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Abstract

Rationale-objective: The combined use of prostate cancer radiotherapy and MRI planning is 

increasingly being used in the treatment of clinically significant prostate cancers. The radiotherapy 

dosage quantity is limited by toxicity in organs with de-novo genitourinary toxicity occurrence 

remaining unperturbed. Estimation of the urethral radiation dose via anatomical contouring may 

improve our understanding of genitourinary toxicity and its related symptoms. Yet, urethral 

delineation remains an expert-dependent and time-consuming procedure. In this study, we aim 

to develop a fully automated segmentation tool for the prostatic urethra.

Materials and methods: This study incorporated 939 patients’ T2-weighted MRI scans (train/

validation/test/excluded: 657/141/140/1 patients), including in-house and public PROSTATE-x 

datasets, and their corresponding ground truth urethral contours from an expert genitourinary 

radiologist. The AI model was developed using MONAI framework and was based on a 3D-UNet. 

AI model performance was determined by Dice score (volume-based) and the Centerline Distance 

(CLD) between the prediction and ground truth centers (slice-based). All predictions were 

compared to ground truth in a systematic failure analysis to elucidate the model’s strengths and 

weaknesses. The Wilcoxon-rank sum test was used for pair-wise comparison of group differences.

Results: The overall organ-adjusted Dice score for this model was 0.61 and overall CLD was 

2.56mm. When comparing prostates with symmetrical (n=117) and asymmetrical (n=23) benign 

prostate hyperplasia (BPH), the AI model performed better on symmetrical prostates compared to 
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asymmetrical in both Dice score (0.64 vs. 0.51 respectively, p<0.05) and mean CLD (2.3 mm vs 

3.8 mm respectively, p<0.05). When calculating location-specific performance, the performance 

was highest at the apex and lowest at the base location of the prostate for Dice and CLD. Dice 

location dependence: symmetrical (Apex, Mid, Base: 0.69 vs 0.67 vs 0.54 respectively, p<0.05) 

and asymmetrical (Apex, Mid, Base: 0.68 vs 0.52 vs 0.39 respectively, p<0.05). CLD location 

dependence: symmetrical (Apex, Mid, Base: 1.43 mm vs 2.15 mm vs 3.28 mm, p<0.05) and 

asymmetrical (Apex, Mid, Base: 1.83 mm vs 3.1 mm vs 6.24 mm, p<0.05).

Conclusion: We developed a fully automated prostatic urethra segmentation AI tool yielding its 

best performance in prostate glands with symmetric BPH features. This system can potentially be 

used to assist treatment planning in patients who can undergo whole gland radiation therapy or 

ablative focal therapy.
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INTRODUCTION

Prostate cancer is the second leading cause of cancer related deaths among American males 

(1). The treatment of prostate cancer usually involves prostatectomy, radiotherapy, focal 

therapy or management with active surveillance (2). The choice of treatment can be highly 

individualized and depends on a combination of clinical factors including the side effects 

of each therapy, cancer risk factors and preference of the patient. For radiotherapy planning 

of prostate cancer, prostate MRI is being increasingly used for delineation of the prostate 

gland, intraprostatic cancer foci and critical structures such as the urethra, bladder, rectum, 

and neurovascular bundle. Delineation of these areas is also important for focal ablative 

treatments as well as for focal dose escalation/de-escalation during radiotherapy (3). In 

prostate cancer radiotherapy, dose is largely limited by toxicity in organs or structures at 

risk. Although gastrointestinal toxicity has been reduced relative to other organs by the 

introduction of new radiotherapy techniques, genitourinary (GU) toxicities have remained 

relatively the same, with a 5-year rate of Grade >= 2 toxicity of approximately 15 

to 20%. Additional retrospective analyses evaluating the predictors of GU toxicity for 

novel radiotherapies such as stereotactic body radiation therapy (SBRT) have suggested a 

dosimetric relationship between urethral dose and toxicity (4,5). This relationship appears to 

be generalizable to other techniques of irradiation with different radiobiologic profiles such 

as LDR (6) and HDR brachytherapy (7). The urethra is a particularly vulnerable structure 

within the prostate because it lies centrally. Estimating the delivered dose to the urethra, 

which depends on accurate urethral delineation, may improve our understanding of urinary 

toxicity, and enable new methods to reduce radiotherapy toxicity (8). However, accurate 

delineation of the urethra on MRI requires expertise and is time consuming which mitigate 

against its routine use.

In a limited number of prior studies, CT-based AI models were developed to delineate foley 

- catheterized urethras (8,9). These studies have limitations in that their ground truth urethral 
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contours were obtained with a urinary catheter in place. Moreover, these previous studies 

have been performed on relatively small samples of 55–120 patients. A recently published 

review covering AI models for organs at risk also reported that the only other MRI-based AI 

model made for urethra segmentation also had a small sample size of 50 patients (10,11). 

In this study, our goal is to build off these prior works and develop an end-to-end urethra 

segmentation model based on non-catheterized prostate MRI.

