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Abstract
Hepatocyte nuclear factor 1β (HNF1β) is a transcription factor essential for the development and function of the kidney. 
Mutations in and deletions of HNF1β cause autosomal dominant tubule interstitial kidney disease (ADTKD) subtype 
HNF1β, which is characterized by renal cysts, diabetes, genital tract malformations, and neurodevelopmental disorders. 
Electrolyte disturbances including hypomagnesemia, hyperuricemia, and hypocalciuria are common in patients with 
ADTKD-HNF1β. Traditionally, these electrolyte disturbances have been attributed to HNF1β-mediated transcriptional 
regulation of gene networks involved in ion transport in the distal part of the nephron including FXYD2, CASR, KCNJ16, 
and FXR. In this review, we propose additional mechanisms that may contribute to the electrolyte disturbances observed 
in ADTKD-HNF1β patients. Firstly, kidney development is severely affected in Hnf1b-deficient mice. HNF1β is required 
for nephron segmentation, and the absence of the transcription factor results in rudimentary nephrons lacking mature 
proximal tubule, loop of Henle, and distal convoluted tubule cluster. In addition, HNF1β is proposed to be important for 
apical-basolateral polarity and tight junction integrity in the kidney. Interestingly, cilia formation is unaffected by Hnf1b 
defects in several models, despite the HNF1β-mediated transcriptional regulation of many ciliary genes. To what extent 
impaired nephron segmentation, apical-basolateral polarity, and cilia function contribute to electrolyte disturbances in 
HNF1β patients remains elusive. Systematic phenotyping of Hnf1b mouse models and the development of patient-specific 
kidney organoid models will be essential to advance future HNF1β research.

Keywords  HNF1β · Electrolyte disturbances · Transcriptional regulation · Kidney development · Apical-basolateral 
polarity

Introduction

Hepatocyte nuclear factor 1β (HNF1β) is a transcription fac-
tor expressed in epithelial tissues including the kidney, pan-
creas, liver, and genital tract and is essential for the develop-
ment and function of these tissues [20, 22, 32, 33, 45, 90]. 
Within the kidney, HNF1β is expressed in all epithelial cells 
of the nephron and operates in homodimeric or heterodi-
meric complexes with HNF1α [20].

Mutations or deletions in HNF1β are responsible for a 
dominantly inherited, multisystem disease called auto-
somal dominant tubulointerstitial kidney disease type 
HNF1β (ADTKD-HNF1β) [27]. The disease was originally 
described as renal cysts and diabetes syndrome (RCAD), as 
kidney cysts (present in 60% of all patients) and maturity-
onset diabetes of the young (MODY5) (40%) are common in 
patients with HNF1β defects [79]. However, the disease has 
a variable presentation, and not all patients suffer from cysts 
or diabetes. Kidney anomalies are often present and include 
renal hypoplasia, unilateral renal agenesis, microcystic dys-
plasia, and horseshoe kidney. As a consequence, kidney 
function is impaired in approximately half of the affected 
children and adults and progresses to end-stage renal disease 
in 12% of the patients [28, 57, 65]. In contrast to other cystic 
disorders, electrolyte disturbances are common in ADTKD-
HNF1β patients [29, 49, 65]. In particular, the presence of 
hypomagnesemia is an important predictive criterium to 
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suspect ADTKD-HNF1β [65]. Additionally, hypokalemia, 
hypocalciuria, hyperparathyroidism, and metabolic alka-
losis are present in a minor group of patients [4, 10, 77, 
79]. Extrarenal manifestations of ADTKD-HNF1β consist 
of diabetes, neurodevelopmental disorders, genital and uri-
nary tract malformations, gout, and elevated liver enzymes 
[10, 12, 79].

The incidence of HNF1β defects is estimated to be 
1:200,000 [91]. Approximately 150 different mutations 
have been reported [18]. These mutations can be familial 
with a dominant inheritance pattern (60%) or de novo (40%). 
The majority of the mutations are located in the first four 
exons encoding the dimerization domain and DNA-binding 
domains, which are required for binding of HNF1β to the 
genomic sequence 5′-TTAATNTTT​AAC​-3′ in promoter or 
enhancer elements [18, 86]. In addition to intragenic muta-
tions, a 17q12 deletion spanning 15 genes, including HNF1β, 
accounts for 50% of the cases [19, 26]. Consequently, it is 
essential to perform an analysis of structural variants in the 
HNF1β gene, for instance by multiplex ligation-dependent 
probe amplification (MLPA).

Several groups have attempted to formulate diagnostic 
criteria to select patients for genetic HNF1β screening. 
Faguer and colleagues created an HNF1β score based on 
the clinical presentation [29]. However, several groups 
demonstrated that patients can be missed using the HNF1β 
score due to the variability in clinical presentation [18, 65]. 
The current KDIGO guidelines, therefore, use much simpler 
diagnostic criteria mainly based on the presence of kidney 
anomalies [27]. However, these criteria are often not specific 
for the HNF1β subtype of ADTKD and bear the risk of not 
identifying the patients that initially present with diabetes 
or electrolyte phenotype [26, 77]. Several groups have dem-
onstrated that the presence of hypomagnesemia may be par-
ticularly predictive of HNF1β mutations [6, 65, 77].

