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Abstract

The single nucleotide polymorphism heritability of a trait is the proportion of its variance explained by the additive effects of the genome-
wide single nucleotide polymorphisms. The existing approaches to estimate single nucleotide polymorphism heritability can be broadly
classified into 2 categories. One set of approaches models the single nucleotide polymorphism effects as fixed effects and the other treats
the single nucleotide polymorphism effects as random effects. These methods make certain assumptions about the dependency among
individuals (familial relationship) as well as the dependency among markers (linkage disequilibrium) to provide consistent estimates of sin-
gle nucleotide polymorphism heritability as the number of individuals increases. While various approaches have been proposed to account
for such dependencies, it remains unclear which estimates reported in the literature are more robust against various model misspecifica-
tions. Here, we investigate the impact of different structures of linkage disequilibrium and familial relatedness on heritability estimation.
We show that the performance of different methods for heritability estimation depends heavily on the structure of the underlying pattern
of linkage disequilibrium and the degree of relatedness among sampled individuals. Moreover, we establish the equivalence between the
2 method-of-moments estimators, one using a fixed-single nucleotide polymorphism-effects approach, and another using a random-single
nucleotide polymorphism-effects approach.

Keywords: Haseman–Elston regression; heritability estimation; linkage disequilibrium; fixed-SNP-effects model; random-SNP-effects
model

Introduction
Fundamental to the study of inheritance is the partitioning of the

total phenotypic variation into genetic and environmental compo-

nents (Visscher et al. 2008). Using family studies, the phenotypic var-

iance–covariance matrix can be parameterized to include the

variance of an additive genetic effect, and an environmental effect

(Lynch and Walsh 1998). Specific family designs, such as twin stud-

ies can accommodate both shared and nonshared environmental

effects. The ratio of the genetic variance component to the total

phenotypic variance is the proportion of genetically controlled vari-

ation and is termed as the “narrow-sense heritability.” As shown in

the recent review of more than 17,000 twin studies (Polderman et al.

2015), heritability provides useful information on the power to iden-

tify causal genetic markers in a genome-wide association study

(GWAS), is used to estimate familial recurrence risk of disease, and

informs the genetic architecture of the trait (e.g. through partition-

ing by genomic region or tissue-specific expression).
GWASs seek to understand the relationship between these traits

and millions of single nucleotide polymorphisms (SNPs), a type of

genetic variant. Linear models are widely used in the field of statisti-

cal genetics to assess both individual and cumulative contribution

of genetic variants on a trait. The individual contribution is assessed

by treating each variant as a fixed effect (fixed-SNP-effect model)

while adjusting for relevant covariates in a linear regression (Dicker
2014; Bulik-Sullivan et al. 2015; Schwartzman et al. 2019) or by treat-
ing each variant as a random effect (random-SNP-effect model) by
using a linear mixed effect model (Yang et al. 2010, 2011; Speed et al.
2012). The fixed-SNP-effect-based approaches model individuals as
independent, but incorporate the dependencies among the markers
explicitly into the model. On the other hand, the random-SNP-
effect models use the genetic relatedness among individuals to im-
prove the efficiency of estimation of genetic variance. Nowadays,
with the increasing ability to sequence many genetic variants in
large cohort studies [UK Biobank Bycroft et al. (2018), Precision
Medicine cohort Collins and Varmus (2015), and the Million
Veterans Program Gaziano et al. (2016) are a few such examples],
there is significant interest to estimate the cumulative contribution
of the genome-wide causal variants. Often we assess such cumula-
tive contribution by estimating the proportion of variance explained
by the additive effects of the causal variants in the genome; that is,
the “SNP heritability.”

The random-SNP-effect models assume an infinitesimal model
for the SNP effects and use of genome-wide SNP data on distantly
related individuals (Haseman and Elston 1972; Yang et al. 2010,
2011, 2012; Lee et al. 2011, 2012; Speed et al. 2012; Bulik-Sullivan et al.
2015; Seal et al. 2022) to estimate the pairwise genetic relatedness
between sampled individuals. These approaches assume that each
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causal SNP makes a random contribution to the phenotype, and
these contributions are correlated between individuals who have
similar genotypes. By partitioning the phenotypic covariance matrix
among all individuals into a genetic similarity matrix and a random
variation matrix, the approach estimates the proportional contribu-
tion of the genetics to the total phenotypic variation. The estimation
of the heritability parameter heavily depends on the estimation of a
high-dimensional genetic relationship matrix (GRM). The matrix is
usually estimated from the observed data on M markers for all n
individuals in the cohort. Two methods of estimation are used to es-
timate heritability under this model. One is a likelihood-based ap-
proach, which includes Genome Wide Complex Trait Analysis, or
GCTA (Yang et al. 2010) and Linkage-Disequilibrium Adjusted
Kinships, or LDAK (Speed et al. 2012). It uses the restricted maxi-
mum likelihood (REML) estimation technique (Corbeil and Searle
1976) to estimate heritability. The other approach uses method-of-
moments (MOM) technique to estimate heritability, such as
Haseman–Elston (HE) regression (Haseman and Elston 1972). A ma-
jor advantage of this mixed effect model approach is that it can ac-
count for related individuals, but the general recommendation is to
exclude individuals with relatedness greater than 0.025 in the esti-
mation of heritability (Yang et al. 2011) due to shared environment.
These approaches do not explicitly account for the linkage disequi-
librium (LD) among the markers, and REML-based estimators have
been shown to be sensitive to the patterns of LD (Speed et al. 2012).

There have been attempts to rectify such bias due to LD by
partitioning the genome into regions with different LD structures
and by assigning a different genetic variance parameter to each
partition (Evans et al. 2018). Such correction has been shown to
improve the bias in heritability estimation for REML-based esti-
mators. However, such corrections are often ad hoc and the per-
formance depends on the underlying LD structure. Recently,
Pazokitoroudi et al. (2020) used a similar partitioning strategy on
the HE regression estimator. However, it is not clear if LD will
impact the MOM estimator in the same way as it does the REML-
based estimators. Moreover, the performance of the MOM
estimators in presence of LD has not been studied extensively.

The fixed-SNP-effect approaches assume SNP effects are arbi-
trary and fixed (Dicker 2014; Schwartzman et al. 2019), thus giving
more flexibility to each SNP effect. The proposed estimators are
consistent and asymptotically normal in high-dimensional linear
models with Gaussian predictors and errors, where the number
of causal predictors m is proportional to the number of observa-
tions n; in fact, consistency holds even in settings where m=n! q,
where 0 < q < 1. This set of approaches cannot easily accom-
modate relatives in the model, and thus the consistency of the
estimator is derived under the assumption that the sampled indi-
viduals have independent genotypes. These approaches directly
incorporate the LD among SNPs into the model and have been
shown to provide consistent estimates of heritability under the
correctly specified LD model for n>M, where M is the total num-
ber of markers. However, these methods make different approxi-
mations to derive the heritability estimator for n<M, since the
LD matrix is not invertible then. The properties and differences
between these approximation-based estimators (Dicker 2014;
Hou et al. 2019) are not well studied for n<M.

In this article, we take a closer look at these random-SNP-
effects and fixed-SNP-effects models for heritability estimation
using both likelihood and MOM approaches. This article provides
an analytical comparison of 2 popular MOM estimators from
each of these categories. We aim to understand the fundamental
differences or similarities between the principles of these 2 lines
of approaches. We present a set of simulation studies with

varying structures of LD and compare the performance of a wide
array of estimators. We further provide some theoretical results
that justify the observed simulation performance. We demon-
strate through theoretical derivations as well as simulation stud-
ies that the potential impact of LD on a random-SNP-effect
model-based estimator (Haseman and Elston 1972) depends on

the extent and structure of correlation of the causal and non-
causal variants. We also show that the fixed-SNP-effect model
estimator proposed by Dicker (2014) is essentially equivalent to
the HE method-of-moments estimator (Haseman and Elston
1972) for n<m.

