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Background. Melanomas are skin malignant tumors that arise from melanocytes which are primarily treated with surgery,
chemotherapy, targeted therapy, immunotherapy, radiation therapy, etc. Targeted therapy is a promising approach to treating
advanced melanomas, but resistance always occurs. This study is aimed at identifying the potential target genes and candidate
drugs for drug-resistant melanoma effectively with computational methods. Methods. Identification of genes associated with
drug-resistant melanomas was conducted using the text mining tool pubmed2ensembl. Further gene screening was carried out
by GO and KEGG pathway enrichment analyses. The PPI network was constructed using STRING database and Cytoscape.
GEPIA was used to perform the survival analysis and conduct the Kaplan-Meier curve. Drugs targeted at these genes were
selected in Pharmaprojects. The binding affinity scores of drug-target interactions were predicted by DeepPurpose. Results. A
total of 433 genes were found associated with drug-resistant melanomas by text mining. The most statistically differential
functional enriched pathways of GO and KEGG analyses contained 348 genes, and 27 hub genes were further screened out by
MCODE in Cytoscape. Six genes were identified with statistical differences after survival analysis and literature review. 16
candidate drugs targeted at hub genes were found by Pharmaprojects under our restrictions. Finally, 11 ERBB2-targeted drugs
with top affinity scores were predicted by DeepPurpose, including 10 ERBB2 kinase inhibitors and 1 antibody-drug conjugate.
Conclusion. Text mining and bioinformatics are valuable methods for gene identification in drug discovery. DeepPurpose is an
efficient and operative deep learning tool for predicting the DTI and selecting the candidate drugs.

1. Introduction

Melanoma is a severe skin malignant tumor that arises
from melanocytes, which is the fifth most common malig-
nant tumor in the United States. It accounts for the leading
cause of skin cancer-related deaths [1]. The prognosis of
melanoma is highly correlated with the pathology stage at
first diagnosis—the patients with superficial melanoma
(Breslow thickness ≤ 1mm) have a higher cure rate [2].
Treatments of melanoma mainly include surgery, chemo-
therapy, targeted therapy, immunotherapy, oncolytic virus
therapy, and radiation therapy [3]. Surgery is still an
important method for melanoma. Wide excision is the clas-

sic surgical method for melanoma of the trunk and extrem-
ities [4–8]. Tumors growing in other body parts (head and
neck, subungual, genitals, etc.) should be resected as thor-
oughly as possible and combined with postoperative recon-
structive to improve appearance and function [9]. For
advanced melanoma, resection of primary and metastatic
tumors combined with adjuvant therapy (immunotherapy,
targeted therapy, chemotherapy, etc.) has been proven to
have a better prognosis [10–12].

As mentioned above, advanced melanomas require com-
prehensive therapies. Chemotherapy has not been shown to
improve survival in patients with advanced melanomas [3,
13]. Radiation therapy is the palliative for local symptoms
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Figure 1: Flow chart of our study. Figure 1 shows the research process of our study. From left to right, the text labels represent the analysis
contents and corresponding tools.
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Figure 2: The most statistically significant processes/pathways in drug-resistant melanoma. (a) The biological process, cellular component,
and molecular function of GO analysis in drug-resistant melanoma separately. (b) The biological process, cellular component, and
molecular function of GO analysis in drug-resistant melanoma together. (c) The KEGG pathway analysis in drug-resistant melanoma.
The size of the circles represents the count of genes, and the color represents the values of “- log10 (p value)”.
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and consolidation for residual disease in patients who do not
respond significantly to other systemic therapies. Check-
point inhibitor immunotherapy and targeted therapy have
made significant progress in recent years [14, 15].

Till now, researchers have accumulated many abnor-
mally expressed genes in melanoma, and databases such
as GEO and TCGA contain the sequencing data of mela-

noma specimens and clinical data of patients. We can
screen out new critical genes affecting the survival of
patients on this basis.

Besides the immunotherapy targets such as PD-1/PD-L1
and CTAL-4, the classic target genes in melanoma are BRAF-
and MEK-related pathways. Mutation of BRAF (50%), NRAS
(25%), and neurofibromin 1 (14%) are common in melanoma
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Figure 3: The protein-protein interaction of candidate genes. The protein-protein interaction analysis of candidate genes from STRING.
Each circle represents one protein, and the line represents the interaction between them.
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[16]. Small molecule inhibitors include Vemurafenib/Dabrafe-
nib for BRAF and Trametinib/Cobimetinib for MEK.