In this review, we present the current knowledge on the 
electrolyte disturbances in ADTKD-HNF1β patients and dis-
cuss the possible mechanisms underlying these disturbances.

Electrolyte disturbances in ADTKD‑HNF1β 
patients

The introduction of next-generation sequencing in standard 
genetic diagnostic pipelines has resulted in the identifica-
tion of thousands of ADTKD-HNF1β patients worldwide. 
Although ADTKD-HNF1β is a rare Mendelian disorder, 
these technological advances have allowed the formation of 
large cohorts of HNF1β patients [6, 26, 48, 55, 57]. Care-
ful phenotyping of these cohorts has demonstrated that 
hypomagnesemia, hyperparathyroidism, hyperuricemia, 
and hypocalciuria are common in patients with HNF1β 
defects [5, 6, 30, 55, 92]. Only a minority of the patients 

have electrolyte disturbances including hypokalemia, meta-
bolic alkalosis, and polyuria [6].

Hypomagnesemia (serum magnesium (Mg2+) < 0.7 mM) 
is the most common electrolyte disturbance in ADTKD-
HNF1β patients. The penetrance of this symptom is esti-
mated to range between 25 and 75% [5, 6, 29, 65, 77]. Sev-
eral groups have aimed to explain the variability of reported 
hypomagnesemia cases among cohorts. Prospective cohort 
studies tend to report the presence of hypomagnesemia more 
often than retrospective analyses, indicating the poor imple-
mentation of Mg2+ measurements in the standard clinical 
blood biochemistry panels [77]. Several reports noted that 
young children have generally higher serum Mg2+ concentra-
tions [6, 18, 77]. It was therefore proposed that hypomagne-
semia developed later in childhood [6]. However, this notion 
was recently challenged by Kolbuc and colleagues [92]. 
Their detailed analysis demonstrated that serum Mg2+ lev-
els are higher in early childhood in both HNF1β patients 
and healthy controls. Consequently, the reference range of 
0.7–1.1 mmol/L is not applicable for young children, result-
ing in an underestimation of hypomagnesemia in early child-
hood. Studies establishing age- and gender-specific reference 
ranges are, therefore, needed.

Hyperparathyroidism (serum parathyroid hormone 
(PTH) > 6.5 pmol/L) was initially only described in single 
patients [5, 28]. However, systematic PTH measurements in 
small cohort studies demonstrated the presence of increased 
PTH levels in 80% of patients [30, 55]. Because PTH is 
not reported in many cohort studies, the exact percentage 
of ADTKD-HNF1β patients suffering from hyperparathy-
roidism is unknown. Especially, because small cohort stud-
ies bare the risk of selection bias, resulting in an overesti-
mation of hyperparathyroidism [30, 55]. Of note, chronic 
kidney disease may contribute to elevated PTH levels on top 
of direct HNF1β effects.

Hyperuricemia (serum uric acid > 8 mg/dL) is present in 
20–30% of all patients with ADTKD-HNF1β [48, 55, 57, 
65]. Reduced kidney function is considered the main mecha-
nism explaining hyperuricemia in ADTKD-HNF1β. Addi-
tionally, serum uric acid is independently associated with 
PTH levels, suggesting that PTH contributes to the molecu-
lar mechanism [92]. Indeed, PTH is known to inhibit uric 
acid secretion by downregulation of ATP-binding cassette 
transporter G2 (ABCG2) [74]. Interestingly, HNF1β also 
regulates the expression of renal urate transporter URAT1 
[39]. Nevertheless, hyperuricemia and hyperparathyroidism 
are poor predictors of HNF1β defects as it is also common in 
other forms of end-stage renal disease [65, 92].

Hypocalciuria is common in patients with ADTKD-
HNF1β. The exact penetrance of hypocalciuria is unknown 
because the reference range for renal calcium (Ca2+) excre-
tion has no generally established lower limit. Nevertheless, 
several studies demonstrated that urinary Ca2+ levels are 
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significantly lower in patients with HNF1β defects compared 
to controls [5, 6].

Although serum potassium (K+) and bicarbonate 
(HCO3

−) levels are poorly reported in ADTKD-HNF1β 
cohorts, Adalat and colleagues demonstrated that HNF1β 
patients have decreased serum K+ and increased serum 
HCO3

− levels, especially in late childhood [6]. Indeed, case 
reports have reported K+ values close to the lower bor-
der of the reference range (serum K+ 3.5–5.0 mM) [6, 28, 
77]. Although these patients are not strictly hypokalemic, 
their serum K+ concentration is lower than in the general 
population.