Our findings in this article do not demonstrate any particular
advantage of the fixed-SNP-effect models over the random-SNP-
effect models in presence of LD, at least for the case when herita-

bility is estimated using a genome-wide marker model and when
n<M. One could partition the genome into small segments to
account for the differences in genome-wide LD structure and
handle the influence of LD better using a fixed-SNP-effect estima-
tor for each partition separately (Hou et al. 2019). However, there
is a potential overfitting issue for having a separate heritability
parameter for every partitioned segment.

The rest of the article is organized as follows: first, different
methods to estimate heritability are explained and analytical for-
mulae to compare their performance under different LD struc-
tures are presented. We then describe strategies to simulate LD
and relatedness structure and to evaluate both fixed-SNP-effects
and random-SNP-effects models. Finally, the results are pre-
sented and discussed.

Materials and methods
Genotypes, phenotypes, and heritability
estimation
We consider a set of n individuals from a homogeneous popula-
tion, typed at M SNP markers, assumed to be in Hardy–Weinberg
equilibrium. Note that notation is also listed in Table 1. Assume
an n�M matrix of genotypes G ¼ ðGijÞ, where Gij ¼ 0; 1; 2 is the
number of copies of the reference allele for individual i at locus j

with population frequency pj. Thus Gij; i ¼ 1; 2; . . . ; n, has mean 2pj

and variance 2pjð1� pjÞ; j ¼ 1; 2; . . . ;M. The vector of standardized
genotypes for individual i at marker j is given by

Cij ¼
Gij � 2pjffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2pjð1� pjÞ

q ; (1)

so that Cij has mean 0 and variance 1.
The matrix of standardized genotypes for all markers,

CA ¼ ðCijÞ, carries information on the relatedness of individuals,
and the LD among markers. While EðCijCi‘Þ ¼ rj‘ is the genotypic
correlation between loci within an individual, EðCijCkjÞ ¼ /ik

measures the genotypic correlation between individuals. We de-

fine the GRM W as in Yang et al. (2010)

W ¼ M�1CA C0A (2)

and we define the LD matrix as

R ¼ n�1C0A CA: (3)

where we use the single quote (0) to denote the transpose of a
matrix. In large samples, the empirical allele frequencies
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ð2nÞ�1Pn
i¼1 Gij can be used as an estimate of the population fre-

quency pj of Equation (1) in forming the matrices W and R.
Suppose that the first m of the M markers are causal, having a

direct impact on phenotype. We denote by CC the matrix consist-
ing of the m columns of CA corresponding to the causal markers,
and adopt the classical trait model of Fisher (1919). The pheno-
type of individual i is given by

yi ¼
Xm
j¼1

Cijbj þ �i; (4)

where bj, Cij, and �i are mutually independent and have mean 0.
Then EðyijCCÞ � 0 so that varðyiÞ ¼ Eðvarðyi j CCÞÞ. In SNP herita-
bility estimation, r2

g is the phenotypic variance attributable to
SNPs, and r2

e is the phenotypic variance attributable to environ-
mental factors. In a random-SNP-effect model, we assume
bj � Nð0; r2

g=mÞ, and �i � Nð0; r2
e Þ. Then

varðyi j CCÞ ¼ var
Xm
j¼1

Cijbj þ �i

0
@

1
A ¼Xm

j¼1

C2
ijvarðbjÞ þ varð�iÞ

¼
r2

g

m

Xm
j¼1

C2
ij þ r2

e :

Then either conditionally on CC as m becomes large, or taking
expectations over Cij, varðyiÞ ¼ r2

g þ r2
e . On the other hand, a

fixed-SNP-effect model assumes that b is a fixed quantity, with
bj ¼ 0 for noncausal markers. In that case, we define r2

g ¼ b0R�b,
and note EðCijCi‘Þ ¼ rj‘ and because of normalization, EðC2

ijÞ ¼ 1 so
that

varðyiÞ ¼ var
Xm
j¼1

Cijbj þ �i

0
@

1
A ¼Xm

j¼1

Xm
‘¼1

bjb‘EðCijCi‘Þ þ varð�iÞ

¼ r2
g þ r2

e :

Thus in either case, the phenotypic variance varðyiÞ ¼ r2
g þ r2

e

and SNP heritability are h2 ¼ r2
g=ðr2

g þ r2
e Þ. If phenotypes are stan-

dardized to have variance 1, then r2
g ¼ h2 and r2

e ¼ 1� h2. More
generally, estimation of heritability is primarily concerned with the

estimation of r2
g, the estimate of h2 being then obtained by dividing

by the empirical variance of the phenotypes yi; i ¼ 1; . . . ; n.

Overview of estimators
In our overview of the methodologies for heritability estimation,
we concentrate on method-of moments estimation and
likelihood-based estimation for the random-SNP-effect models.
We further compare these estimators with the fixed-SNP-effect
method of moments model-based estimators (Dicker 2014;
Schwartzman et al. 2019). The Supplementary material provides
more details on these estimators.

For the likelihood methods, we consider the GCTA (Yang et al.
2011) and LDAK (Speed et al. 2012) approaches. In brief, GCTA is a
random-SNP-effect model derived under assumptions similar to
those of Genotypes, Phenotypes, and Heritability Estimation. The ap-
proach uses REML (Patterson and Thompson 1971) to estimate r2

g

and r2
e . It estimates heritability assuming that phenotypes are

drawn from a multivariate Normal distribution, where the log-li-
kelihood function is

� n
2

logð2pÞ � 1
2

log detðr2
gWþ r2

e IÞ þ y0ðr2
gWþ r2

e IÞ�1yÞ:
�

(5)

LDAK (Speed et al. 2012) uses a similar model, except reweight-
ing the SNP markers to adjust for LD. More details on the GCTA
and LDAK approaches can be found in Supplementary Section 1.
Note that r2

g is only identifiable when W is not the identity matrix.
For the method-of-moments estimators, we first considered

an HE estimator (Haseman and Elston 1972), an estimator from
the random-SNP-effect approach category. The estimator of r2

g,
derived in Supplementary Section 2.1, has the form

~r2
g ¼

SYW

SWW
¼
P

k

P
i< k yiykWikP

k

P
i< k W2

ik

: (6)

An estimate of heritability is then given by dividing by the
empirical variance of phenotypes Yi. Further properties of this
estimator in the case of no LD are given in Supplementary
Section 2.1.

We also considered 2 method-of moment estimators from the
fixed-SNP-effect approach category, which we denote Dicker-1

Table 1. Glossary of notation used.

Variable Definition

n Number of individuals in an analysis
M Total number of markers in an analysis
m The number of causal markers in an analysis. A marker is considered causal if it has a nonzero direct effect on phenotype.
i; k Typically used to index individuals, i; k ¼ 1; . . . ; n.
j; ‘ Typically used to index markers, j; ‘ ¼ 1; . . . ;m or M.
pj The population frequency of locus j
r2

g The variance in phenotype attributable to genotypic effects
r2

e The variance in phenotype attributable to environment.
rjl The genotypic correlation between loci j and l in the population
/ik Genotypic correlation between individuals i and k
G A matrix of genotypes with n rows and M columns
CA A matrix of normalized genotypes with n rows and M columns (Equation 1)
CC A matrix formed by the m columns of CA that correspond to the causal markers
W The GRM calculated using all markers; an n� n matrix. M�1CA C0A.
R The M�M marker LD matrix calculated from all markers. n�1C0A CA

R� The true M�M marker LD matrix calculated from all markers. Eðn�1C0A CAÞ
b An m-vector of effects of causal loci on phenotype, or sometimes an M-vector augmented by 0’s (Equation 4)
y An n-vector of phenotypic values of individuals.
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and Dicker-2 (Dicker 2014). Dicker-1 is applicable in the case of
no LD. It is derived and discussed in the Supplementary Section
2.2 and takes the form

~r2
g ¼ ðnðnþ 1ÞÞ�1ðjjC0Ayjj2 �My0yÞ ¼ ðnðnþ 1ÞÞ�1ðMy0Wy�My0yÞ:

(7)

We consider this estimator primarily for comparison with the
HE estimator: see Supplementary Section 2.1 and in the section
Impact of LD on the Dicker-1 estimator.

