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Abstract

BACKGROUND AND AIMS: Acute kidney injury (AKI) has a poor prognosis in cirrhosis. 

Given the variability of creatinine, the prediction of AKI and dialysis by other markers is needed. 

The aim of this study is to determine the role of serum and urine metabolomics in the prediction of 

AKI and dialysis in an inpatient cirrhosis cohort.

APPROACH AND RESULTS: Inpatients with cirrhosis from 11 North American Consortium 

of End-stage Liver Disease centers who provided admission serum/urine when they were AKI 
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and dialysis-free were included. Analysis of covariance adjusted for demographics, infection, 

and cirrhosis severity was performed to identify metabolites that differed among patients (1) 

who developed AKI or not; (2) required dialysis or not; and/pr (3) within AKI subgroups who 

needed dialysis or not. We performed random forest and AUC analyses to identify specific 

metabolite(s) associated with outcomes. Logistic regression with clinical variables with/without 

metabolites was performed. A total of 602 patients gave serum (218 developed AKI, 80 needed 

dialysis) and 435 gave urine (164 developed AKI, 61 needed dialysis). For AKI prediction, 

clinical factor–adjusted AUC was 0.91 for serum and 0.88 for urine. Major metabolites such as 

uremic toxins (2,3-dihydroxy-5-methylthio-4-pentenoic acid [DMTPA], N2N2dimethylguanosine, 

uridine/pseudouridine) and tryptophan/tyrosine metabolites (kynunerate, 8-methoxykyunerate, 

quinolinate) were higher in patients who developed AKI. For dialysis prediction, clinical factor–

adjusted AUC was 0.93 for serum and 0.91 for urine. Similar metabolites as AKI were 

altered here. For dialysis prediction in those with AKI, the AUC was 0.81 and 0.79 for serum/

urine. Lower branched-chain amino-acid (BCAA) metabolites but higher cysteine, tryptophan, 

glutamate, and DMTPA were seen in patients with AKI needing dialysis. Serum/urine metabolites 

were additive to clinical variables for all outcomes.

CONCLUSIONS: Specific admission urinary and serum metabolites were significantly additive 

to clinical variables to predict AKI development and dialysis initiation in inpatients with cirrhosis. 

These observations can potentially facilitate earlier initiation of renoprotective measures.

Acute kidney injury (AKI) is one of the most common complications in hospitalized patients 

with cirrhosis, and the one associated with the highest mortality.(1,2) Its diagnosis is based 

on changes in serum creatinine (sCr).(3) Newer serum and urine biomarkers are being 

developed to aid in the differential diagnosis of AKI that will guide therapy(4); however, 

trying to predict the development of AKI is challenging.(5) Once AKI is established, there 

is often progression to need renal replacement therapy (RRT).(6) Therefore, in patients with 

decompensated cirrhosis, there is an urgent need to find biomarkers that can (1) identify 

susceptibility to AKI and/or (2) predict progression to RRT, so that future studies can 

evaluate prevention or earlier intervention strategies. Studies have shown major changes in 

metabolomic profiles of serum and urine in patients who have established renal insufficiency 

without cirrhosis.(7,8) In patients with cirrhosis, single-center outpatient studies have also 

demonstrated changes in metabolomics in those who died or required liver transplant,(9-11) 

and in multicenter studies in which renal impairment is already established.(12) However, the 

role of metabolomics in the prediction of AKI development and its progression to need RRT 

is unclear from a multicenter perspective.

Our aims were therefore to determine, in hospitalized patients with cirrhosis, whether 

specific urinary and serum metabolites on admission can predict the development of AKI, 

and, in those who develop AKI, to prognosticate progression to need dialysis.

Patients and Methods

Patients were enrolled prospectively in 11 centers of the North American Consortium for 

the Study of End-Stage Liver Disease (NACSELD). They gave samples after informed 

consent. NACSELD consists of North American tertiary care hepatology centers that have 

collected prospective data from patients with cirrhosis hospitalized nonelectively, without 
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HIV infection or prior organ transplants. The study was approved by institutional review 

boards at all sites. Data were entered in a REDCAP database. For this study, we only 

included the subset of hospitalized patients who were (1) without AKI or dialysis on 

admission and (2) who consented to providing serum or urine samples within 12 hours of 

admission. Patients with pre-existing AKI, those on dialysis on admission, and those who 

were unable or unwilling to provide samples were excluded from this substudy. All sites 

were instructed on uniform sample collection practices before study initiation, and samples 

were stored in −80°C freezers until analysis.