The presence of hypomagnesemia, hypokalemia, meta-
bolic alkalosis, and hypocalciuria is reminiscent of the phe-
notype of Gitelman syndrome [93, 94]. Indeed, the initial 
diagnosis of some patients has been Gitelman syndrome, 
until genetic investigations revealed mutations in the HNF1β 
gene [7]. However, it should be noted that renin–angio-
tensin–aldosterone system (RAAS) activation is scarce in 
patients with HNF1β defects, whereas it is a cardinal symp-
tom of Gitelman patients. Moreover, hypertension is present 
in 22% of children with ADTKD-HNF1β, whereas Gitel-
man patients are generally hypotensive compared to healthy 
family members [69, 95]. Although it should be noted that 
chronic kidney disease in ADTKD-HNF1β patients may 
contribute to the hypertension phenotype.

Mechanisms of disturbed electrolyte 
transport in ADTKD‑HNF1β patients

The disturbed electrolyte transport caused by defects in 
HNF1β has classically been attributed to direct transcrip-
tional regulation of key transporter genes along the nephron 
[79, 96]. In this review, we will provide an overview of the 
main transport mechanisms that are determined by HNF1β 
function. Moreover, we will consider additional mechanisms 
beyond direct transcriptional regulation, which may contrib-
ute to the ADTKD-HNF1β disease phenotype.

Transcriptional control of transporters and channels

The hypomagnesemia, hypokalemia, and hypocalciuria 
observed in ADTKD-HNF1β patients are generally assigned 
to distal tubule dysfunction. In the first description of elec-
trolyte defects in ADTKD-HNF1β patients by Adalat and 
colleagues, FXYD2 was identified as a transcriptional target 
in the distal convoluted tubule (DCT) (Fig. 1) [5]. FXYD2 
encodes the γ subunit of the Na+-K+-ATPase, and FXYD2 
mutations are causative for hypomagnesemia [23, 51]. In 
recent years, the cardinal role of the Na+-K+-ATPase was 
further demonstrated by the identification of ATP1A1 
mutations, encoding the α subunit of the Na+-K+-ATPase, 

as a cause of hypomagnesemia [67]. It has been hypoth-
esized that reduced Na+-K+-ATPase activity in the DCT 
will result in depolarization of the basolateral membrane, 
resulting in an increased intracellular chloride (Cl−) con-
centration. Indeed, a high intracellular Cl− concentration 
has been established to inhibit WNK kinases and thereby 
the phosphorylation and activity of the thiazide-sensitive 
Na+-Cl− co-transporter (NCC). Clinical studies confirmed 
that ADTKD-HNF1β patients have a diminished response 
to thiazide, confirming lower NCC activity in patients [8]. 
Interestingly, NCC expression is also decreased in Hnf1b 
knock-out (KO) mice [41].

Moreover, HNF1β regulates the transcription of KCNJ16, 
which codes for the Kir5.1 subunit of the basolateral K+ 
channel in the DCT (Fig. 1) [41]. This Kir4.1/Kir5.1 K+ 
channel allows recycling of K+ to drive Na+-K+-ATPase 
activity. Uncoupling of this “pump-leak mechanism” will 
result in depolarization of basolateral membrane activity and 
reduced NCC activity by the same mechanisms as described 
above [97]. The importance of the Kir4.1/Kir5.1 channel 
was further established by the identification of KCNJ10 
and KCNJ16 mutations in patients with hypokalemia and 
hypomagnesemia, mimicking Gitelman syndrome [13, 68, 
98]. Nevertheless, hypokalemia and metabolic alkalosis are 
only present in a subset of patients with HNF1β defects, 
which is in line with the phenotype of patients with FXYD2 
or ATP1A1 mutations [23, 67]. One might hypothesize that 
this phenotypic variability is explained by the degree of 
Na+-K+-ATPase dysfunction and the presence of compen-
satory effects.

The concomitant HNF1β-dependent regulation of baso-
lateral Na+ and K+ transport by FXYD2 and KCNJ16 demon-
strates that transcription factors generally regulate gene net-
works rather than single genes. Similarly, HNF1β determines 
a gene network controlling the urine concentrating ability 
of the kidney [2]. A collecting duct-specific Hnf1b KO 
mouse model showed a reduced urine osmolality [2]. RNA 
sequencing and ChIP sequencing identified 27 osmosensitive 
genes that are dependent on HNF1β binding [2]. Among the 
HNF1β targets is the farnesoid X receptor (FXR), which is 
essential for urine concentration by regulating aquaporin 2 
(AQP2) expression (Fig. 1) [2, 88]. Indeed, apical plasma 
membrane expression of AQP2 is reduced in collecting duct 
cells expressing an Hnf1b mutant [2]. Interestingly, FXR 
directly activates the expression of Mg2+ channel Trpm6 in 
mouse intestines [40]. Hence, HNF1β might indirectly regu-
late Trpm6 expression in the intestines and kidneys through 
FXR, contributing to disturbed Mg2+ homeostasis in HNF1β 
patients.