However, resistance always occurs. It is currently
believed that the targeted drug resistance mechanism of
melanoma contains the following aspects: reactivation of
the MAPK pathway [17], activation of substitutive path-
ways (PI3K-mTOR pathway) [18–21], alteration of the
tumor microenvironment [22–24], autophagy and ER
stress of tumor cells [25–27], miRNA-mediated resistance
[28, 29], and therapy-mediated selection of resistant tumor
cell subpopulations [30]. The mechanism of immune ther-
apy resistance includes the immune desert, the immune-
excluded tumor phenotype, increased regulatory cells in
the tumor microenvironment, increased immunosuppres-
sive cytokines, and upregulation of inhibitory receptors
on T cells [31]. When targeted drugs or immune check-
point inhibitors are ineffective, the current therapeutic
schedule often combines drugs to achieve better survival
than single agents, like MAPK pathway inhibitors and
immune checkpoint drugs [32, 33]. However, the short-
comings are apparent. Drugs for melanoma are limited,
and the effect of the drug combination is limited. If no
new drugs are explored, there will inevitably be a situation
where no more drugs are available.

Other targeted drugs have not been thoroughly studied
and supported in the treatment of melanoma, such as the
classic target gene-ERBB2 of breast cancer. Therefore, these
targeted drugs provide new hope and convenience for
exploring new treatment options for melanoma.

Traditional approaches to discovering a new drug are
time-consuming and expensive, which can cause a substan-
tial financial burden on society and delay in getting effective
treatment for patients [34]. The task of finding a new drug is
technologically tricky since the amount of drug-like mole-
cules can be up to 1060 [35]. In the past decades, the emerg-
ing technology of computational methods is considered
potential in the early stage of drug discovery [36]. Text min-
ing is a technology based on massive data resources, allow-
ing quick analysis of potential information [37]. It has
been highly developed and successfully applied in fields like
security applications, biomedical applications, and emotion
analysis.

The application of artificial intelligence, particularly
deep learning (DL), is acceleratingly impacting the field
of biomedicine [38]. In drug research and development

(R&D), the principal goal is to identify the compounds
tightly and selectively to the target proteins, and DL is a
powerful in silico tool in which many models are built
for predicting the drug-target interaction (DTI) [39, 40].
Deep learning (DL) is prevailing in silico tool in biomed-
icine. Many DL models are built for predicting the drug-
target interaction, compound property prediction, and
protein-protein interaction prediction. DeepPurpose is a
deep learning algorithm that provides a framework imple-
menting over 50 advanced DL models, 15 drug encodings,
and 8 target encodings based on many databases (Bin-
dingDB, DAVIS, KIBA, etc.). It is tested comparably effec-
tive to state-of-the-art DL models (GraphDTA and
DeepDTA) [41]. DeepPurpose provides a simple frame-
work to conduct DTI research using 8 encoders for drugs
and 7 for proteins. The following steps correspond to one
line of code in DeepPurpose.

(i) Encoder Specification. We select a specific encoder
for drugs of SMILE format and proteins of amino
acid sequence

(ii) Data Encoding and Split. We use the selected
encoders to convert the data into a format which
can be recognized and calculated by DeepPurpose

(iii) Model Configuration Generation/Model Initializa-
tion. Next, we adjust specific model parameters
and initialize a model

(iv) Model Training. We use the above data to train the
model and output the results

(v) Model Prediction and Repurposing/Screening. After
training the model, we use it to predict affinity
scores on new data

(vi) Model Saving and Loading. Finally, the model can
be saved. The trained model can be saved and
directly called for the prediction of new data [42]

In the present study, we identified the relevant genes of
drug-resistant melanoma via text mining technology. Fur-
ther, we screened the targeted genes with GO/KEGG/PPI/
GEPIA analysis besides literature review. It was the first time
that DeepPurpose was used to discover medicines for drug-
resistant melanoma. It would provide a reference value in

Table 1: Hub genes selected by Cytoscape (MCODE).