Data pertaining to demographics, cirrhosis details, medications, reasons for admission, and 

hospital course were recorded. AKI was defined as an acute increase in sCr of ≥0.3 mg/dL 

within 48 hours or by ≥50% from a stable baseline sCr within 3 months and presumed to 

have developed within the past 7 days when no prior readings are available.(13) Peak AKI 

stage was recorded.

Analyses were performed at Metabolon Inc. (Morrisville, NC) using validated ultrahigh-

performance liquid chromatography–tandem mass spectroscopy (LC/MS-MS). Analysis of 

covariance (ANCOVA) analyses were performed adjusting for age, sex, alcohol-associated 

etiology, admission values of Model for End-Stage Liver Disease (MELD), white blood 

count (WBC), infection, serum sodium, and serum albumin using false discovery rate (FDR) 

adjustment, represented by the q-value, were performed to account for variability related to 

patient-level variables. After log transformation and imputation of missing values, if any, 

with the minimum observed value for each compound, analysis of variance contrasts and 

Welch’s two-sample t-test were used to determine metabolites that were different between 

groups. Then an ANCOVA was performed. An estimate of the FDR was calculated to 

consider the multiple comparisons that normally occur in metabolomic-based studies.(11) 

Instrument variability was determined by calculating the median relative standard deviation 

(RSD) for the internal standards that were added to each sample before injection into the 

mass spectrometers. Overall process variability was determined by calculating the median 

RSD for all endogenous metabolites (i.e., noninstrument standards) present in 100% of 

the Client Matrix samples, which are technical replicates of pooled client samples. Overall 

process variability was determined by calculating the median RSD for all endogenous 

metabolites (i.e., noninstrument standards) present in the technical replicates.

Metabolites that were independently associated with the outcomes of interest (AKI 

development and need for dialysis) on ANCOVA were considered predictive of such 

outcomes. The ANCOVA tables were ranked according to P values, FDRs, and pathways 

found to be consistently involved in protection from or associated with the outcomes were 

then explored deeper for each outcome. Random forest analysis (RFA) was then performed, 

which is a supervised classification technique based on an ensemble of decision trees.(14) 

For a given decision tree, a random subset of the data with identifying true class information 

is selected to build the tree without replacement and sample the same number from each 

group. The in-bag samples are different for each tree. Then after the forest is constructed, 

the predictions are made for the out-of-bag (OOB) samples for each tree. For each tree, 

only a subset of variables is considered as determined by the mtry parameter (which is 

the number of random variables used in each tree “bootstrap sample” or “training set”). 
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The final classification of each sample is determined by computing the class prediction 

frequency (“votes”) for the OOB samples over the whole forest. This method is unbiased, 

as the prediction for each sample is based on trees built from a subset of samples that do 

not include that sample. To determine which metabolites make the largest contribution to the 

classification, a “variable importance” measure called the mean decrease accuracy (MDA) 

was computed. The MDA is determined by randomly permuting a variable, running the 

observed values through the trees, and then reassessing the prediction accuracy. If a variable 

is not important, then this procedure will have little change in the accuracy of the class 

prediction (permuting random noise will give random noise). In contrast, if a variable is 

important to the classification, the prediction accuracy will drop after such a permutation, 

which we record as the MDA. Thus, the RFAs provide an “importance” rank ordering of 

metabolites, and the first 30 for each outcome are displayed. AUCs for all metabolites were 

calculated for the ANCOVA-adjusted models for each category, including those with/without 

admission infection. Then, we compared urinary and serum metabolomics of the patients 

with AKI who required dialysis versus those who did not progress to require dialysis using 

ANCOVA, and RFAs were also performed. Finally, logistic regression models for AKI 

(yes/no) and dialysis (yes/no) were developed for the clinical variables only (age, admission 

values of WBC, Na, albumin, and MELD-Na, and infection) and then clinical models plus 

metabolites significant on RFA. From these models, receiver operator characteristic (ROC) 

curves were created, and the AUCs with 95% CIs were calculated. Finally, the AUC values 

for the clinical variables only and combined models were compared using the nonparametric 

method of DeLong(15) for two or more correlated ROC curves.