Although HNF1β is also expressed in the thick ascend-
ing limb of Henle’s loop (TAL) and this segment trans-
ports substantial amounts of Na+, K+, Ca2+, and Mg2+, 
the role of HNF1β in electrolyte transport in this segment 
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remains elusive. In the TAL, HNF1β was demonstrated 
to regulate the expression of SLC12A1, encoding the 

Na+-K+-Cl− co-transporter 2 (NKCC2) (Fig. 1) [36]. As 
NKCC2 facilitates monovalent ion transport and provides 
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the driving force for paracellular divalent cation transport, 
one would expect that downregulation of NKCC2 would 
cause major defects. Particularly, because the downstream 
DCT segment is affected as well and the compensatory 
capacity is therefore low. Nevertheless, features of TAL 
dysfunction such as polyuria, RAAS activation, hyper-
calciuria, and nephrocalcinosis are generally absent in 
ADTKD-HNF1β patients.

Several studies have demonstrated that HNF1β activates 
the expression of uromodulin (UMOD) and the calcium-
sensing receptor (CASR) (Fig. 1) [32, 42]. As UMOD 
mutations are known to cause medullary cysts, this regu-
latory pathway may contribute to the cystic phenotype of 
patients with HNF1β defects. Reduced UMOD expression 
in ADTKD-HNF1β patients may also have implications for 
renal electrolyte handling since UMOD has been demon-
strated to activate NKCC2, NCC, transient receptor poten-
tial melastatin type 6 (TRPM6), and TRP vanilloid type 5 
(TRPV5) activity [54, 56, 75, 83]. However, as the CaSR 
is an important negative regulator of UMOD, HNF1β 
defects may simultaneously inhibit UMOD expression and 
release the inhibition by the CaSR [76]. Consequently, the 
reduced UMOD expression may be dampened.

The regulation of CaSR may be of particular impor-
tance in the parathyroid gland. CaSR activation in the par-
athyroid gland inhibits PTH release. The PTH promoter is 
repressed by HNF1β binding [30]. Hence, HNF1β defects 
directly increase PTH secretion. On top of that, reduced 
CaSR expression may also activate PTH secretion [42]. 
Indeed, ADTKD-HNF1β patients suffer from hyperpar-
athyroidism [30, 55]. However, it should be noted that 
the in vitro experiments demonstrating the regulation of 
the CaSR promoter by HNF1β have been performed only 
in kidney cell lines and should be repeated in parathyroid 
models. Additionally, both increased PTH secretion and 
decreased renal CaSR expression are expected to raise 

calcium levels in the blood. Nonetheless, hypocalcemia 
is not consistently observed in ADTKD-HNF1β patients.

HNF1β is expressed in all tubule segments of the nephron 
[20]. Consequently, transcriptional targets of HNF1β have 
also been identified in the proximal tubule (PT). The expres-
sion of organic anion transporters (OAT1, OAT3, OAT4), 
the Na+-phosphate transporter 1 (NPT1), and the renal urate 
transporter (URAT1) is regulated by HNF1β (Fig. 1) [37–39, 
66, 99]. Nevertheless, only a few individual cases were pre-
senting with Fanconi syndrome, suggesting relatively mild 
PT dysfunction [28]. The absence of a PT phenotype in 
most patients can potentially be explained by the action of 
HNF1α, which may compensate for the loss of HNF1β in 
this segment. As HNF1α is within the kidney exclusively 
expressed in the PT, other nephron segments do not benefit 
from this compensatory action [100]. Altogether, systematic 
studying of HNF1β binding sites in the kidney has resulted 
in the identification of many genes that are transcription-
ally regulated by HNF1β [1, 2, 16, 41, 42]. To date, most 
studies have investigated HNF1β function by measuring 
the promoter activity of isolated genes using promoter-
luciferase assays. Although these artificial overexpression 
systems have been instrumental to detect the most prominent 
regulatory pathways, gene transcription also largely depends 
on chromatin modifications, the presence of co-activators/
co-repressors, or post-translational modifications that are 
not captured by promoter assays. The recent advances in 
single-cell genomics and proteomics will allow us to further 
decipher transcriptional regulation by HNF1β beyond indi-
vidual genes, by analyzing gene networks and combining 
-omics approaches.

The role of HNF1β in ureteric bud branching 
and nephron patterning during kidney 
development

HNF1β has an essential role during kidney development 
[20, 32, 90]. The developmental defects may contribute to 
electrolyte disturbances observed in patients with ADTKD-
HNF1β. In Gitelman syndrome, impaired DCT develop-
ment has been postulated as one of the main causes of Mg2+ 
wasting [97]. Consequently, defects in kidney tubule pat-
terning should be considered when studying the molecular 
pathogenesis of ADTKD-HNF1β. Various kidney-specific 
or inducible mice models have been generated over the past 
years to determine the role of HNF1β in kidney development 
(Table 1).