Throughout this article, we refer to the estimator in Equation (7)
as Dicker-1, but we also present a variant of Dicker-1, which we de-
note Dicker-1-R. In the presence of LD, if R is invertible, Dicker-1-R is

~r2
g ¼ ðnðnþ 1ÞÞ�1ððR�1=2C0AyÞ0ðR�1=2C0AyÞ �My0yÞ
¼ ðnðnþ 1ÞÞ�1ðy0CAR�1C0Ay�My0yÞ:

(8)

However, in many cases, R is not invertible because M> n, and
hence we do not consider Dicker-1-R in our simulations. In these
cases, to address the LD, Dicker (2014) derives an estimator which
we denote Dicker-2. This estimator uses moments of the trace of
the LD matrix R to correct for LD, resulting in an estimator of r2

g

~r2
g ¼

l1ðC0AyÞ0ðC0AyÞ �Ml2
1y0y

nðnþ 1Þl2
(9)

where

l1 ¼
trðRÞ

M
and l2 ¼

trðR2Þ
M
� ðtrðRÞÞ

2

Mn
: (10)

Further details of the Dicker-2 estimator are given in
Supplementary Section 3.3.

Impact of LD
Impact of LD on the HE estimator
In this section, we consider the impact of marker mispecification
and marker LD on the numerator and denominator of the HE es-
timator, and hence on the estimate of r2

g. We assume unrelated
individuals but correlated markers, so that EðCijCk‘Þ ¼ 0 if i 6¼ k,
but EðCijCi‘Þ ¼ rj‘, with �1 � rj‘ � 1, and rjj ¼ 1.

We split the markers into m causal markers C and ðM�mÞ non-
causal markers F. Note that all markers are used in the GRM:
W ¼ M�1CA C0A, but that only causal markers CC contribute to the
phenotype y. For convenience, assume that the first m markers are
causal: C ¼ f1; . . . ;mg and F ¼ fðmþ 1Þ; . . . ;Mg. Then, following the
same derivation as in Supplementary Section 2.1, for i 6¼ k we obtain,

EðyiWikykÞ ¼ M�1E
Xm
j¼1

Xm
‘¼1

bjb‘
XM
w¼1

CijCiwCkwCk‘

 !0
@

1
A: (11)

If the bj have mean 0 and are uncorrelated, we have only
terms in j ¼ ‘, and this reduces to

EðyiWikykÞ ¼ M�1E
Xm
j¼1

b2
j

XM
w¼1

CijCiwCkwCkj

 !0
@

1
A

¼ M�1E
Xm
j¼1

b2
j

XM
w¼1

r2
jw

 !0
@

1
A

¼ ðmMÞ�1r2
g

Xm
j¼1

XM
w¼1

r2
jw:

Here, using that individuals i and k are independent and that
b2

j has expectation r2
g=m. Then

EðSYWÞ ¼ Eð
PP

i< kyiWikykÞ ¼ ðnðn� 1Þ=2ÞEðyiWikykÞ

¼
nðn� 1Þr2

g

2mM

Xm
j¼1

XM
w¼1

r2
jw ¼

nðn� 1Þr2
g

2mM
RCC þ RCFÞ;ð (12)

where for convenience, we denote the sums of squared correla-
tions

RCC ¼
Xm
j¼1

Xm
‘¼1

r2
j‘ among causal markers

RCF ¼
Xm
j¼1

XM
‘¼mþ1

r2
j‘ between causal and non� causal markers

and RFF ¼
XM

j¼mþ1

XM
‘¼mþ1

r2
j‘ among non � causal markers:

Considering similarly the denominator of the HE estimator,

EðW2
ikÞ ¼ M�2

XM
j¼1

XM
‘¼1

EðCijCkjCi‘Ck‘ÞÞ ¼ M�2
XM
j¼1

XM
‘¼1

r2
j‘

so that

EðSWWÞ ¼
XX

i< k
EðW2

ikÞ ¼
nðn� 1Þ

2M2 RCC þ 2 RCF þ RFFÞð

leading finally to the ratio of expectations of SYW and SWW

M
m

r2
g

RCC þ RCF

RCC þ 2 RCF þ RFF
: (13)

Equation (13) approximates the expectation of the HE estima-
tor and gives insight into its bias. First, if there is no LD, RCC ¼ m,
RCF ¼ 0, and RFF ¼ ðM�mÞ, giving the results of Supplementary
Section 2. Second, if the GRM contains only causal markers
M¼m, then LD among these causal markers does not cause bias,
as approximated by Equation (13). Third, if additional markers F
are not in LD with each other, nor with the causal markers C,
RCF ¼ RFF ¼ 0, and again no bias results. Note that generally inclu-
sion of additional markers in the GRM is less serious than omis-
sion of causal markers. If CA is missing causal markers j, then
Equation (11) will not include the contributions of those bj and
SYW will be decreased, but SWW will not (on average) be affected,
leading to underestimation of r2

g.
In some special cases, biases cancel out. Consider first a spe-

cial case of causal markers in regions of “average LD”; suppose all
rj‘ ¼ s for j 6¼ ‘. Then, RCC ¼ mþmðm� 1Þs2; RCF ¼ mðM�mÞs2 and
RFF ¼ ðM�mÞ þ ðM�mÞðM�m� 1Þs2, and some arithmetic show
there is no bias. Two other examples occur in the simulations of
Results. In both the autocorrelation and block simulations, causal
and noncausal markers are alternating. Then M ¼ 2m and RFF ¼
RCC, and Equation (13) again shows there is no bias. This is dem-
onstrated in the simulation results in Figs. 1 and 2. We note that
although we only show the case of M ¼ 2m, we show in
Supplementary Section 3.1 that the approximate theoretical bias
is also quite small for other ratios of causal to noncausal
markers, and there is no bias for equally sized blocks.

In other cases, there can be bias. For example, if causal
markers are in regions of high LD, then (per marker) RCC domi-
nates over RFF, and r2

g will be overestimated, while if causal
markers are in regions of low LD RFF in the denominator will dom-
inate, and r2

g will be underestimated. The case of duplication of
markers also considered in the simulations (Simulation Study 1:
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Fig. 1. Simulation Study 1A (autocorrelated markers). On the top row, the X-axis plots the parameter q, the autocorrelation correlation coefficient
between simulated markers as described in Supplementary Section 4. Estimates of h2 using different estimators are plotted along the Y-axis. The value
n refers to the number of individuals simulated. The value M is the total number of markers simulated, where half of the markers are causal, set in an
alternating fashion, as described in Simulation Strategy. We consider (i) n ¼ 1; 000;m ¼ 100 (ii) n ¼ 200;m ¼ 500, (iii) n ¼ 200;m ¼ 1; 500, and (iv)
n ¼ 2; 000;m ¼ 500. Five hundred data sets were simulated for each condition. A horizontal line is shown at h2 ¼ :8, the simulated truth. On the bottom
row, the X-axis is the parameter q, and the MSE of each of the estimators is plotted on the Y-axis.