Results

OVERALL PATIENT FLOW

We considered a total of 2,403 patients, of whom 105 had AKI on admission and 56 were 

already on dialysis on admission or at home. Of the remaining 2,242 patients, 527 were 

transferred in from another hospital, 623 were approached more than 12 hours following 

admission (as allowed in the NACSELD protocol), and 490 refused to provide serum/urine 

or were unable to provide urine during this time period. Ultimately, 602 patients who fit the 

criteria gave serum and 435 patients who fit the criteria gave urine.

CLINICAL COURSE

Of the 602 patients without AKI on admission who provided serum samples, 218 developed 

AKI 4±2 days following admission, and 80 required dialysis 6±3 days following admission 

(Table 1 and Supporting Fig. S1). Of these 218 patients, 179 or 82% developed ≥ stage 2 

AKI. Patients who developed AKI had similar age, sex, admission spontaneous bacterial 

peritonitis (SBP) prophylaxis, mean arterial pressure (MAP), and serum albumin, but had 

worse cirrhosis severity by MELD scores, higher prevalence of ascites and HE, higher 

rate of admission in the past 6 months, infections as the reason for admission, and higher 

admission WBC, compared with those who did not develop AKI. Admission sCr, MAP, 

statin and nonselective beta-blocker (NSBB) use were similar. Patients with AKI had a 

higher rate of acute-on-chronic liver failure (ACLF) development as defined by NACSELD,
(16) a longer hospital length of stay (LOS), a higher rate of intensive care unit (ICU) 
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admission, and a higher rate of death versus those who did not. Patients who required 

dialysis again had similar demographics, admission SBP prophylaxis, NSBB and statin use, 

and admission WBC compared with patients who did not require dialysis but had a higher 

rate of admission infections, higher admission MELD score and sCr and lower MAP, and 

worse inpatient outcomes (development of ACLF, ICU admissions, LOS, and death).

Of the 435 patients without AKI on admission who provided urine samples, 164 developed 

AKI 4±2 days following admission, and 61 patients required dialysis 6±2 days following 

admission (Table 1 and Fig. 1). As found in serum, most patients with AKI developed 

stage 2 or higher disease (n = 139, 79%). Patients who provided urine samples and who 

developed AKI had similar age, sex, admission SBP prophylaxis, MAP, and serum albumin, 

but had worse cirrhosis severity (admission MELD score and prevalence of ascites and HE), 

and higher rate of admission infections and admission WBC, which resulted in a higher 

percentage of patients who developed ACLF, had a longer hospital LOS, and a higher 

mortality when compared with those who did not develop AKI. When comparing patients 

with AKI who progressed to need for dialysis (n = 61) versus those who did not (n = 

103), once again they had similar demographics, admission serum creatinine, admission SBP 

prophylaxis, NSBB and statin use, and serum albumin, but had a greater infection rate and 

higher admission WBC, worse cirrhosis severity, and worse outcomes (ACLF development, 

ICU admission, LOS, and death). None of the patients were on vasopressors on admission. 

The peak sCr was higher in those with renal outcomes, regardless of the cohort studied.