Mice with heterozygous Hnf1b null mutations have no 
phenotype, while complete deletion of Hnf1b in a mouse 
model is embryonically lethal due to its crucial role in 
embryonic visceral endoderm formation [21, 90]. Around 
E10.5, the development of the kidney starts with the out-
growth of the ureteric bud (UB) from the Wolffian duct 

Fig. 1   HNF1β regulates expression of channels, and transporters in 
all segments of the nephron. HNF1β regulates target genes involved 
in electrolyte handling in the PT including TMEM27 encoding 
the amino acid transport regulator (Collectrin); SLC17A1 encod-
ing the Na-phosphate transporter 1 (NPT1); SLC22A6, SLC22A8, 
and SLC22A11 encoding the organic anion transporters (OAT1, 
OAT3, OAT4); and SLC22A12 encoding the renal urate transporter 
(URAT1); in the TAL including SLC12A1 encoding the Na+-K+-2Cl− 
co-transporter (NKCC2); UMOD encoding uromodulin (UMOD); 
CASR encoding the calcium sensing receptor (CaSR); and CLDN16 
encoding Claudin 16; in the DCT including KCNJ16 encoding 
the subunit of the inward rectifier K+ channel (Kir5.1) and FXYD2 
encoding the Na+-K+-ATPase subunit gamma; in the CD includ-
ing TMEM27 and NR1H4 encoding the farnesoid X nuclear receptor 
(FXR). In return, transcription factor FXR regulates expression of 
AQP2 in the CD. PT proximal tubules, DCT distal convoluted tubule, 
TAL thick ascending loop of Henle, CD collecting duct, OA− organic 
anion, DC− dicarboxylate

◂
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(WD) into the metanephric mesenchyme (MM) (Fig. 2). The 
UB undergoes branching morphogenesis to form the collect-
ing duct system and ureter, after which MM cells surround-
ing the tips of the ureteric branches form cap mesenchyme. 

Triggered by signals from the UB tips, these cap mesen-
chymal cells will polarize into primitive epithelial spheres 
(pretubular aggregates) to form the renal vesicles. Renal 
vesicles differentiate into comma- and S-shaped bodies; 
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eventually, part of the S-shaped body will associate with 
capillaries to form the glomerulus, and other parts will form 
the nephron tubule that will connect to the collecting duct 
system. This tightly regulated process called nephrogenesis 
determines the development and segmentation of the kidney 
tubule. Although kidney development in humans and mice is 
very similar at a macroscopic level, organization (e.g., num-
bers of nephron progenitors and UB tips in human kidneys 
are increased compared to mice kidneys), timing, and gene 
expression patterns differ [44]. Therefore, extrapolating data 
obtained from mice to humans should be done with caution.

In early kidney development, Hnf1b is expressed in the 
WD and UB [46]. Whereas it is expressed during all nephro-
genesis steps including the renal vesicle and comma- and 
S-shaped body, it is not expressed in the cap mesenchyme 
[46, 50]. Inactivation of Hnf1b in the mouse UB led to a 
massively mispatterned ureteric tree network along with 
defective collecting duct differentiation and polarization 
(Fig. 2) [25]. Moreover, using constitutive inactivation of 
Hnf1b in the epiblast by tetraploid aggregation, researchers 
show that HNF1β is required for UB branching and timing of 
outgrowth as well as WD maintenance [46]. Although most 
kidney development studies have been conducted in mouse 
models, recently heterozygous HNF1β KO (HNF1β+/−) 
ureteric bud organoids derived from human-induced pluri-
potent stem cells (iPSCs) were developed [101]. Wild-type 
(WT) ureteric bud organoids were polarized, had clear 
tubular lumen, and showed repeated branching morpho-
genesis [101]. Similar to Hnf1b KO mouse models, human 
HNF1β+/− organoids showed loss of apical-basolateral 
polarity and had reduced numbers of budding regions [101].

In addition, several studies uncovered an important role 
for HNF1β in early nephron segmentation, more specifically 
in the development of the PT and TAL. HNF1β is required 
for the formation of a specific mid-limb subcompartment of 
the S-shaped body, the so-called epithelial bulge, that gives 
rise to the TAL and the PT (Fig. 2) [35, 50]. In mice, the 
absence of Hnf1b in the MM resulted in S-shaped bodies 

without the epithelial bulge and led to the development of 
nephrons characterized by dilated glomeruli directly con-
nected to collecting ducts via short, primitive tubules dis-
playing early distal markers [50]. Likewise, conditional 
inactivation of Hnf1b in nephron progenitors results in a 
reduction of tubular structures with a drastic decrease in PT 
clusters, medullar Henle’s loop tubules, and DCTs in kid-
neys from newly born mice (P0) [35]. Expression levels of 
Notch signaling molecules were strongly decreased in these 
mice, which may explain the lack of proximal-intermediate 
nephron segment fate acquisition [35, 50]. In line with these 
findings, expression of early PT (Hnf4a, Cubn, and Lrp2), 
mature PT (LTA), TAL (Slc12a1), and DCT (Pvalb) markers 
was drastically decreased in kidneys of mutant pups at P0 
[35, 50]. Mutant S-shaped bodies may express early distal 
markers, but fail to differentiate into mature distal tubules 
[35]. Although HNF1β is important for early nephrogenesis, 
it is still unclear if it also plays a role during the initiation 
stage that requires mesenchymal-epithelial transition of the 
MM. In particular, inactivation of Hnf1b in the MM or in 
nephron precursors resulted in correctly polarized renal 
vesicles, indicating that HNF1β is not required to initiate 
nephrogenesis [35, 50]. In contrast, decreased numbers 
of pretubular aggerates were observed in Hnf1b-deficient 
mouse kidneys potentially caused by decreased levels of 
Wnt9b required for mesenchymal-to-epithelial transition 
underlying the initiation of nephrogenesis (Fig. 2) [46].