Cluster Score Nodes Edges Hub genes

1 3.333 4 5 NFKBIA, IKBKB, REL, NFKB1

2 3.333 4 5 CFLAR, FADD, FAS, CASP8

3 3 3 3 IL6R, IL6, IL6ST

4 3 3 3 KDR, FLT1, VEGFA

5 3 3 3 JUN, ATF2, MAPK8

6 2.8 6 7 HSPA4, HSP90AA1, PTPN11, STUB1, ERBB2, EGFR

7 2.667 4 4 MCL1, BAX, BCL2, BCL2L11
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Figure 4: The survival analysis of hub genes in skin cutaneous melanomas from GEPIA. (a) The survival analysis of BAX in melanoma. Blue
represents low BAX TPM, and red represents high BAX TPM. (b) The survival analysis of CASP8 in melanoma. Blue represents low CASP8
TPM, and red represents high CASP8 TPM. (c) The survival analysis of CFLAR in melanoma. Blue represents low CFLAR TPM, and red
represents high CFLAR TPM. (d) The survival analysis of ERBB2 in melanoma. Blue represents low ERBB2 TPM, and red represents high
ERBB2 TPM. (e) The survival analysis of FAS in melanoma. Blue represents low FAS TPM, and red represents high FAS TPM. (f) The
survival analysis of NFKBIA in melanoma. Blue represents low NFKBIA TPM, and red represents high NFKBIA TPM.
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further study of the management of drug-resistant mela-
noma and other tumors.

2. Materials and Methods

2.1. Text Mining. Three phrases “melanoma,” “drug,” and
“resistance” were input into pubmed2ensembl (http://
pubmed2ensembl.ls.manchester.ac.uk/), a public source for
mining the relevant biological literature on genes, which
was used to obtain the associated gene list. We set “Homo
sapiens” as the species and selected “Ensembl Gene ID,”
“MEDLINE: PubMed ID,” and “Associated Gene Name.”
“Search for PubMed IDs” and “filter on Entrez: PMID” were
chosen for each query [43–46].

2.2. Biological Process and Pathway Analysis. Gene ontology
(GO) and Kyoto Encyclopedia of Genes and Genomes
(KEGG) pathway enrichment analyses were conducted by
the Database for Annotation, Visualization and Integrated
Discovery (DAVID) [47, 48], and the genes of the most sta-
tistically enriched pathways in GO and KEGG analyses (p
less than 10E-20) were selected out and used for subsequent
protein-protein interaction (PPI) analysis.

2.3. Protein-Protein Interaction. Protein-protein interaction
(PPI) was conducted in Search Tools for the Retrieval of
Interacting (STRING) database [49]. We imported candi-
date genes of the last step into the database and chose the
“Homo sapiens” as the organism. Further, we imported the
start and end nodes of STRING into Cytoscape to conduct
the protein-protein interaction, using MCODE app to con-
firm the hub genes [50, 51].

2.4. Survival Analysis. The clinical significance of the candi-
date genes was validated by Gene Expression Profiling Inter-
active Analysis (GEPIA) [52]. The survival analysis results in

GEPIA were used to screen out genes with significant statis-
tical differences in skin cutaneous melanomas.

2.5. Drug-Gene Interaction. The pharmaprojects database
(https://pharmaintelligence.informa.com) was used to
inquire about drugs targeted at hub genes [53, 54]. Each
hub genes generated drugs list targeted on it. Drugs with
available SMILES structures, “launched,” “phase I/II/III clin-
ical trial,” “pre-registration” or “registered” in global status,
and “injectable” or “oral” in delivery routes were screened
out for candidate drugs lists.

2.6. DeepPurpose. With target genes and their potential
drugs, we employed DeepPurpose to calculate affinity scores
between them [42]. 14 encoding combinations were chosen
based on DAVIS, BindingDB, or KIBA. Affinity scores were
calculated by importing SMILES structures of drugs and
amino acid sequences of genes into pretrained models. We
summarized the scores of each pair of drugs and target
genes. Ultimately, we chose the drugs with affinity scores
of at least 7.0 by DAVIS or BindingDB datasets and 12.1
by KIBA dataset [46].

2.7. Immunohistochemistry. We used the Human Protein
Atlas to compare immunohistochemical staining of key
genes between melanomas and skin melanocytes [55, 56].

3. Results

3.1. Identification of Targeted Genes. In the pubmed2en-
sembl, 433 genes related to “drug-resistant melanoma” were
obtained after deleting duplicates. We carried out the text
mining and exported related genes to excel on December
24, 2021. And the overall process is shown in Figure 1.