PREDICTION OF AKI DEVELOPMENT

In the entire group (n = 602 with serum samples and n = 435 with urine samples), 

ANCOVA analysis adjusted for age, gender, alcohol-associated etiology and admission 

WBC, Na, albumin, and MELD score showed multiple metabolites in serum and urine that 

differentiated between those who developed AKI compared with those who did not. These 

metabolites spanned all classes but aromatic and branched chain amino acids (BCAAs), 

urea cycle and dipeptides, and bile acids, along with products of purine and pyrimidine 

metabolism, were major contributors toward this difference. Prediction of AKI development 

had an AUC of 0.91 based on serum metabolites and 0.88 based on urine metabolites 

adjusted for the clinical variables using ANCOVA. The top metabolites that were relevant 

in the MDA analysis are shown in Fig. 2. The OOB values for AKI prediction was 0.3 for 

both serum and urine, implying that the error rate of these metabolites in predicting AKI 

was 30%. Of these, the direction of metabolites in those who developed outcomes versus 

those who did not are given in Table 2. Several known uremic toxins or metabolites that are 

known to be increased in patients without cirrhosis with renal insufficiency were higher in 

our study cohort who developed AKI, and in all of them increased before sCr increased, and 

the clinical diagnosis of AKI was established. In addition, potentially beneficial metabolites 

such as homoarginine and BCAA were reduced. We also found changes in lipid moieties 

(bile acids and phospholipids) that were perturbed in patients with AKI. Representative 

metabolite least squares (LS) mean comparisons are shown in Fig. 2 and Supporting Tables 

S1 and S2. Infected/uninfected patients were analyzed separately using all metabolites for 

AKI prediction. For serum, the AUC in the uninfected group was 0.81 and in the infected 

group was 0.82, while in urine the AUC for the uninfected patients was 0.76 and in the 
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infected patients it was 0.79. Due to the relatively low number of people who required 

dialysis either in the entire group or within AKI subgroups, this calculation was not possible 

for that outcome by splitting the data set.

PREDICTION OF DIALYSIS INITIATION IN THE ENTIRE GROUP

Among all patients included in the study (n = 602 serum and n = 435 urine), there were 

metabolites that differentiated patients who required dialysis versus those who did not. 

Prediction of dialysis requirement had an AUC of 0.93 for serum and 0.91 for urine 

metabolites, which was adjusted for clinical variables with ANCOVA. The OOB values for 

RFA for dialysis requirement were 0.2 for both serum and urine, meaning that the error rate 

for dialysis prediction was 20%. As with the results for AKI development, these metabolites 

were from amino acid (cysteine, tryptophan, tyrosine), purine/pyrimidine metabolism, and 

uremic toxins whose relative changes in LS means and direction of change are shown in Fig. 

3 and Supporting Tables S3 and S4). Similar changes in serum and urine to those seen in 

AKI prediction were also identified on RFA and ANCOVA analyses.

PREDICTION OF DIALYSIS INITIATION IN AKI SUBGROUP

In the patients who developed AKI, the analysis of differences in metabolites between those 

who did or did not require dialysis was performed. The OOB values for both serum and 

urine AKI with random forest development was 0.3. The AUC for urine metabolites to 

predict who required dialysis was 0.79, whereas it was 0.81 for serum metabolites. The 

major changes in direction of relevant metabolites between these groups are given in Table 

3, and representative metabolite LS mean changes are displayed in Fig. 4 and Supporting 

Tables S5 and S6.

COMPARISON WITH CLINICAL MODEL

As indicated in Table 4, the addition of metabolites different on RFA significantly increased 

the AUC of outcomes prediction of AKI and dialysis in the entire group and of dialysis in 

the group with AKI in both serum and urine.

Discussion

Biomarkers for the prediction of or early detection of AKI and progression to dialysis are 

critically important for earlier implementation of therapy and prognostication in patients 

with decompensated cirrhosis.(1,17) Using data and samples from a multicenter cohort of 

hospitalized patients with cirrhosis, we demonstrate that specific panels of metabolites in 

urine and serum obtained on hospital admission can predict the development of AKI in those 

without it on admission, as well as progression to dialysis in those who developed AKI.

Sarcopenia and variations in muscle mass between sexes makes the status quo for 

diagnosing AKI challenging in cirrhosis.(18) Studies have shown that even relatively minor 

changes in sCr can portend higher short-term mortality even after reversal.(19) Therefore, 

prevention of AKI development and earlier institution of treatment are urgently needed. 

