label [31–33] for other cancers in real-
world settings. Therefore, the results from our associa-
tion analysis could potentially provide RWE to clinicians 
and the FDA regarding the real-world utility of targeted 
therapies—especially any deviations from guidelines or 
drug labels. Second, we examined differences in progno-
sis for lung cancer patients with/without TP53 mutations 
at different stages using survival analysis. The index date 
was the disease diagnosis date retrieved from UDP. Most 
mutations in TP53 lead to the uncontrolled cell prolifera-
tion and inability to trigger apoptosis in cells [34]. Across 
multiple cancer types, individuals with TP53-mutated 
cancers have consistently been shown to have a lower 
response rate to conventional chemotherapy and shorter 
survival [35]. Therefore, the results from our survival 
analysis should align with currently agreed knowledge 
to demonstrate the utility of PO2RDF for future survival 
analysis.

We calculated the confidence of each {“Drug”, “EGFR”} 
transaction (Eq.  1). The support of X with respect to a 
group of transactions T is defined as the proportion of 
transactions t in the dataset which contains the item X 
(Eq.  2). Each individual patient was considered as one 
transaction (t). Our cohort of 2593 patients were consid-
ered as the total transaction set T.

Result
Oncology cohort
We have constructed an oncology cohort of 2593 
(authorized, age ≥ 18) oncology patients with clinically 
provided genetic reports. Date of report receipt range 
from January 2016 to June 2020. Only treatment initi-
ated after report receipt date was included in our analy-
sis. Shown as Fig.  3, this cohort consists of 10 primary 
types of tumors and is representative of the diversity of 
patients seen at a dedicated cancer center. As a note, 
unknown primary cancer cases encompass 10% of the 
cohort, which indicates the complexity of cases received 
at Mayo Clinic. In UDP, we were able to retrieve diagno-
sis codes of 1193 (46%) patients, among which we were 
able to identify cancer related diagnosis for 658 patients 
and 176 received their primary cancer diagnosis at Mayo. 
This again indicate that heterogeneity of patient popula-
tion treated at Mayo Clinic—a significant proportion of 

(1)confidence (X, Y) =
support (X ∪ Y)

support (X)

(2)support (X) =
|{t ∈ T;X ∈ t}|

|T|

patients might be referral patients. Thus, combining mul-
tiple clinical data sources, especially unstructured clini-
cal notes is crucial to comprehensive RWD capturing. 
Patient demographic distribution is shown Table 3.

Data normalization and integration
To represent PO2RDF in a normal form for further data 
integration, we mapped individual terms in four classes 
to UMLS. Table  3 lists the summary of concepts in all 
four classes. We randomly selected one hundred map-
ping results for each type of term and manually reviewed 
the mapping results. According to our evaluations, 
there are no incorrect mappings for one hundred ‘Drug’ 
and ‘Variant’ terms, but there is one incorrect mapping 
among one hundred ‘Gene’ terms caused by ambiguity 
with another disease abbreviation term and two incorrect 
mappings among one hundred ‘Disease’ terms caused 
by substring matching. Despite that ‘Variant’ mappings 
have been largely accurate, it suffers from huge missing-
ness mainly due to variations in nomenclature between 
genetic report and UMLS terminology sources. Table  4 
lists statistical overview for the final data.

PO2RDF generation
There are total 2,309,014 triples contained in the 
PO2RDF. Among them 32,815 triples are related to 
Gene, 34,695 triples are related to Variant, 8787 triples 
are related to Disease, 26,154 triples are related to Drug. 
Table 5 include an example SPARQL query and retrieved 
pertinent information centered on “EGFR”, shown in the 
“SPARQL Query” column. Specifically, we are searching 
for related diseases and available targeted drugs, shown 
in the “Results” column in the Table 5 (for ‘Disease’ and 
‘Drug’, only listed top five returned values). An example 
of data representation of precision oncology evidence 
from real-world data can be found in Fig. 4. “Variant” ele-
ments were not represented due to space limit. We can 
see from Fig. 4 that drugs most associated with “lung can-
cer” are “carboplatin”, “osimertinib”, “pemetrexed”, “gefi-
tinib”, “afatinib”, “erlotinib” and “crizotinib. Genes most 
associated with “lung cancer” include “TP53”, “EGFR”, 
“CDKN2A/B” and “MET”. However, a graph visualization 
mask it hard to see a tertiary association e.g., drugs asso-
ciation with lung cancer with EGFR mutations. Thus, an 
RDF structure enables more efficient query and visualiza-
tion of complicated graph database.