(i) (ii) (iii) (iv)

0.4

0.6

0.8

1.0

1.2

H
er

ita
bi

lit
y

0 0.2 0.4 0.6 0.8 0 0.2 0.4 0.6 0.8 0 0.2 0.4 0.6 0.8 0 0.2 0.4 0.6 0.8
0.0

0.1

0.2

0.3

0.4

0.5

M
SE

Fig. 2. Simulation Study 1B (block markers). On the top row, the X-axis plots the parameter q, the block correlation coefficient between simulated
markers as described in Supplementary Section 4. Estimates of h2 using different estimators are plotted along the Y-axis. The value n refers to the
number of individuals simulated. The value M is the total number of markers simulated, where half of the markers are causal, set in an alternating
fashion, as described in Simulation Strategy. We consider (i) n ¼ 1; 000;m ¼ 100 (ii) n ¼ 200;m ¼ 500, (iii) n ¼ 200;m ¼ 1; 500, and (iv) n ¼ 2; 000;m ¼ 500.
Five hundred data sets were simulated for each condition. A horizontal line is shown at h2 ¼ :8, the simulated truth. On the bottom row, the X-axis is
the parameter q, and the MSE of each of the estimators is plotted on the Y-axis.
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Impact of Marker LD) is different, and Equation (13) again provides

an estimate of the bias. In this example, there is no LD in the m

causal markers, so RCC ¼ m. The genotypes at subset of d of these

markers are replicated r additional times, but these replicates are

noncausal. So M ¼ mþ rd. RCF ¼ rd and RFF ¼ r2d. Then Equation

(13) reduces to

M
m

r2
g

mþ rd
mþ 2rdþ r2d

¼ r2
g

ðmþ rdÞ2

mðmþ rdð2þ rÞÞ : (14)

Note that if no markers are replicated (d¼ 0) or all markers are

replicated (d¼m) then there is no bias. Note also that the result

only depends on the proportion of markers replicated. If d ¼ gm,

then Equation (14) reduces to ð1þ rgÞ2r2
a=ð1þ 2rgþ r2gÞ. Although

the expectation of the ratio is approximated by the ratio of

expectations in Equation (13), simulation shows this approxima-

tion gives an accurate estimate of the bias: see Supplementary

Section 3.1 (Supplementary Fig. 3).

Impact of LD on the Dicker-1 estimator
Through our simulations, we found that the Dicker-1 estimator

had a generally greater bias than the HE estimator (Simulation

Study 1: Impact of Marker LD). This is because the Dicker-1 estima-

tor is derived from a linear expression of quadratic forms which

is inflated due to LD. On the other hand, the HE estimator is a ra-

tio of quadratic forms, and LD inflates both the numerator and

the denominator, which potentially reduces the overall effect of

LD. We recall from Equation (7) that the Dicker-1 estimator takes

the form ~r2
g ¼ ðnðnþ 1ÞÞ�1ðMy0Wy�My0yÞ. Through calculations

shown in detail in Supplementary Section 3.2, we show that

Eð~r2
gÞ � r2

g ðnþ 1Þ�1ðKþ ðnþM� 2Þ
m

RCC þ RCFÞ �MÞ:ð

We note that RCC þ RCF 	 m, and hence, from this approxima-

tion, we have that ~r2
g is greater than rg, and the magnitude to

which it is greater increases as RCC and RCF increase.

Equivalence of HE and Dicker-2
As will be shown in Simulation Study 1: Impact of Marker LD, esti-

mates from the Dicker-2 and HE regression were very similar, al-

though Dicker-2 explicitly models LD. Analytically, under certain

normalization schemes, the 2 estimators are effectively equiva-

lent. This suggests that efforts to correct for LD in the Dicker-2

framework do not ensure improved performance of this estima-

tor compared to the HE estimator.
We begin by reformulating HE regression. We recall from

Equation (6) that the HE estimator is given by

~r2
g ¼

SYW

SWW
¼
P

k

P
i< k yiykWikP

k

P
i< k W2

ik

:

We can rewrite this in matrix form, giving us

SYW ¼
y0Wy� y0diagðWÞy

2
:

Under Hardy–Weinberg equilibrium, the GRM should have val-

ues that are approximately 1 on the diagonal. We assume y is

normalized to have variance 1, which results in

SYW �
y �Wy� n

2
:

Now we consider SWW. Noting that trðW0WÞ ¼
P

i

P
j W

2
ij,

SWW ¼
trðW0WÞ � diagðWÞ0diagðWÞ

2

� trðW0WÞ � n
2

:

Together, the HE estimator is approximately

y �Wy� n

trðW �WÞ � n
: (15)

Now consider the equations for Dicker-2. First note that in

Equations (9) and (10), l1 ¼ 1 since the genotypes are normalized

to have variance 1. Next, we use the property of traces that

trðABCDÞ ¼ trðDABCÞ to calculate

l2 ¼
1
M

tr
1
n2 C0ACAC0ACA

� �
� 1

Mn
tr

1
n

C0ACA

� �� �2

� 1
M

tr
1
n2 C0ACAC0ACA

� �
�M

n

¼ M
n2 tr

1
m2 CAC0ACAC0A

� �
�M

n

¼ M
n2 trðW0WÞ �M

n
:

Since n � nþ 1, for large n, we have that the Dicker 2 estimator

(Equation 9) is approximately

y0CAC0Ay�My0y
M
n2 tr W0Wð Þ � M

n

� �
nð Þ nþ 1ð Þ

� y0Wy� n
trðW0WÞ � n

;

which is the same as Equation (15).

Impact of relatedness of individuals on moments
estimators
Under the assumption of independence of individuals, the SD of

the HE estimator of r2
g or of h2 increases with the number of

markers M (Supplementary Section 2). This arises because in the

limit, the matrix W converges in probability to the identity matrix,

i.e. all off-diagonal terms converge in probability to 0. This leads

to poor behavior of the HE estimator because the numerator and

denominator of the HE estimator converge in probability to 0.

However, this is an artifact of the assumption of complete inde-

pendence (unrelatedness) of individuals. In any real sample, re-

gardless of the extent of correction for population structure,

there will always be variation in the degree of relatedness of indi-

viduals, even if any single pairwise relatedness measure is small.

Note that the original formulation of HE estimators (Haseman

and Elston 1972) made use of the genetic similarity between

known relatives. In this section, we therefore consider the case

where individuals may be related, so standardized genotypes Cij

and Ckj are no longer independent. For simplicity, we ignore LD:

that is Cij and Ck‘ are independent, for j 6¼ l, whether or not i¼ k.
Under relatedness and inbreeding, it remains the case that

EðCijÞ ¼ 0, but varðCijÞ ¼ ð1þ FiÞ (Crow et al. 1970) and

EðCijCkjÞ ¼ /ik, where Fi is the inbreeding coefficient of individual

i, and /ik is the relatedness of i and k, or twice the coefficient of
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kinship between i and k. To consider the HE estimator (6), for
i 6¼ k,

EðW2
ikÞ ¼ M�2

XM
j¼1

XM
‘¼1

EðCijCkjCi‘Ck‘Þ

¼ M�2PX
j6¼‘

EðCijCkjCi‘Ck‘Þ þM�2
XM
j¼1

EðC2
ijC

2
kjÞ

¼ M�2ðMðM� 1ÞÞðEðCijCkjÞÞ2 þM�1EðC2
ijC

2
kjÞÞ

¼ ðEðCijCkjÞÞ2 þM�1ðEðC2
ijC

2
kjÞ � ðEðCijCkjÞÞ2Þ:

(16)

Hence as M!1 SWW tends to

E
X

k

X
i< k

W2
ik

� �
!

