Skip to main content
. 2022 Jul 23;2022:3113119. doi: 10.1155/2022/3113119

Table 7.

Performance comparison of proposed work with other reported works.

Model for prediction Accuracy Specificity Sensitivity AUC
Brinati et al. [30] Random forest 82 84
Tschoellitsch et al. [31] Random forest 81 74
Tordjman et al. [32] Logistics regression 80.3 88.9
Soltan et al. [33] Extreme gradient boosting tree 94.8 77.4 99
Alakus and Turkoglu [34] LSTM 86.66 99.42 62.50
Proposed work k-NN 97.97 0.98 0.98 98
Random forest 90.66 0.94 0.93 98
Logistics regression 96.50 0.97 0.98 93
SVM 97.42 0.98 0.98 89
Decision tree 97.79 0.99 0.97 95
Gradient boosting classifier 87.77 0.90 0.93 97