Use case
The result from association analysis is shown in Fig. 5. 
The top ten EGFR-associated (measured by “con-
fidence”) drugs were listed and they are “gefitinib”, 
“osimertinib”, “afatinib”, “erlotinib”, “pemetrexed”, “cri-
zotinib”, “cetuximab”, “atezolizumab”, “carboplatin”, and 
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“temozolomide” [36–43]. The top four drugs are all spe-
cific EGFR tyrosine kinase inhibitors (TKIs) and they 
all have a high “confidence” value of association. Impor-
tantly, association rule analysis identified all the EGFR 
TKIs that are in clinical use in the US. “Confidence” 
value for “pemetrexed” is significantly lower than the 
top four, reflecting that “pemetrexed” is not a targeted 
therapy for EGFR mutated cancers. “Pemetrexed” is a 

Fig. 3  Distribution of Major Cancer Type in the Institutional Oncology Cohort (N = 2593)

Table 3  Cohort demographic distribution

Characteristic Cohort (n = 2593)

Average age at initial diagnosis at Mayo Clinic 58

Average age at first test 62

Sex (% female) 51.4%

Race (% white) 88.7%

Ethnicity (% hispanic) 3.5%

Table 4  Statistical results for data collection

Total number of occurrences Total number of UMLS-identifiable 
occurrences

Unique concepts Unique UMLS-
identifiable 
concepts

Gene 17,100 17,018 (99.5%) 417 415

Variant 16,196 3,158 (19.5%) 5497 285

Disease 109,030 107,106 (98.2%) 8449 8102

Drug 249,995 249,853 (99.9%) 389 368
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cytotoxic chemotherapy drug that can be used to treat 
mesothelioma and non-small cell lung cancer. “Cri-
zotinib” is also not an  EGFR-targeted therapy. Rather, 
it is effective in NSCLC driven by activating genomic 
alterations in “MET”, “ALK” and “ROS1”. Interestingly, 
although the confidence value for crizotinib and pem-
etrexed is lower than for specific EGFR TKIs, it is still 
higher than for carboplatin. This observation reflects 
the use of crizotinib in combination with EGFR TKIs 
to treat patients with mutant EGFR positive lung can-
cer that have developed resistance to EGFR inhibition 

by acquiring a high MET gene copy number. Addition-
ally, pemetrexed is approved for patients with non-
squamous but not for squamous NSCLC, a population 
enriched in EGFR mutations compared to the popula-
tion of cancer patients who qualify for treatment with 
carboplatin. “Cetuximab” is an EGFR inhibitory anti-
body but it does not show high specificity to EGFR 
mutations [44]. Overall, the order of confidence val-
ues mirrors the prevalence of EGFR mutations in the 
groups of patients with NSCLC who receive the corre-
sponding drugs. Similarly, association analysis for ALK 

Table 5  SPARQL query to extract EGFR related information

SPARQL query Results

SELECT distinct ?Gene ?property ?hasValue
WHERE {
?Gene a po2rdf:Gene. FILTER regex(str(?Gene), "EGFR") ?Gene ?property 
?hasValue
}

Gene_Name: EGFR. UMLS_CUI: C1414313. OMIM_ID: 131550. CIViC_
Gene_ID: 1956. OncoKB_Gene_ID: 2. PharmGKB_Gene_ID: PA7360
Disease_Name: 1. Lung cancer, 2. Colorectal cancer, 3. Melanoma, 4. 
Esophagus adenocarcinoma, 5. Glioma
Drugs_Name: 1. Gefitinib, 2. Osimertinib, 3. Afatinib, 4. Erlotinib, 5. 
Dacomitinib
Patient_ID: 3, 15, 21, 44, 65, 73…

Fig. 4  Visualization of RDF Representation of Real-world Associations Among “Gene” (Purple), “Disease” (Green), and “Drug” (Orange) in Precision 
Oncology. Node size represents the degree of each node (unique number of co-occurrence). Edge thickness represents the weight of each edge 
(total counts of co-occurrences)
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shown in Fig. 5b, correctly assigned much higher confi-
dence values for all TKIs with ALK specificity, namely 
crizotinib, lorlatinib, alectinib, brigatinib and ceritinib 
compared to chemotherapy drugs and immune check 
point inhibitors that are prescribed in an ALK agnos-
tic manner. The confidence value for crizotinib is lower 
than for the other ALK TKIs, as crizotinib can also 
be prescribed to patients with NSCLC and activating 
genomic alterations in MET or ROS1.