3.2. Enrichment Analysis of GO and KEGG of Associated
Genes. The most statistically differential processes in the GO
and KEGG analyses were selected by p value (less than 10E
-20) and shown in Figure 2. In GO analysis, “negative regula-
tion of apoptotic process” (p = 3:84E − 33), “response to drug”
(p = 1:94E − 31), “protein binding” (p = 2:45E − 24), “apopto-
tic process” (p = 2:59E − 24), “cytosol” (p = 3:31E − 23),
“enzyme binding” (p = 4:95E − 23), “positive regulation of
transcription from RNA polymerase II promoter”
(p = 6:04E − 22), “response to estradiol” (p = 1:14E − 21),
“extracellular space” (p = 4:95E − 21), and “positive regulation
of cell proliferation” (p = 5:70E − 20) were the selected pro-
cesses (Figures 2(a) and 2(b)). In KEGG analysis, “hepatitis
B” (p = 7:40E − 40), “pathways in cancer” (p = 1:11E − 37),
“bladder cancer” (p = 6:30E − 23), “influenza A”
(p = 1:25E − 22), “pancreatic cancer” (p = 9:30E − 22), and
“chronic myeloid leukemia” (p = 1:69E − 21) were screened
out (Figure 2(c)). In total, 16 pathways and 348 genes were
obtained.

3.3. PPI Network Analysis of Candidate Genes. The PPI net-
work created by Cytoscape is shown in Figure 3, and then,
we imported the candidate genes into Cytoscape. After
screening out by MCODE, 27 genes were obtained. Hub

10 ErbB-2 tyrosine kinase inhibitor

Total=16

1 ErbB-2 antogonist
1 DNA topoisomerase I inhibitor
1 transcription factor NF-𝜅B inhibitor

3 caspase 8 inhibitor

Figure 5: The candidate drugs for further DTI affinity score
analysis. Each color represents a set of candidate drugs targeting
the screened gene above. The area represents the proportion.
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genes screened out by MCODE are shown in Table 1 and
were chosen for further exploring.

3.4. Survival Analysis of Hub Genes. The survival analysis of
hub genes in skin cutaneous melanomas was conducted in
GEPIA. Along with the article review, 6 genes including
BAX (Figure 4(a)), CASP8 (Figure 4(b)), CFLAR

(Figure 4(c)), ERBB2 (Figure 4(d)), FAS (Figure 4(e)), and
NFKBIA (Figure 4(f)) with a statistical difference (p < 0:05)
were screened out.

3.5. Targeted Drugs on Selected Genes in Pharmaprojects. In
Pharmaprojects, 16 drugs targeted on selected genes met
the requirements (Figure 5), which included 10 ErbB-2

Table 3: The drugs with highest affinity scores.

Generic drug
name

Target gene
MAX
binding
score

Model Drug disease

Afatinib
Erb-B2 Receptor
Tyrosine Kinase 2

12.35
Morgan_

AAC_KIBA

Cancer (lung, head and neck, bladder, renal, sarcoma/neuroectodermal,
sarcoma/rhabdomyo, brain, breast, colorectal, endometrial,

gastrointestinal, ovarian, prostate); chronic
obstructive pulmonary disease

Dacomitinib
Erb-B2 Receptor
Tyrosine Kinase 2

13.33
Daylight_
AAC_KIBA

Cancer (lung, non-small-cell, brain, head and neck)

Epertinib
Erb-B2 Receptor
Tyrosine Kinase 2

12.34
Morgan_

AAC_KIBA
Cancer (breast, biliary, colorectal, gastrointestinal, liver, lung,

oesophageal, pancreatic, prostate, renal, vaginal)

Lapatinib
Ditosylate

Erb-B2 Receptor
Tyrosine Kinase 2

12.24
Morgan_

AAC_KIBA

Cancer (breast, gastro-oesophageal junction, bladder, brain, cervical,
colorectal, gastrointestinal, head and neck, lung,

ovarian, peritoneal, renal)

Mobocertinib
Erb-B2 Receptor
Tyrosine Kinase 2

7.23
Morgan_
CNN_

BindingDB
Cancer (lung)

Neratinib
Erb-B2 Receptor
Tyrosine Kinase 2

8.65
Morgan_
CNN_

BindingDB

Cancer (breast, biliary, bladder, cervical, colorectal, head
and neck, lung, endometrial, gastrointestinal, ovarian)