X
k

X
i< k

/2
ik:

We can also calculate

E yiykWikð Þ ¼ 1
M

E
Xm
‘¼1

Ci‘b‘

 ! Xm
w¼1

Ckwbw

 ! XM
j¼1

CijCkj

0
@

1
A

2
4

3
5

¼ 1
M

E
Xm
‘¼1

Ci‘Ck‘b
2
‘

 ! XM
j¼1

CijCkj

0
@

1
A

2
4

3
5

¼
r2

g

mM
E

Xm
‘¼1

XM
j¼1

Ci‘Ck‘CijCkj

0
@

1
A

2
4

3
5

¼
r2

g

mM
E
X‘�1

j¼1

Xm
‘¼2

Ci‘Ck‘CijCkj þ
XM

j¼‘þ1

Xm
‘¼1

Ci‘Ck‘CijCkj þ
Xm
‘¼1

C2
ilC

2
kl

2
4

3
5

¼
r2

g

mM
mM �mð Þ E Ci‘Ck‘ð Þð Þ2 þ

r2
g

M
E C2

ilC
2
kl

� �
¼ r2

g E Ci‘Ck‘ð Þð Þ2 þ
r2

g

M
E C2

ilC
2
kl

� �
� E Ci‘Ck‘ð Þð Þ2

� �

and SYW tends to

E
X

k

X
i< k

yiykWik

� �
! r2

g

X
k

X
i< k

/2
ik:

Thus, contrary to the results of Supplementary Section 2.1 for
unrelated individuals, the SD of the HE estimator no longer
increases as M!1, but rather will depend on the magnitude of
ð
P

k

P
i< k /2

ikÞ. Although this sum may be small, if even any of the
/ik are nonzero it is strictly positive, and eventually, relatedness
will bound the SD of the estimator of r2

g.
Relatedness poses greater problems for the Dicker-1 estimator

(Equation 7), which involves the diagonal terms of the GRM ma-
trix W. Considering the expected quadratic form

E M y0Wy
� �

¼
Xn

i¼1

Xn

k¼1

E
Xm
j¼1

Cijbj þ �i

0
@

1
A XM

w¼1

CiwCkw

 ! Xm
‘¼1

Ck‘b‘ þ �k

 !0
@

1
A:

Now, by expanding and simplifying, even the coefficient of r2
e

is no longer mn but
Pn

i¼1

Pm
w¼1 EðC2

iwÞ ¼ Mðnþ
Pk

i¼1 FiÞ while that
of r2

g is, as in Supplementary Section 2.2

M� 1ð Þ E
X

i

C2
ijC

2
iw

� �
þ E

X
i

X
k

C2
ijC

2
kj

� �
¼

M� 1ð Þ
Xn

i¼1

E CijÞ2
� �2

þ
Xn

i¼1

E C4
ij

� �
þ
X

i

X
k6¼i

E C2
ijC

2
kj

� �
:

0
@

This expectation now involves not only ð1þ FiÞ2, and /2
ik but

also higher-order moments.

Although the derivation of distributional properties of the
Dicker method-of-moments estimators depends critically on the
assumption of 2n independent genomes, there is nothing in the
derivation of Equivalence of HE and Dicker-2 that assumes W is diag-
onal. Indeed, the trace equation

n2 trðR2Þ ¼ trðC0A CA C0A CAÞ ¼ trðCA C0A CA C0AÞ ¼ M2 trðW2Þ

used in showing the approximate equivalence of the HE and
Dicker-2 estimators, suggests that the Dicker-2 accommodation
of LD in the absence of relatedness is alternatively accommodat-
ing relatedness in the absence of LD. Thus, as will be seen in the
results of Simulation Study 3: Impact of Relatedness in Individuals, the
close equivalence of the Dicker-2 and HE estimators should hold
under relatedness, and, as seen from Equation (16) above, the
standard deviation will no longer increase indefinitely as M!1.

Simulation strategy
We performed simulation studies to assess the impact of LD
structure and relatedness of individuals on heritability estima-
tion. Each simulated data set consisted of genotypes G at M
markers (m causal markers) for n unrelated individuals. The
marker allele frequencies were those of a randomly chosen sub-
set of markers from the 1000 Genomes Project from
Chromosome 1 in the African (AFR) population (Clarke et al.,
2017). This set of frequencies was filtered to have allele frequency
less than 0.95 and greater than 0.05 and was fixed over data set
simulations.

Genotypes are standardized using their empirical allele
frequencies. Phenotypes were simulated for n individuals, given
their genotypes at the m causal markers, in accordance with the
linear model of Equation (4):

yi ¼
Xm
j¼1

Cijbj þ �i for i ¼ 1; . . . ; n: (17)

For the chosen value of h2, ð0 < h2 < 1Þ, the m-vector of
genetic effects b was simulated with independent components
bj � Nð0; h2=mÞ for j ¼ 1; . . . ;m. The independent residual effects
�i � Nð0; 1� h2Þ for i ¼ 1; . . . ; n. Thus, for the purposes of the sim-
ulation r2

g ¼ h2, r2
e ¼ 1� h2, and varðyiÞ ¼ 1, with h2 set to 0.8 for

all simulations (see Genotypes, Phenotypes, and Heritability
Estimation).

We implemented the Dicker and HE estimators in R Version
4.0.2 as described in Supplementary Section 2. We used GCTA
(Yang et al. 2011) and LDAK (Speed et al. 2012) as representative
likelihood estimators, both of which are described in more detail
in Supplementary Section 1. For every simulated data set, we ap-
plied each of these estimators. We also report a gold standard es-
timator to assess the performance of these different methods.
The gold standard estimate is calculated assuming we know the
true values of b: the empirical variance of CCb is divided by the
empirical variance of the phenotypes. This gold standard estima-
tor can be expressed as

ðCCb� CCbÞ0ðCCb� CCbÞ
ðy� yÞ0ðy� yÞ

: (18)

In simulation study 1, we assessed the impact of different LD
structures on heritability estimation. We generated genotypes as-
suming three kinds of LD structure: autocorrelated, block, and re-
peat. More details of the LD structures are given in
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Supplementary Section 4. Each data set was simulated with a
new b and G. For each LD structure, we studied the impact of
both sample size n and the number of causal markers m on heri-
tability estimation, and simulated data sets at 5 levels of LD. For
each LD structure and level, we generated 500 simulated data
sets.

For the autocorrelation and block structures, we considered the
following combinations of n and m: (1) n ¼ 1; 000;m ¼ 100, (2)
n ¼ 200;m ¼ 500, (3) n ¼ 200;m ¼ 1; 500, and (4) n ¼ 2; 000;m ¼ 500.
Comparing (1) and (2) provides insight on differences in estimates of
h2 depending on if n>m or m> n, whereas (2) and (3) compares esti-
mates with different number of causal markers, and (2) and (4)
compares estimates with different numbers of individuals. We first
generated genotypes at M ¼ 2m markers. We used marker correla-
tions q ¼ 0; 0:2; 0:4; 0:6, and 0.8., as detailed in Supplementary
Section 4. (Note that q¼ 0 is the no-LD case.) The markers were
then assigned to be alternating causal and noncausal (m ¼ M=2).