Results from survival analysis are shown in Fig. 6. It 
is clearly shown in the figure that patients with TP53 
mutations have shorter durations of survivals especially 

for patients at advanced stages (stage III and IV). 
Therefore, the results demonstrate a potential use of 
PO2RDF to answer more clinically relevant questions 
regarding drug effectiveness with the  existence of cer-
tain variants.

Discussion and future work
In this study, we introduced a novel precision oncol-
ogy RDF data resource by integrating heterogeneous 
information about patients from multiple data sources. 
Potential use of PO2RDF has been demonstrated in the 
use case.  For example, SPARQL queries could facilitate 

Fig. 5  Association rule analysis results (confidence) regarding drug—a EGFR and b ALK mutation Associations
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retrieval of comprehensive information regarding genetic 
mutations and treatment choices by searching the 
PO2RDF and other relevant and linked knowledge-
bases. Moreover, with survival available, we could utilize 
PO2RDF to answer more clinically relevant questions 

regarding drug effectiveness with the  existence of cer-
tain variants. Additional data analytics also demonstrated 
the potential to use information in PO2RDF for treat-
ment recommendation given a mutated gene. In addition 
to our demonstrated use case, RDF provides a powerful 

Fig. 6  Survival analysis for lung cancer patients a with or b without TP53 mutation
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framework for integrating external data sources e.g., 
knowledgebases, data from other institutions. Through 
actively feeding new RWD into PO2RDF, PO2RDF can 
also serve as a data foundation for a learning health sys-
tem [45, 46] and can ultimately support the development 
of clinical decision support systems (CDSS) in Precision 
Oncology practices. If adopted by several institutions, 
PO2RDF could serve as a tool to enhance interoper-
ability and promote data sharing among participating 
institutions.

However, there are still challenges in the data nor-
malization phase—even though mapping data in classes 
‘Gene’, ‘Disease’ and ‘Drug’ to UMLS achieved a high 
performance, mapping data in ‘Variant’ suffered from 
low coverage (19.5%). There are two reasons that poten-
tially contribute to the low coverage. (1) In UMLS, vari-
ant terms mainly come from two sources: OMIM and the 
National Cancer Institute (NCI). While SNVs have a 
relatively standardized nomenclature, deletion, inser-
tion, loss, duplication and rearrangement are recorded 
variably in OMIM, NCI and genetic reports. For exam-
ple, the  genetic report variant “CDKN2A deletion exon 
1” will be recorded as “CDKN2A, EXON 1-BETA DEL” 
in OMIM or simply “CDKN2A Gene Deletion” in NCI. 
Therefore, it is difficult to extract through regular expres-
sion without further normalization. In future work, tools 
that normalize variant nomenclature to UMLS can be 
developed to address this unmet need. (2) Both OMIM 
and NCI have limited records of variants. For example, 
most frameshift and splice site mutations are not docu-
mented in them. A great percentage of fusions cannot 
be found or can only be mapped partially: “CD74-ROS1 
fusion” in genetic reports can only be mapped to “ROS1 
Fusion Positive”. Therefore, incorporating more compre-
hensive variant knowledgebases such as ClinVar [9] and 
COSMIC [47] into UMLS is desirable. We also propose 
to use a structured data entry system supported by clini-
cal terminology in a clinical setting for genetic informa-
tion documentation. This could save time for data input, 
encourage documentation of genetic information and 
ensure high quality data capture.

One of the limitations of our PO2RDF network 
is that relationships between ‘drug’, ‘disease’, and 
‘gene’/‘variant’ are only associative. To confirm a causal 
relationship will require additional information to be 
collected from EHRs or other knowledgebases. In the 
future, we plan to incorporate knowledgebase relation-
ships into the RDF so that associative relationships 
mined from EHRs can be further validated. We also 
plan to expand data properties by adding temporal 
information to each data element. With temporal infor-
mation, we will be able to make less biased associa-
tions between data elements and discover any dynamic 

pattern changes in the network that may be reflective 
of disease progression or practice change due to regu-
latory changes. RDF enables a mathematical and com-
putable representation of relationships between data 
elements. Therefore, more downstream analysis can 
be achieved by formatting the  database into an RDF 
structure. With a more complete RDF graph, we can 
apply advanced graph mining [48] technologies such 
as node2vec [49] to discover hidden patterns within 
the PO2RDF network, which could potentially provide 
insights to drug repurposing.

Conclusion
In conclusion, our work proposed to use RDF to organize 
and distribute clinical RWD that is otherwise inaccessible 
externally. Our work serves as a pilot study that will lead 
to new clinical applications and could ultimately stimu-
late progress in the field of precision oncology.
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