Comparable to the mice models, human iPSC-derived 
organoids with HNF1β KO formed podocytes and 
GATA3 + distal nephron segments but lacked cells express-
ing of PT (LRP2, HNF4α) and TAL markers (UMOD, 
SLC12A1) [64]. These findings are concomitant with a sta-
tistical overrepresentation of HNF1β-binding sites in the 
promoters of PT-specific genes [14, 102]. Altogether, these 
findings suggest that HNF1β is essential for UB branching 
and nephrogenesis and particularly affects the PT and TAL 
segments.

As KO mice models may not represent the effects 
of human mutations, Niborski et al. generated a mouse 
model introducing a human splice site mutation 
(< IVS2nt + 1G > T) [103]. Their mouse model displayed 
delayed PT differentiation, hydronephrosis, and cysts. Con-
sistent with other mice models, PT markers were decreased 
from E14.5 to E17.5; however, S-shaped bodies appeared 
normal and PT maker expression was restored at P0 [103]. 
Interestingly, at 6 but not 12 months of age, Hnf1b mutant 
mice exhibited a reduced ability to concentrate urine associ-
ated with hypercalciuria but no hypomagnesemia or hyper-
kalemia was observed [103]. These findings suggest that 
HNF1β dysfunction in development may be compensated 
for at a later age.

How do these developmental defects translate to the elec-
trolyte defects in the adult kidney? Remarkably, PT defects 

Fig. 2   HNF1β is required for UB branching and nephron seg-
mentation. Schematic representation of different stages of mouse 
metanephric nephron development. At E10.5, kidney development 
starts with the outgrowth of the UB into the MM. HNF1β is essential 
for normal branching of the UB that eventually will form the collect-
ing duct system. Around E12.5, cells of the cap mesenchyme polarize 
into pretubular aggregates that will form renal vesicles which require 
MET. Whether HNF1β is involved in this early stage of nephrogene-
sis is not yet conclusive. Subsequently, renal vesicles differentiate into 
comma and S-shaped bodies. Hnf1b KO mice develop S-shaped bod-
ies that lack the epithelial bulge that will give rise to the proximal and 
Henle’s loop tubule in the WT situation. Eventually at E17.5, part of 
the S-shaped body will associate with capillaries to form the glomer-
ulus and other parts will form the nephron tubule. WD Wolffian duct, 
UB ureteric bud, MM metanephric mesenchyme, MET mesenchymal-
epithelial transition

◂
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are rare in ADTKD-HNF1β, which is difficult to match 
with maldevelopment of the PT [28]. However, it should 
be noted that kidney development has been mostly studied 
in mice. In addition, PT defects could be compensated for 
by HNF1α transcriptional activity in postnatal life, as evi-
denced by partial restoration of several PT markers in adult 
kidneys of mice with a heterozygous splice site mutation 
in Hnf1b [103]. The impact of heterozygous mutations on 
kidney development in humans is largely unknown. Histo-
logical analysis of a limited number of cystic kidneys from 
human fetuses carrying HNF1β mutations showed defec-
tive or delayed nephrogenesis characterized by a decrease 
in nephron structures labeled by either LTA, NKCC2, or 
UMOD [11, 34, 47]. How and to what extent, develop-
mental abnormalities in mice and humans, in particular 
the rudimentary nephrons lacking mature PT, TAL, and 
DCT observed in mice models, influence ion transport in 
adults is unknown. In recent years, an impressive number 
of human kidney organoids models have been generated and 
successfully employed to improve our understanding of kid-
ney diseases (reviewed in [104]). Hence, organoid models 
may provide a valuable tool to better understand the role 
of HNF1β in human kidney development and electrolyte 
transport using relevant genetic models instead of full KOs.

The role of HNF1β in apical‑basolateral polarity, 
tight junction integrity, and primary cilia

Apical-basolateral polarity and tight junctions are key regu-
lators of controlled water and ion movement in the kidney 
epithelium [24, 73]. Moreover, the primary cilium influences 
renal electrolyte transport in response to changes in tubular 
flow [52, 63, 72, 81]. In the following part of this review, 
we will discuss the proposed role of HNF1β in apical-baso-
lateral polarity, tight junction function, and primary cilia 
development.