For the repeat structure, we considered the cases: (1)
n ¼ 1; 000;m ¼ 200, (2) n ¼ 200;m ¼ 1; 000, (3) n ¼ 200;m ¼ 3; 000,
and (4) n ¼ 2; 000;m ¼ 1; 000. In this case, we first simulated geno-
types for the m independent causal markers. The genotypes at
the first 10% of markers were then repeated r times, where r ¼ 0,
2, 4, 6, or 8. (Note that r¼ 0 is the no-LD case.) The repeat copies
of the markers are noncausal, so the number of noncausal
markers is 0:1rm and M ¼ mþ 0:1rm. In Supplementary Fig. 4, c
and f, the first m markers are causal, and the last ðM�mÞ are the
noncausal repeat copies.

In simulation study 2, we investigated the behavior of likelihood
models by plotting log-likelihood values (Equation 5) as a function
of r2

g and r2
e . The GRM W in Equation (5) was calculated using

Equation (2). Of interest was the relationship between the shape of
the log-likelihood function and the number of individuals and
causal markers, and the shape of the likelihood as the number of
repeats increased. From the results of simulation study 1, we hy-
pothesized that the shape would be different when m> n, where
GCTA underestimated heritability, compared to when m< n, where
GCTA overestimated [comparing (i) and (iv) of Fig. 3]. The combina-
tions of numbers of markers and individuals were the same as with
the repeats in Simulation Study 1, and the allele frequencies were
taken from the AFR sample of the 1000 Genomes Project, as before.
We include plots with no repeated markers (Fig. 4a) and with 10%
of the markers repeated 8 times (Fig. 4b).

The log-likelihoods minus the maximum log-likelihood were
plotted. Likelihoods were truncated at the 60% quantile of b(i) for
rows (i) and (iv), and at the 60% quantile of a(ii) for rows (ii) and
(iii). These cutoffs were chosen because they were the plots that
had the lowest 60% quantile. Plots were generated for (i) n ¼
1; 000;m ¼ 200 (ii) n ¼ 200;m ¼ 1; 000, (iii) n ¼ 200;m ¼ 3; 000 (iv)
n ¼ 2; 000;m ¼ 1; 000, in following with simulation study 1. We
averaged log-likelihoods of 100 simulated data sets with grid
spacing 0.05. Due to differences in ranges, there is a shared color
bar between (i) and (iv), and a different shared color bar between
(ii) and (iii). A circle within each plot is used to mark the location
of the maximum log-likelihood.

In simulation study 3, we assessed the impact of related individ-
uals on heritability estimation. We simulated first, second, and
third cousins using the rres package in R (Wang et al. 2017) as
well as unrelated individuals to illustrate our findings in Impact of
Relatedness of Individuals on Moments Estimators. The segment
length option in rres was set to 3,000 cM. Using the same set of al-
lele frequencies as previously, we simulated marker genotypes
for 400 individuals, in 10 40-ships. A k-ship is defined to be a set
of k cousins related to a certain degree. Each cousinship is

unrelated with all other cousinships. The number of markers
ranged from 400 to 4,000 in steps of 400. Phenotypes were gener-
ated using Equation (17). For every combination of cousinships
and number of markers, we simulated 500 sets of 10 40-ships. A
visualization of the GRM of the dataset is shown in
Supplementary Fig. 5 using 1,000 markers.

Results
Simulation study 1: bias and variance when q 5 0
or r 5 0 (no LD)
The special case of no LD in Simulation Study 1 is shown in
Figs. 1–3 in panels of the upper row at the left-hand point of each
point. These figures verify that the estimators were generally un-
biased in estimating the heritability. One exception is in LDAK,
where when n¼ 200, LDAK seemed to underestimate heritability.

Although we generally observed no bias in the estimators un-
der independent markers, we saw that the estimators had a wide
range of variances. In the cases n ¼ 1; 000;M ¼ 200 and n ¼
2; 000;M ¼ 1; 000 [columns (i) and (iv) in Figs. 1–3], the variance of
the GCTA, and LDAK estimators were lower than the variance of
the moments estimators, but this difference is less pronounced
in the cases where n¼ 200 [columns (ii) and (iii)], which may sug-
gest that the number of individuals affects the likelihood-based
estimators more than the moments-based estimators. The lower
variance resulted in lower MSE for GCTA for all conditions with
q¼ 0, but the bias in LDAK caused it to have comparable MSE to
the moments estimators when n¼ 200 (Figs. 1–3).

We can also compare cases when the number of individuals is
kept constant while the number of markers is increased by com-
paring n ¼ 200;m ¼ 500 in column (ii) vs n ¼ 200;m ¼ 1; 500 in col-
umn (iii). In Supplementary Section 2.1, we found that with
unrelated individuals and independent markers, the standard de-
viation of heritability should be asymptotically proportional toffiffiffiffiffi

M
p

=n in the case of the HE estimator. Accordingly, since M ¼ 2m
in the simulations, when the number of causal markers
increases, the standard deviation of the heritability estimates in-
creased as well. This is shown in both Figs. 1–3, where MSEs were
higher in column (iii) compared to column (ii). This trend
appeared to hold true for both the likelihood-based estimates
and the moments-based estimates.

We can compare cases when the number of individuals in-
creased while holding the number of markers constant by com-
paring n ¼ 200;m ¼ 500 in column (i) vs n ¼ 2; 000;m ¼ 500 in
column (iv). The variance and MSE of the heritability estimates
decreased for all estimators, which agreed with the theoretical
result for the HE estimator.

Finally, some of the biases in the behavior of LDAK may be that
the LDAK model does not match our generative model. LDAK
reweights their genotypes using Xij ¼ ðGij � 2fjÞ � ½2fjð1� fjÞ
a, and a

is recommended to be 1.25 (Speed et al. 2012, 2017). More details can
be found in Supplementary Section 1. Our model does not explicitly
simulate phenotypes in this manner, however. To investigate this,
we also chose a in LDAK to be –1, which matches our simulated
phenotypes due to our normalization scheme (Equation 1). Results
(not included) were largely similar, although the estimated herita-
bility was slightly closer to the simulated truth in the repeat case.

Simulation study 1: impact of marker LD
Autocorrelation structure
Data were simulated using the autocorrelation structure as de-
scribed in Simulation Strategy, and a representative set of
moments and likelihood estimators are evaluated on these
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simulated data. The estimated variance and bias of different esti-
mators are shown in Fig. 1.

The HE estimator and the Dicker-1 estimator do not explic-
itly account for LD structure, and because the Dicker-1 esti-
mate was developed for the no-LD case, it shows bias when LD
is present. In the top row of Fig. 1, the Dicker-1 estimator
shown in gold showed an increase in bias as q increased for all
of (i)–(iv). Consequently, the MSE of the Dicker-1 estimator
increases rapidly compared to all of the other estimators as we
increase q (bottom row of Fig. 1). In contrast, there was no in-
crease in the MSE of the HE estimator when markers were
autocorrelated, agreeing with Impact of LD on the HE Estimator.
In the top row of Fig. 1, the estimates of h2 from the HE estima-
tor did not appear to visually differ significantly from the true
value of 0.8. This estimate behaved very similarly to the
Dicker-2 estimator, despite the Dicker-2 estimator explicitly
attempting to correct for LD. This is analytically shown in
Equivalence of HE and Dicker-2.

The likelihood estimators in Fig. 1 showed generally lower
MSE and no obvious bias. The GCTA estimator is shown in black
and the LDAK estimator is shown in light blue. Both of these esti-
mators seemed to have lower MSE across all values of q than the
moments estimators, as seen in the bottom row.

When n ¼ 200;m ¼ 3; 000, as q increased, there was a decrease
in the MSE in all the estimators except the Dicker-1 estimator. In
Fig. 1, it can be seen that as q increases, the first and third quar-
tiles of the estimates of h2 decrease. It has previously been shown
that fewer causal markers lead to decreased variance (Dicker
2014), and hence this effect may be driven by a decrease in the ef-
fective number of markers as LD increases.