Unfortunately, biomarkers to predict AKI development that are available clinically have yet 

to be developed and validated. These are of critical importance for intervention strategies 
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before AKI develops and prognosis worsens. Although focused studies on urinary and serum 

biomarkers such as neutrophil gelatinase–associated lipocaliin, kidney injury molecule 1, 

IL-18, and liver type fatty acid binding protein have been reported, a more expansive view 

that considers the multiple system alterations inherent in patients with advanced cirrhosis 

is needed.(2,4) Therefore, untargeted metabolomics of serum and urine are important tools 

in agnostically determining patterns of metabolic dysfunction, which can guide diagnosis, 

prognosis, and improve insight into the pathophysiology of disease.

Biomarkers of kidney disease can be those related to kidney damage, inflammation, 

retention of metabolites that should have been excreted, secretion changes in metabolites 

due to injury, or a combination of these.(5) The liver and kidney individually impact systemic 

metabolism; therefore, injuries to both organs makes it more challenging and complicated to 

interpret biomarkers.

Our analysis demonstrates that key metabolites belonging to aromatic and BCAA and 

cysteine/methionine metabolism, known uremic toxins, and lipids can predict and detect the 

development of AKI and the need for dialysis in those with and without AKI in inpatients 

with cirrhosis. These data provide a framework for us to explore proactive strategies to 

prevent AKI and need for dialysis in hospitalized patients by identifying this at-risk group.

Metabolite changes showed robust AUC values in serum and urine for prediction even 

after adjusting for clinically relevant biomarkers. Specific metabolites include uremic 

toxins and substances that parallel glomerular filtration rate (GFR) reduction such as 2,3-

dihydroxy-5-methylthio-4-penten oic acid (DMTPA), N,N,N-trimethyl-L-alanyl-L-proline 

betaine (TMAP), N2-N2 dimethylguanosine, C-glucosyltryptophan and pseudouridine, 

which are associated with kidney function regardless of cirrhosis, were higher in those 

that developed AKI and required dialysis.(7,20-24) Major metabolites belonging to aromatic 

amino acid metabolism (tryptophan: kynunerine, 8-methoxykynunerate; tyrosine, 3-(4-

hydroxyPhenyl) lactate, homovanillate sulfate, vanillactic, and hydroxyphenyllactic acid) 

were also higher in patients who developed AKI. These metabolites largely reflect the 

excretion ability of the kidney and parallel the GFR reduction regardless of etiology of 

kidney disease. Our analysis extends the importance of these metabolites in hospitalized 

patients with cirrhosis, as they reflect not only the current but the future risk for development 

of negative renal outcomes despite adjustment for age, gender, and cirrhosis severity. This 

underlines the need to better prognosticate these outcomes than our current biomarkers.

The catabolism of S-adenosyl methionine toward polyamine synthesis generates 

methylthioadenosine, which is a precursor of DMTPA. S-adenosyl methionine is also the 

precursor for S-adenosylhomocysteine (SAH) and cystathionine. Cystathionine in serum was 

associated with only AKI development but not the need for dialysis, whereas SAH was one 

of the strongest predictors for AKI development and dialysis initiation in the urine and the 

serum. SAH was higher in those who required dialysis, whether the entire group of patients 

or just those with AKI was used as the denominator, indicating the wide applicability of the 

data. The specific metabolites are in line with Mindikoglu et al. and further extend them 

into a multicenter realm using both prospectively collected serum and urine samples.(9) The 

metabolomic signature detected reflects the beginning of the bio-energetic and amino acid 
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disruption that has been published in prior studies in which renal failure has already been 

established.(12,25)

In addition to excretory markers, we also found profound changes in potential secretory 

markers that are influenced by multiple systems in patients who developed AKI and needed 

dialysis. Our findings focused on tryptophan metabolism leading to kynunerate, anthranilate, 

quinolinate, and picolinate formation. These metabolites can be generated from dietary 

tryptophan and converted to kynunerate in the liver or (12)peripheral organs, such as the 

kidney.(7) The role of the kidneys in tryptophan metabolism is complex and can result in 

excretion of derivatives and production of kynunerine pathway metabolites. In rodent models 

of renal failure, only renal and not hepatic generation of kynunerine is increased.(26) The 

accumulation and excess of these metabolites result in mitochondrial dysfunction and lead to 

neurological, vascular, and lipid metabolic impairments.(27) In patients with cirrhosis, Claria 

et al. reaffirmed this in patients with renal failure in the setting of ACLF, in which elevated 

tryptophan metabolites were associated with greater mortality.(28)