Apical‑basolateral polarity

Apical-basolateral polarity allows the distribution of chan-
nels and transporters to distinct membrane domains and is 
critical for directional transport of ions and water from the 
pro-urine to the blood and vice versa [73]. Several polar-
ity markers show aberrant localization or expression during 
kidney development in HNF1β mutant mice models [25, 
103]. For instance, removal of Hnf1b from the UB in mice 
results in reduced expression of polarity markers Cdh16 and 
Pkhd1 in UB epithelium [25]. Moreover, in mice with a het-
erozygous splice site mutation in Hnf1b, decreased levels 
of HNF1β appear to disturb basal membrane organization 
without affecting apical cell polarity markers [103]. Inter-
estingly, NKCC2 expression in TAL cells, normally api-
cally expressed, was normal in non-cystic tubules, but the 

expression was downregulated in cystic tissue [103]. Studies 
performed by our group using an immortalized mouse col-
lecting duct cell line with disrupted HNF1β function demon-
strated a decrease in cell height compared to cells expressing 
WT HNF1β (unpublished data). Apical-basal growth is a 
characteristic of polarizing epithelia; likewise, studies using 
different types of epithelial cells have shown that a loss of 
cell integrity is associated with a decrease in cell height [59, 
71]. In addition, HNF1β+/− ureteric bud organoids derived 
from human iPSCs display loss of apical-basolateral polar-
ity shown by reduced mRNA expression of apical markers, 
villin-2 (EZRIN) and protein kinase C zeta type (PRKCζ) 
[101]. Consistent with this putative role for HNF1β in estab-
lishing cell polarity, HNF1β-binding site motifs are enriched 
in ATAC-sequencing peaks and promoters of upregulated 
genes during in vitro 3D spheroid formation [105]. Together, 
this suggests that gene activation by HNF1β is important for 
cells to establish cell polarization.

Tight junction integrity

Tight junctions establish a border between the functionally 
different apical and basolateral membrane and act as a bar-
rier for paracellular transport of water and ions [24, 89]. 
These structures contain a wide variety of proteins (occlud-
ing, claudins, junctional adhesion molecules) that define the 
permeability characteristics of epithelia [24, 58]. Structur-
ally, Desgrange et al. showed that tight junctions appeared 
well-organized in the UB tips of developing Hnf1b mutant 
kidneys; however, lateral cell–cell junctions were irregular 
and the space between cells was larger [25]. Both disruptions 
in Ca2+ and Mg2+ homeostasis are frequently observed in 
ADTKD-HNF1β patients. Our unpublished data in immor-
talized cells showed a significant decrease in transepithelial 
resistance (TEER) values, a measure of paracellular pathway 
resistance involving tight junction integrity, in cells with 
disrupted HNF1β function compared to cells expressing WT 
Hnf1b.

Primary cilia development

HNF1β regulates an impressive number of genes that local-
ize to the primary cilium including PKHD1, PKD1, PKD2, 
IFT88, KIF12, CYS1, and PDE4C (reviewed in [70]). Con-
sequently, ciliary defects have been widely considered as the 
main cause of cyst formation in ADTKD-HNF1β patients 
[32, 70]. Nevertheless, it is unclear whether HNF1β is 
directly involved in primary cilium formation, despite the 
direct transcriptional activation of cilia genes. Two inde-
pendent studies observed a decrease (25% and not quantified, 
respectively) of cilia in the cystic epithelium of developing 
mutant mice compared to WT mice [25, 103]. However, a 
different study observed normal cilia in cystic tubular cells 
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compared to WT cells of mice with kidney-specific inacti-
vation of Hnf1b (not quantified) [32]. Furthermore, humans 
and mice with HNF1β deficiency do display an absence of 
normal primary cilia in the bile duct.

The role of HNF1β in cilia function may also be relevant 
for electrolyte transport. The cilium acts as an antenna to 
sense tubular flow and converts changes in tubular pres-
sure into signals that affect electrolyte transport along the 
nephron [52, 63, 72, 81]. Evidence for the involvement of 
cilia in flow sensing is based on the fact that flow-sensitive 
proteins polycystin 1 and transient receptor potential cation 
channel vanilloid-type 4 (TRPV4) localize to the primary 
cilium [43, 84, 87]. Furthermore, several examples dem-
onstrate the putative importance of cilia in flow-mediated 
electrolyte transport. For instance, mice without ciliated 
TAL cells have diminished Na+ excretion in response to 
increased water intake causing differences in tubular pres-
sure [72]. In addition, the removal of cilia in immortalized 
mouse DCT cells reduced transepithelial Ca2+ transport 
[52]. Additional quantitative studies and the use of high-
resolution microscopy techniques to visualize key ciliary 
proteins should clarify whether HNF1β is involved in cilia 
function in the kidney.

The importance of cell polarity and tight junction integ-
rity in ion homeostasis has been recognized for decades. 
Even though the analyzed studies demonstrate that HNF1β 
defects disturb apical-basolateral cell polarity and tight junc-
tion integrity, these mechanisms have never been considered 
in the pathogenesis of electrolyte disturbances observed in 
ADTKD-HNF1β patients [25, 103, 105]. Although many 
Hnf1b animal models have been developed, electrolyte 
disturbances and polarity defects are often not measured 
(Table 1). Systematic analysis of apical-basolateral polar-
ity markers and intracellular signaling pathways may help 
further elucidate the role of cell polarity in electrolyte 
homeostasis.