Poziotinib
Erb-B2 Receptor
Tyrosine Kinase 2

12.62
Daylight_
AAC_KIBA

Cancer (lung, breast, colorectal, gastrointestinal,
head and neck, oesophageal, pancreatic)

Pyrotinib
Dimaleate

Erb-B2 Receptor
Tyrosine Kinase 2

12.53
Morgan_

AAC_KIBA
Cancer (breast, gastrointestinal, lung, biliary)

Tesevatinib
Erb-B2 Receptor
Tyrosine Kinase 2

12.90
Morgan_

AAC_KIBA
Cancer (adrenal, brain, breast, chordoma, colorectal, head

and neck, lung, mesothelioma, ovarian); polycystic kidney disease

Trastuzumab
Deruxtecan

Erb-B2 Receptor
Tyrosine Kinase 2

7.90
Morgan_
CNN_

BindingDB

Cancer (breast, gastro-oesophageal junction, gastrointestinal,
lung, biliary, bladder, cervical, colorectal, endometrial,

ovarian, pancreatic, oesophageal)

Tucatinib
Erb-B2 Receptor
Tyrosine Kinase 2

12.58
Morgan_

AAC_KIBA
Cancer (breast, gastro-oesophageal junction, gastrointestinal, biliary,

bladder, cervical, colorectal, endometrial, lung)

Melanoma
CAB000043
Male, age 44

Skin (T-01000)
Malignant melanoma,

NOS (M-87203)
Patient ID: 820

Tumor cells
Staining: Low
Intensity: Moderate
Quantity: <25%
Location: Cytoplasmic/
membranous

200 𝜇m

(a)

Skin 1
CAB000043

Female, age 90
Skin (T-01000)

Normal tissue, NOS (M-00100)
Patient ID: 1692

Fibroblasts

Keratinocytes

Langerhans

Melanocytes

Staining: Not detected
Intensity: Negative
Quantity: None

Staining: Not detected
Intensity: Negative
Quantity: None

Staining: Low
Intensity: Weak
Quantity: 75%-25%
Location: Cytoplasmic/
membranous

Staining: Low
Intensity: Weak
Quantity: 75%-25%
Location: Cytoplasmic/
membranous

200 𝜇m

(b)

Figure 6: ERBB2 expression in melanomas and skin melanocytes. (a) The tissue specimen of melanoma with a moderate expression of
ERBB2. (b) The tissue specimen of skin without an expression of ERBB2 in melanocytes.
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tyrosine kinase inhibitors, 3 Caspase 8 inhibitors, 1 ErbB-2
antagonist, 1 DNA topoisomerase I inhibitor, and 1 tran-
scription factor NF-kappaB inhibitor.

3.6. Drug-Target Interaction Prediction by DeepPurpose. As
shown in Table 2, the affinity scores calculated based on
DAVIS and BindingDB datasets ranged from 3 to 9 approx-
imately, while for KIBA dataset, the scores ranged from 10 to
13. As identifying the high-affinity drugs, the baseline score
was set to 7.0 based on DAVIS or BindingDB, and 12.1 for
KIBA. 11 drugs with further clinical verification values are
screened out in Table 3. All of them were ERBB2-targeted
drugs, including 10 ERBB2 kinase inhibitors and 1
antibody-drug conjugate.

3.7. The Protein Expression of ERBB2. After we identified
ERBB2 as the promising target of drug-resistant melanoma
by DeepPurpose. We used the Human Protein Atlas
(HPA) database to confirm the protein expression in mela-
nomas (Figure 6(a)) and skin melanocytes (Figure 6(b)).
As shown in Figure 6, the protein expression of ERBB2
was higher in melanomas compared to the melanocytes in
normal skin tissue. In melanoma, ERBB2 was detected by
antibody CAB000043 with low staining, moderate-intensity
and <25% quantity. While in skin melanocytes, ERBB2 was
not detected by antibody CAB000043.

3.8. PPI Network Analysis of Six Hub Genes. Finally, we con-
structed and analyzed the PPI relationship of six hub genes
in Figure 7. CASP8 and NFKBIA were closely related to
ERBB2, while BAX, FAS, and CFLAR were indirectly related
to ERBB2. EGF, FADD, HSP90AA1, NFKB1, REL, RIPK1,

RIPK3, TNFRSF10A, TNFRSF10B, and TNFRSF1A formed
an interaction network with the six hub genes.