Block structure
Figure 2 shows the estimated variance and bias in different esti-
mators when the genotypes were simulated from the block struc-
ture with parameter q, as described in Simulation Strategy.
Similarly to the autocorrelation structure, the Dicker-1 estimator
had significant bias and high MSE, although this is expected be-
cause Dicker-1 as implemented here relates to the no LD case.
The HE and Dicker-2 estimators were not as affected by the LD.
In contrast to the autocorrelation, however, LDAK underesti-
mated h2 in Fig. 2, columns (ii), (iii), and (iv). In the bottom row of
Fig. 2, this resulted in an MSE that was comparable to that of HE
and Dicker-1. GCTA estimates appeared to still largely be unbi-
ased and produced MSEs that were lower than the other estima-
tors. Again, it was observed that there are cases when the MSE
decreases as q increases, similarly to the autocorrelation case.

Repeat structure
Figure 3 shows the variance and bias patterns when the geno-
types were simulated from the repeat structure with parameter r,
as described in Simulation Strategy. As r increases, the number of
times that 10% of the markers were simulated increased. There
were m causal markers simulated and n individuals. For example,
when m¼ 1,000 and r¼ 3, there were 1,000 causal markers that
were simulated, and the first 100 markers were repeated 3 times,
leading to a total of 1,300 markers that were entered into the
analysis. An increased value of r indicates more markers that are
in perfect LD with the original causal markers. We also examined
behavior when repeated markers had a small probability of not
being exact duplicates, and results were similar but less pro-
nounced (results not shown).

(i) (ii) (iii) (iv)
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Fig. 3. Simulation Study 1C (repeated markers). On the top row, the X-axis plots the parameter r, the number of times that 10% of the markers are being
repeated as described in Supplementary Section 4. Estimates of h2 using different estimators are plotted along the Y-axis. The value n refers to the
number of individuals simulated. The value m is the total number of causal markers simulated, as described in Simulation Strategy. We consider (i)
n ¼ 1; 000;m ¼ 200 (ii) n ¼ 200;m ¼ 1; 000, (iii) n ¼ 200;m ¼ 3; 000 (iv) n ¼ 2; 000;m ¼ 1; 000. Five hundred data sets were simulated for each condition. A
horizontal line is shown at h2 ¼ :8, the simulated truth. On the bottom row, the X-axis is the parameter r, and the MSE of each of the estimators is
plotted on the Y-axis.
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As in Figs. 1 and 2, the estimates for Dicker-1 increase rapidly
as r increases, agreeing with analytical calculations from Impact
of LD on the Dicker-1 Estimator. In contrast to Figs. 1 and 2, in Fig. 3,
the estimates for HE and Dicker-2 decrease as r increases, corre-
sponding to Equation (14) and to results in Supplementary Fig. 3,
where those equations were verified through simulation. The
MSE of these 2 estimators also increases as r increases (Fig. 3) and
further produce very similar estimates, agreeing with analytical
calculations from Equivalence of HE and Dicker-2.

In Fig. 3, the GCTA estimator produces estimates that are
greater than h2 ¼ 0:8 when n ¼ 1; 000;m ¼ 200 and when
n ¼ 2; 000;m ¼ 1; 000, but produces estimates that are lower than
0.8 when n ¼ 200;m ¼ 1; 000, and when n ¼ 200;m ¼ 3; 000. In
other words, if n>m, then the GCTA estimator is underestimat-
ing, and when n<m, the GCTA estimator is overestimating.

The LDAK estimator shows the same pattern of bias as GCTA
in that as r increases, h2 is underestimated when n>m and

overestimated when n<m. This bias is less pronounced than
with GCTA, however. In the bottom panel of Fig. 3, it can be seen
that as r increases, the MSE of LDAK appears relatively constant,
whereas the MSE of GCTA is increasing when n ¼ 200;M ¼ 1; 000
or n ¼ 200;M ¼ 3; 000, as seen in columns (ii) and (iii).

Simulation study 2: likelihood surfaces
In Fig. 3, GCTA displayed an upward bias when n>m, and a
downward bias when n<m. We hence hypothesized that the like-
lihood would be different if n>m vs if m> n. The likelihood sur-
face captures the joint likelihood of r2

e and r2
g. From the model in

Equation (5), VarðyiÞ ¼ r2
e þ r2

g. Hence we expect that the maxi-
mum likelihood lies on a diagonal, as r2

g � VarðyiÞ � r2
e . This

appears to be true when the number of individuals is much larger
than the number of markers, but when the number of individuals
much less than the number of markers, the axis of the condi-
tional maxima becomes more horizontal (Fig. 4). An intuition for

Fig. 4. Simulation Study 2. The difference of the log-likelihood from the maximum log-likelihood is plotted for parameters r2
e on the Y-axis and r2

g on
the X-axis. The colors depict the value of the difference from the maximum log-likelihood. Likelihoods are truncated at the 60% quantile of b(i) for rows
(i) and (iv), and at the 60% quantile of a(ii) for rows (ii) and (iii) for visibility. Row labels correspond with Fig. 3, with (i) n ¼ 1; 000;m ¼ 200 (ii)
n ¼ 200;m ¼ 1; 000, (iii) n ¼ 200;m ¼ 3; 000, and (iv) n ¼ 2; 000;m ¼ 1; 000. Column A has markers with no LD, and in column B, 10% of the markers are
repeated 8 times, corresponding the rightmost points in Fig. 3. The average of 100 independent simulations using a grid with spacing 0.05 is plotted in
each panel. Note that there is one color scale shared between (i) and (iv) on the left, and a different color scale shared between (ii) and (iii) on the right
due to different ranges. The red point indicates the location of the maximum likelihood.
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this result is that as the number of individuals improves, we have
better knowledge of the total phenotypic variance.

The likelihood surfaces also demonstrate a faster rate of
change in the likelihood surface when the number of individuals
is increased, comparing Fig. 4, a and g where the range of the col-
ors is greater than in Fig. 4, c and e. This observation corresponds
with simulation study 1, where as the number of individuals in-
creased, the variance of the estimates of heritability decreased.
Finally, on the right hand side of Fig. 4, the surfaces are still either
diagonal or horizontal, but the maxima (circles within each plot)
are shifted. This agrees with simulation study 1 results, where
there was bias in the GCTA method when the number of repeats
increased.

Simulation study 3: impact of relatedness in
individuals
In simulation study 3, we studied the effect of familial structure
on estimates of heritability using cousinships and found that an
increase in the number of causal markers generally increased
MSE unless relatedness was high.

The Dicker-2, HE, and GCTA estimators appeared unbiased for
each of the relatedness structures (Fig. 5). For GCTA and HE, we
reasoned that because their model is conditional on the GRM, it
took into account relatedness. Furthermore, because we have
shown that HE and Dicker-2 are equivalent (Equivalence of HE and
Dicker-2), we can also explain the unbiasedness of Dicker-2. LDAK
was also largely unbiased in the case of unrelated individuals,
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Fig. 5. Simulation Study 3. Estimated h2 from 500 sets of 10 groups of 40 related cousins plotted on the Y-axis. The number of causal markers plotted on
the X-axis. Data were simulated as described in Simulation Study 3: Impact of Relatedness in Individuals. Different estimators are plotted in different colors.
True heritability was set to be 0.8. Note that because of the chosen range of y values, Dicker-1 is sometimes not visible in the figure. Panels (i), (ii), (iii),
and (iv) are first-, second-, third-cousins, and unrelated individuals, respectively.
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but in the case of first cousins, as the number of markers in-
creased, we observed that LDAK started showing downward bias.