Our study extends these data into a predictive analysis of secreted and accumulated 

metabolites in cirrhosis. In addition to tryptophan, several other aromatic amino acid 

metabolites were higher in those who developed AKI or required dialysis. Consistent 

among these were vanillactate, homovanillate sulfate and hydroxyphenyllactate moieties, 

which are tyrosine and levodopa degradation products.(8) Vanillactate and homovanillate 

sulfate are stress markers that we found to be higher in those with negative consequences, 

regardless of whether the entire group or the AKI subgroup was considered.(8) In addition 

to the compounds that were higher and reflect accumulation, kidney damage or excess 

secretion, certain other metabolites that are usually associated with benefit such as 

BCAA derivatives (leucine leading to methylmalonic and valine leading to beta-hydroxy 

isovalerate), homoarginine(29) and lipid moieties (phospholipids and androgens) were lower 

in those who developed AKI and needed dialysis.(11,30,31) These findings show that the 

altered metabolites detected are not just increased by functional accumulation and excessive 

renal secretion, but also decreased beneficial metabolites that protect against sarcopenia and 

cell membrane instability.

We also focused on the AKI-only group to assess whether we could predict who improved 

versus progressed to require dialysis. Although the AUCs were greater than 0.79 for 

both serum and urine samples, the smaller sample size was a limitation. Despite this, 

we identified several metabolites that could predict which AKI patients would eventually 

need versus not need dialysis. Several of these compounds (vanillactate, DMTPA, C-

glycosyl tryptophan, kynunerate, 8-methoxykynunerate, and SAH) were similar to what 

was seen for dialysis prediction in the entire group. This validates the importance of 

these specific metabolites in the progression to dialysis. However, there were some other 

metabolites that were unique to this subgroup, including other catecholamine degradation 

products (vanillylmandelic acid) and N-acetylated/carbamolyated amino acids, which have 

been independently associated with renal function in patients with and without cirrhosis.
(9,32) In addition, arginine derivatives (asymmetric dimethylarginine [ADMA]/symmetric 

dimethylarginine [SDMA]) and tryptophan metabolite from the serotonin pathway (5-

hydroxyindoleacetate 5HIAAA) were also higher. ADMA/SDMA are associated with 
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vascular reactivity, portal hypertension, and brain dysfunction in cirrhosis and are produced 

by the kidneys in health and increase with disease.(33) 5HIAAA in addition to kynunerine 

represents further tryptophan breakdown in both these pathways and again underlines the 

importance of tryptophan metabolism in patients with cirrhosis and renal insufficiency.

The study’s strengths are the multicenter nature of the data, collection of urine and serum 

samples within 12 hours of admission using uniform techniques, use of robust LC/MS-MS 

metabolomic technology, and narrowing down the significant metabolites that were additive 

to clinical variables. In addition, once validated, the predictive nature of these metabolites 

before the sCr increases could potentially guide clinicians to initiate preventive therapy, 

remove nephrotoxic agents earlier, and monitor these patients closer. These metabolomic 

data reflect the several pathways that are affected in this complex group of inpatients with 

cirrhosis and impending AKI and possible need for dialysis. The untargeted nature of our 

approach identified several metabolic derangements, which provides a greater overall view 

of the alterations and reduced the multiple compounds discovered to the most predictive few 

significant metabolites. These particular markers are typically less dependent on age and sex 

than the usual biomarkers such as sCr.(34) They also are distinct from what we found in 

the same population as predictors of ACLF and death in the hospital.(35) This indicates that 

these metabolites are specific to AKI and dialysis development, rather than markers for a 

generally poor prognosis in this inpatient cirrhosis population.

The study’s weaknesses include (1) the use of samples from all AKI types and severities 

rather than separating the group into subtypes (i.e., AKI–hepatorenal syndrome [HRS] vs. 