4. Discussion

This study purports to repurpose existing drugs as new drug
options which have not been used for drug-resistant mela-
noma. Unlike previous methods of biomarker selection,
our study did not focus on the mechanism of drug resistance
but aimed at selecting the most potential gene targets
through bioinformatics analysis. This study first obtained a
wide range of candidate genes associated with drug resis-
tance in melanoma (433 genes). Then, through GO and
KEGG analysis enrichment, we selected genes in the most
significant pathways for the next step (348 genes). Next, we
screened 27 hub genes through PPI analysis and MCODE
application in Cytoscape. In order to make it more clinically
significant, survival analysis was conducted for candidate
genes. Six genes with statistical significance were screened
out for existing targeted drugs in Pharmprojects. Finally,
we calculated the DTI and obtained the drugs with the high-
est affinity scores (11 drugs).

In the study, a total of 11 candidate compounds targeted
on ERBB2 were identified. All of them were ERBB2-targeted
drugs, including 10 ERBB2 kinase inhibitors and 1 antibody-
drug conjugate.

The abnormal expression of the ERBB2 gene had been
studied in melanoma. A study by Gottesdiener et al.
included patients with nonuveal melanoma at Memorial
Sloan Kettering Cancer Center from 2014 to 2018. In 732
melanoma cases, ERBB2 amplifications were detected in
acral (3%) and mucosal (3%) melanomas. ERBB2 muta-
tions were found in cutaneous (1%), acral (2%), and

HSP90AA1

ERBB2

TNFRSF10A

TNFRSF10B

FAS

BAX

FADD

CFLAR

REL

NFKB1

RIPK1

CASP8
RIPK3

TNFRSF1ANFKBIA

EGF

(a)

HSP90AA1

ERBB2

TNFRSF10A

TNFRSF10B

FASBAX

FADD

CFLAR

REL

NFKB1

RIPK1

CASP8

RIPK3

TNFRSF1A

NFKBIA

EGF

(b)

Figure 7: The protein-protein interaction of the six hub genes. (a) The protein-protein interaction analysis of the six hub genes from
STRING. Each circle represents one protein, and the line represents the interaction between them. (b) The six hub proteins (red) and the
closely related proteins interacting with them (green).
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mucosal (2%) melanomas. ERBB2 amplifications were
detected in acral (7%) and mucosal (6%) melanoma among
140 patients without canonical driver alterations. ERBB2
amplification was found in a patient resistant to checkpoint
inhibition therapy, who showed a durable complete
response to trastuzumab emtansine [57]. The research by
Kluger et al. included 600 patients, and 31 patients had
positive ERBB2 expression. 7% of patients had positive
ERBB2 staining in primary cutaneous specimens, while
3.6% in recurrent or metastatic specimens. ERBB2 expres-
sion was associated with melanoma lesions with a Breslow
depth of <2mm [58]. In conclusion, abnormal expression
of ERBB2 was associated with the development of mela-
noma and might be independent of the canonical driver.
As a target, preliminary efficacy had been achieved in treat-
ing drug-resistant melanoma.

ERBB2 plays an important role in normal cell and tumor
development. Erb-B2 Receptor Tyrosine Kinase 2 (ERBB2)
is one of the epidermal growth factor receptor families.
EGFR family contains four tyrosine kinase receptors:
HER1, ERBB2, HER3, and HER4 [59]. The ligand-binding
domain, transmembrane domain, and tyrosine kinase
domain are the canonical structures of epidermal growth
factor receptors. Till now, no endogenous ligands have been
found for ERBB2. The ligand-independent manner or het-
erodimers with other EGFRs/tyrosine kinase superfamily
can activate ERBB2 [60–62].

The ERBB2-PI3K-AKT signaling pathway is important
for cell proliferation, protein synthesis, cell cycle progres-
sion, and survival [63]. AKT suppresses cell death and pro-
motes cell survival in cancer cells [64]. AKT inhibits the
expression of FKHR, FKHRL1, and AFX, which regulate
apoptosis [63]. AKT also inhibits Bad, kinase ASK1, and
procaspase9 [65–67]. Thus, AKT is essential for suppressing
the induction of apoptosis. Mutations of AKT suppress cell
proliferation, and upregulated AKT expression inhibits apo-
ptosis [68, 69]. Besides, the PI3K-AKT-mTOR signaling
pathway is a significant pathway regulating autophagy and
tumorigenesis. For example, some tumor suppressor genes
involved in TOR signaling (PTEN, TSC1, and TSC2) can
stimulate autophagy [70].