For the different relatedness structures (unrelated, full sibs,
first cousins) we considered, we observed similar pattern in the
change of MSE as we increased the number of markers. MSE was
generally the lowest when the number of markers was closer to
the sample size. However, as we increased the number of
markers, MSE for each estimator increased (Fig. 6). For HE and
Dicker-2, the unrelated individuals had the lowest MSE when the
number of markers was 400, but increased as the number of
markers increased. On the other hand, first cousins had MSE that
remained steady (Fig. 6). When the number of markers was 4,000,
the MSE of the unrelated individuals was larger than the MSE of
the first cousins, agreeing with analytical calculations from
Impact of Relatedness of Individuals on Moments Estimators.

For each of our estimators, unrelated individuals had the high-
est MSE and first cousins had the lowest MSE. Furthermore, com-
paring the case of related to unrelated individuals, the MSE
increased more slowly with the increase in the number of causal
markers in related individuals.

Discussion
The methods for SNP heritability estimation can be broadly clas-
sified into 2 groups; fixed-SNP-effects models and the random-
SNP-effects models. The fixed-SNP-effect models (Dicker 2014;
Schwartzman et al. 2019) can more easily accommodate the LD
structure among the genetic variants and can accommodate var-
iants as both causal or noncausal. However, these approaches
rely on independence among the individuals in the sample. On
the other hand, the random-SNP-effect models (Yang et al. 2011)
can accommodate and borrow power from related individuals,
though it is generally recommended to exclude relationships
with higher relatedness than 0.025 (this corresponds approxi-
mately to relatives second cousins or closer) to avoid confound-
ing due to shared environments. These random-SNP-effects
models assume all variants are causal and the majority of the
methods do not accommodate LD among the markers in a

statistically rigorous way. The asymptotic properties of these her-
itability estimators depend on model assumptions. In this article,
we have studied the impact of model misspecification on herita-
bility estimation through extensive simulation studies. We have
simulated data under various LD structures and have allowed a
certain portion of the variants to be noncausal. We found little
difference in the performance of a fixed-SNP-effect model
method-of-moments estimator and an MOM estimator from a
random-SNP-effect model under different model misspecifica-
tion.

We have derived the analytic expression for the approximate
bias of the HE estimator in presence of LD among markers. Impact
of Linkage Disequilibrium considers various scenarios for the LD
among causal and noncausal markers and analytically shows the
impact of this correlation on the HE estimator. Our simulation
studies and numerical results have also considered various LD
scenarios to illustrate that the bias in heritability estimation
depends on the underlying LD pattern and is often small. In
many cases, the standard practice of pruning markers to reduce
LD (Calus and Vandenplas 2018) may be unnecessary.

In the case where R�1 can be computed (M< n), Dicker (2014)
proposes a heritability estimator (Dicker-1) that can account for
the LD among markers by rotating the genotypes. The derivation
of the consistency of the estimator, however, relies on the
Normality assumption. In case of large n and M (M� n), our sim-
ulation studies and analytical derivation in Equivalence of HE and
Dicker-2 show that the Dicker-2 estimator (fixed-SNP-effect
model-based estimator) and HE estimator (random-SNP-effect
model-based estimator), are essentially the same. Hence, in the
situation M� n, Dicker-2 estimator has limited ability to correct
for the LD among markers because the HE estimator has bias un-
der some forms of LD, as shown in Equation (13). This is a contra-
diction to the claim that the Dicker (2014) always provides an
improved estimator of heritability in presence of LD among
markers.

Further estimators have been proposed in, for example, Hou
et al. (2019), which proposes the h2

GRE estimator. This estimator’s
goal is to relax assumptions about the LD structure of the data by
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Fig. 6. Simulation Study 3. MSE of estimates of h2 from Fig. 5. The X-axis indicates the number of markers in the simulation and the Y-axis indicates the
mean square error.
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giving each causal effect its own SNP-specific variance and has
been shown to provide some robustness to LD structures. In the
case that the LD matrix is estimable (n>M), if no binning is used,
the h2

GRE estimator is approximately equivalent to the Dicker-1-R
estimator if n!1 and M remains constant (Supplementary
Section 5), but expands the scope of the Dicker-1-R estimator by
using a pseudoinverse. This allows the h2

GRE estimator to be used
in cases when some markers are in perfect LD, which was not
possible with the Dicker-1-R estimator. The h2

GRE estimator also
corrected bias in the Dicker-1-R estimator in our simulations for
a finite number of individuals. Furthermore, we found that in
some cases, the h2

GRE estimator has lower variance than the
Dicker-1 estimator even if there is no LD (Supplementary Fig. 6).
This is possibly due to the use of the empirical R in h2

GRE estimator
which may reduce the variance of the estimate. We note, how-
ever, that the h2

GRE estimator is not defined if q¼ n, where q is the
rank of R (Supplementary Section 5). This situation may arise in
the case that n<M. We did not study h2

GRE in detail because we
aimed to analytically understand the simple estimators (estima-
tors without any binning or weighting).

Another estimator that demonstrated robustness to some
forms LD was proposed in Pazokitoroudi et al. (2020). This estima-
tor aimed to expand upon the HE estimator by allowing partition-
ing of heritability to multiple variance components. These
partitioning methods can be ad hoc, but have been shown to im-
prove robustness of estimators to MAF and LD in some cases
(Evans et al. 2018). In the case that the genome is not partitioned,
this estimator reduces to the HE estimator (Supplementary
Section 6). We did not consider partitioning in this article so that
we would be able to more easily understand the estimators ana-
lytically.

Fixed-SNP-effect model-based estimators generally assume
that sampled individuals are independent. These approaches do
not accommodate related individuals in the heritability estima-
tion. We demonstrate that even in the absence of LD, the Dicker-
1 is severely biased in the presence of related individuals.
However, because of its equivalence to the HE estimator, the
Dicker-2 estimator generates consistent estimates of heritability
with related individuals in the absence of LD.

The likelihood-based approaches from the random-SNP-
effects model category, especially the LDAK approach showed
more bias under certain model misspecification as compared to
the MOM estimators. Under different LD structures, the tradi-
tional GCTA approach showed more stability in terms of both
bias and precision over the LDAK estimator. We did not observe
any specific advantage of adjusting for LD by using the LDAK esti-
mator.

Under the assumption of independence of individuals, the
standard errors of the heritability estimator increase with the
number of causal markers. This is an artifact of the assumption
of complete independence (unrelatedness) of individuals. In any
real sample, regardless of the extent of correction for population
structure, there will always be variation in the degree of related-
ness of individuals, and the extent of variation would depend on
the nature of relatedness present in the sample. As shown in
Simulation 3, the precision of the heritability estimators
improves if we include relatives in the sample. The MSE of the
estimators was generally lower when we had certain relatedness
present in the sample. Moreover, the impact of increasing the
number of markers on MSE was significantly less pronounced if
we had relatedness in the sample. Hence, we highly recommend
to at least include second cousins, if present in the study sample,
in the SNP heritability estimation. If the study sample has

substantial number of first cousins, it may be beneficial to assess

the sensitivity of the heritability estimate after inclusion of first

cousins.
In general, MOM estimators had much larger standard errors

compared to the likelihood-based estimators. However, the com-

putational gain of these MOM estimators over the likelihood esti-

mators is significant for large n and M and often outweighs

limitation of large standard error (Lin et al. 2022). There was no

apparent bias in these estimators besides the repeat structure in

Simulation 1C. For repeat structures of the causal markers, we

observed underestimation in HE regression and a small upward

bias for GCTA estimator.

Data availability
The code used to generate the data is available at https://github.

com/alantmin/heritability.
Supplemental material is available at G3 online.
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