AKI–non-HRS) or severities, although most were at least stage 2 at peak AKI stage. Given 

the diagnostic dilemma frequently present when trying to subdivide AKI types in patients 

with cirrhosis combined with our limited numbers, further subdivision was not possible. 

(2) We used requirement for dialysis, which can vary between centers and by the patient’s 

transplant candidacy. However, we found consistent changes in metabolites. (3) Of the 

602 patients who provided serum samples and 435 who provided urine samples, only 286 

gave both samples, which is a relatively low sample size for metabolomics-related outcome 

modeling. Therefore, the analysis was done separately, but we found similar metabolites 

that were important in AKI and dialysis requirement prediction in serum and urine. (4) 

Serum-based metabolomics was better at predicting AKI and need for dialysis than urine, 

but it could also be due to the larger sample size of patients who provided serum. This also 

demonstrates that only one biofluid may be enough to predict these outcomes.

This experience is the a step in developing a serum or urine metabolomic profile to predict 

the development and progression of AKI. Our data need to first be replicated in other 

cohorts before specific metabolites can be translated into laboratory panels for point-of-care 

diagnostics. Future advances need to focus on finding biomarkers to identify susceptibility, 

mechanism of injury, and response to treatment. The use of metabolomics, if validated, 

could result in earlier prediction and diagnosis, which can enable earlier intervention to 

improve renal function and subsequent prognosis.

We conclude that serum and urinary metabolites, especially those involved in the catabolism 

of S-adenosyl methionine or tryptophan metabolism, can predict the development of AKI 
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and requirement for dialysis in a multicenter cohort of inpatients with cirrhosis. Further 

validation and potential translation of these metabolite changes may be important to initiate 

point-of-care diagnostics to guide management of patients to prevent AKI and progression 

toward requirement of renal replacement.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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5-HIAAA 5-hydroxyindoleacetate

ACLF acute on chronic liver failure

ADMA asymmetric dimethylarginine

AKI acute kidney injury

ANCOVA analysis of covariances

BCAA branched chain amino acid

DMTPA 2,3-dihydroxy-5-methylthio-4-pentenoic acid

FDR false discovery rate

ICU intensive care unit

LOS length of stay

LS means least square means

MAP mean arterial pressure

MDA mean decrease accuracy

MELD Model for End-Stage Liver Disease

NACSELD North American Consortium for the Study of End-Stage Liver 

Disease

NSBB nonselective beta blocker

OOB out-of-bag

RFA random forest analysis
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RRT renal replacement therapy

RSD relative SD

SAH S-adenosylhomocysteine

SBP spontaneous bacterial peritonitis

sCr serum creatinine

SDMA symmetric dimethylarginine

TMAP N,N,N-trimethyl-L-alanyl-L-proline betaine

WBC white blood count
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FIG. 1. 
Patient flow after entry into the study.
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FIG. 2. 
Random forest mean decrease accuracy for AKI development using serum and urine 

metabolites for the entire group. (A) Mean decrease accuracy on random forest for serum 

metabolites in patients who developed AKI. (B) Representative LS mean differences: AKI 

serum yes or no. (C) Mean decrease accuracy on random forest for urine metabolites in 

patients who developed AKI. (D) Representative LS mean differences: AKI urine yes or no.
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FIG. 3. 
Random forest mean decrease accuracy for dialysis (RRT) requirement using serum and 

urine metabolites for the entire group. (A) Mean decrease accuracy on random forest for 

serum metabolites in patients who required RRT. (B) Representative LS mean differences: 

serum yes or no. (C) Mean decrease accuracy on random forest for urine metabolites in 

patients who required RRT. (D) Representative LS mean differences: urine yes or no.
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FIG. 4. 
Random forest mean decrease accuracy for dialysis requirement using serum and urine 

metabolites for the subgroup with AKI. (A) Mean decrease accuracy on random forest for 

serum metabolites in patients who required dialysis (AKI-RRT) within the AKI group. (B) 

Representative LS mean differences: serum, yes or no. (C) Mean decrease accuracy on 

random forest for urine metabolites in patients who required dialysis (AKI-RRT) within the 

AKI group. (D) Representative LS mean differences: urine yes or no.
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