The ERBB2-MAPK pathway is associated with cell
proliferation, growth, and survival [71]. Activated ERK
phosphorylates Bim to promote its ubiquitination, protea-
somal degradation, and apoptosis [72, 73]. Study shows
that ERBB2 causes apoptosis suppression by directly
resulting in Puma destabilization and proteasomal degra-
dation [74].

In our study, six hub genes were believed to be associated
with drug resistance in melanoma. Among them, CASP8
and NFKBIA were closely related to ERBB2, while BAX,
FAS, and CFLAR were indirectly related to ERBB2. After
further expanding the PPI relationship, we found EGF,
FADD, HSP90AA1, NFKB1, REL, RIPK1, RIPK3,
TNFRSF10A, TNFRSF10B, and TNFRSF1A, as essential
proteins, formed protein networks closely related to the
above six hub genes. This interaction relationship can be
the basis for subsequent studies on the mechanism of drug
resistance in melanoma with ERBB2 as the entry point.

The regulatory relationship between them can be further
verified through experiments.

The anti-ERBB2 therapy contains three aspects: ERBB2-
targeted monoclonal antibodies, antibody-drug conjugates,
and ERBB2 kinase inhibitors. Monoclonal antibody drugs
include trastuzumab and pertuzumab. Tyrosine kinase
inhibitors include lapatinib, neratinib, pyrotinib, and tucati-
nib. Antibody-drug conjugates include trastuzumab emtan-
sine (T-DM1) and Trastuzumab Deruxtecan (DS-8201).
Our screened 11 drugs have a high affinity with ERBB2,
which can play a good role in recognizing and blocking it.
Among the 11 ERBB2-targeted drugs registered in the phar-
maprojects database, the antibody-drug conjugates “Trastu-
zumab Deruxtecan” and ten other tyrosine kinase
inhibitors were included.

None of the 11 drugs played a role in the treatment of
melanomas. Mobocertinib is currently mainly used to treat
lung cancer, while the remaining 9 tyrosine kinase inhibitors
and Trastuzumab Deruxtecan have been used for various
solid tumors, such as breast cancer, lung cancer, bladder
cancer, kidney cancer, gastrointestinal cancer and nervous
system malignancies.

As an essential factor in regulating cell death, ERBB2
plays a critical role in the occurrence of melanoma drug
resistance. We screened out 11 drugs with the highest affin-
ity for ERBB2 out of many existing drugs by deep learning
algorithms. The treatment value for drug-resistant mela-
noma of these drugs deserves more exploration.

In conclusion, ERBB2 plays an essential role as a target
in many tumors. Through machine learning, our study
proves that ERBB2-targeted drugs may play an important
role in treating drug-resistant melanoma. However, the
research on the role of ERBB2 in melanoma is still insuffi-
cient, especially on the mechanism of drug resistance. We
need more studies on the relationship between ERBB2 and
melanoma resistance and developing it into medicine in
the future.

5. Conclusion

In the present study, we explored the relevant genes of
drug-resistant melanoma based on the technology of text
mining. 433 genes were found by Pubmed2ensembl. Fur-
thermore, the most statistically significant processes
(p < 10E − 20) in the GO and KEGG analyses, respectively,
were selected, and 348 genes were involved in these path-
ways. The PPI network was built in DAVIS and Cytoscape,
where 27 genes were screened out by MCODE. Next, we
got 6 genes with a statistical difference in survival analysis
by GEPIA. For the implementation capability, the 16 tar-
geted drugs were identified in Pharmaprojects under the
stage of “launched” or “phase I/II/III clinical trial” or
“pre-registration” or “registered.” We employed DeepPur-
pose, a deep learning algorithm, to calculate the affinity
score, and 11 drugs were screened out, which were 10
ERBB2 kinase inhibitors and 1 antibody-drug conjugate.
Our study provided a reference value in the drug discovery
at the early stage. Nevertheless, the effectiveness requires
further validation from lab work and clinical trials.
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