Additional pathways

Our literature review has demonstrated that several mecha-
nisms contribute to electrolyte disturbances in patients with 
HNF1β defects. Nevertheless, it cannot be excluded that 
additional factors influence ion transport in these patients.

Firstly, the presence of cysts in the kidneys of ADTKD-
HNF1β patients can lead to electrolyte disturbances, as 
observed in patients with autosomal dominant polycystic 
kidney disease (ADPKD) [60, 62]. Interestingly, the dele-
tion of a transcriptional target of HNF1β and frequently 
mutated gene in ADPKD patients, called Pkd1, caused aber-
rant Mg2+, Ca2+, and phosphate (Pi) handling in a precystic 
mice model [80]. Given the precystic stage of the mice, these 
changes could not be caused by dilated and cystic tubular 
structures but were instead attributed to the downregulation 

of key regulators in Mg2+ and Ca2+ reabsorption in the TAL 
(Cldn16, Kcnj1, Slc12a1), DCT (Trpm6, Slc12a3), and con-
necting tubule (Calb1, Slc8a1, Atp2b4). Several of these 
genes are also downregulated in (developing) kidney tissue 
of Hnf1b mutant mice [25, 50, 103]. The presence of cysts 
in glomerular and tubular nephron structures of ADPKD 
patients can dramatically impair electrolyte and water home-
ostasis. However, no association has been described to date 
between the presence of cysts and hypomagnesemia or other 
electrolyte phenotypes in ADTKD-HNF1β patients.

Secondly, in vitro and in vivo experiments have shown 
that HNF1β controls mitochondrial respiration in the PT [15, 
61]. Inhibition or KO of HNF1β in a human PT cell line 
resulted in either downregulation of Ppargc1a (important for 
mitochondrial biogenesis) and altered mitochondrial mor-
phology or ATP reduction and increased glycolysis, respec-
tively [15, 61]. The kidney requires large quantities of ATP 
to maintain electrochemical gradients across membranes 
which are particularly important for transcellular ion trans-
port [9]. Given the high energetic demand of the kidneys, the 
energy deficiency triggered by HNF1β defects might influ-
ence transport processes in the PT, and potentially TAL and 
DCT-mediated transport of Mg2+, Ca2+, and K+. Indeed, 
mutations in the mitochondrial DNA were recently demon-
strated to cause a Gitelman-like phenotype of hypomagne-
semia and hypokalemia [82].

Finally, over the past years, HNF1β has been implicated 
in a broad spectrum of pathways ranging from WNT signal-
ing to planar cell polarity and cholesterol synthesis [1, 17, 
31]. The role of these pathways in electrolyte transport has 
never been examined.

Conclusions and perspectives

Hypomagnesemia, hyperuricemia, and hypocalciuria are 
common in patients with ADTKD-HNF1β. In subgroups of 
patients, these electrolyte disturbances are associated with 
hyperparathyroidism, hypokalemia, and metabolic alkalosis. 
These clinical findings suggest that the electrolyte distur-
bances in patients with HNF1β defects have a distal tubu-
lar origin. Indeed, our literature review demonstrated that 
HNF1β regulates the expression of genes involved in distal 
tubule electrolyte transport, including FXYD2, KCNJ16, 
CASR, and FXR. In this review, we propose additional 
mechanisms that may further contribute to electrolyte dis-
orders. HNF1β defects have been demonstrated to impair 
kidney development, apical-basolateral polarity, tight junc-
tion integrity, and cilia development.

The function of HNF1β in kidney physiology has mainly 
been studied in a wide range of mouse models. Our system-
atic comparison of all published mouse models identified 
large differences in phenotypes depending on the genetic 
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defect and strain (Table 1). Complete HNF1β KO may 
result in different molecular consequences than heterozy-
gous deletions and missense mutations. Consequently, the 
pathophysiological mechanism of ADTKD-HNF1β may not 
be captured by most available mouse studies. Moreover, phe-
notyping of the electrolyte disturbances in HNF1β patients 
and mouse models is limited, resulting in a knowledge gap 
in the literature. A more systematic approach is required 
to associate specific polarity, cilia, or tight junction defects 
with electrolyte disturbances.

A promising development is the generation of organoid 
models from patient-derived iPSCs. Recently, kidney orga-
noids were successfully generated from urinary iPSCs of 
HNF1β patients [53]. Although the current generation kid-
ney organoids are still immature compared with fetal and 
adult human kidney, these models provide the first patient-
derived model to study HNF1β defects in kidney develop-
ment and function [85].

In conclusion, the causes of electrolyte disturbances in 
ADTKD-HNF1β may partially be beyond direct transcrip-
tional regulation of specific channels and transporters. Fur-
ther studies should determine which additional pathways 
contribute to the molecular mechanisms of electrolyte dis-
turbances observed in ADTKD-HNF1β patients. More sys-
tematic phenotyping and the development of patient-specific 
organoid models are essential next steps in HNF1β research.
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