METHODS

Study Population

For this dataset, patients were scanned between July 2011 and August 2021 for clinical 

suspicion or follow-up of prostate cancer. This cohort includes patients recruited as part 

of one or more IRB approved protocols, including radiologic profiling of prostate cancer 

(ClinicalTrials.gov Identifier: NCT03354416), patients undergoing MRI-fusion-guided 

prostate biopsy (NCT00102544), and patients undergoing surgical treatment for intermediate 

or high-risk prostate cancer (NCT02594202). Patients in the in-house institutional cohort 

underwent were performed using a 3 Tesla magnet (Achieva 3.0-T-TX or Ingenia Elition X, 

Philips Healthcare, Best, the Netherlands) with a 16-channel surface coil (SENSE, Philips 

Healthcare, Best, the Netherlands) and an endorectal coil (BPX-30, MEDRAD, Pittsburgh, 

Pennsylvania) in 402 patients. For patients where an endorectal coil was not able to be 

utilized, a 32-channel cardiac coil (SENSE, InVivo, Gainesville, Florida) was used instead 

(n= 447). The endorectal coil (BPX-30, MEDRAD, Pittsburgh, Pennsylvania) was inflated 

with perfluorocarbon (3mol/l Fluorinert) to a volume of 45 ml, therefore no additional 

susceptibility artifacts are observed with its use. In both acquisitions, T2-weighted turbo-

spin-echo acquisition sequences were obtained in the axial, sagittal, and coronal planes. 

Patient scans were excluded if T2W MRI quality was non-diagnostic (n=1). All T2W 

imaging acquisitions were oblique with respect to the longitudinal axis of the prostate. 

Further details on the acquisition parameters are provided in supplementary table.

An additional data source from the publicly available ProstateX challenge set was utilized. 

Briefly, the cohort is from 344 patients who underwent T2-weighted, proton density-

weighted, dynamic contrast enhanced and diffusion weighted imaging using the 3 Tesla 

MAGNETOM Trio and Skyra scanner systems (Siemens Healthineers, Erlangen, Germany) 

without the use of an endorectal coil (12,13). T2-weighted images were obtained using a 

turbo spin echo sequence. The in-house institutional database (n=844) plus a portion of the 

public PROSTATEx dataset (n=95), combined to an overall sample size of 939 patients.

MRI Data Preprocessing

Prostatic urethra was contoured manually by one dedicated genitourinary radiologist 

(cumulative experience of 14 years in reading prostate MRIs, 1000 MRI reads/year) on 

axial T2W MRI data using an in-house annotation tool (pseg, iCAD) (14). Only the prostatic 

urethra is segmented in each patient scan, excluding the membranous urethra.

Data was split into training and validation/test groups using the train_test_split function 

from pythons sklearn module (15). The partitions were 70% training (n=657) and the 
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remaining 30% was evenly split into validation/testing (n=282) using a random seed of 

42. Partitions are disjoint at the patient level, incorporating and randomizing all sources 

of scans (Institutional and External cases) between training, validation, and testing groups. 

Every MRI underwent the following preprocessing pipeline: field of view normalization, 

intensity normalization, intensity scaling from 0–10, image resizing to (256,256,32) by 

either padding or center cropping which creates data subsets from raw images. Patient data 

was de-identified by exporting only the image voxel information from patient DICOMs 

into 3D Nifti files. All model inference/evaluation was performed using these generated 

de-identified Nifti files. Missing or corrupted data was excluded from the final analysis.

AI Model Development

The proposed prostate urethra segmentation AI model was based on 3D UNet architecture 

which had residual units implemented with the ResidualUnit class (16,17). Each layer of 

the network had an encode and decode path with a skip connection between them. This 

model had down-/up-sampling channels of (16, 32, 64, 128, 256), strides of (2, 2, 2, 2), 4 

residual units, and dropout rate of 0.5 (Figure 1). The loss function used was the Dice loss 

which also excluded the background from calculation. The Adam optimizer was used with a 

learning rate of 3e-4. The proposed AI was developed using the MONAI framework, which 

is an open source, freely available, PyTorch-based framework for deep learning in healthcare 

imaging (18). To speed up testing different hyperparameters, the weights of the previously 

best trained model were used to initialize training of the new model. This model would take 

in raw MRI data, perform all preprocessing, and output the predicted urethra segmentation, 

making this an end-to-end product. Additionally, the following augmentations were applied 

to the training data: Adding random gaussian noise and performing random image rotations 

based on the affine matrix. The final model was selected based on evaluating the model 

outcome metrics such as Dice score on the validation data. The final model had the highest 

overall/bulk Dice score on the validation data.

AI Performance Evaluation and Statistical Analysis

The metrics of model performance that were gathered included the overall Dice score, 

organ-adjusted Dice score, organ-adjusted and length-partitioned Dice score, organ-adjusted 

Centerline Distance (CLD), and organ-adjusted and length-partitioned CLD (figures 2a and 

2b).

• CLD is defined as the average of the distances between the ground truth 

centerline and the centerline from the segmentation. The center of mass of each 

ground truth and prediction slice was found using the center_of_mass function 

from pythons SciPy module (19). The outputs of this function are the coordinate 

pairs of the center for each input image. The difference between these two 

coordinate pairs is computed and is then converted from voxels to millimeters 

using the defined spacing extracted from each scan.

• Dice: The “Overall” metric represents the Dice score on the validation/test cases 

without any form of post processing which includes predictions of both the 

prostatic and membranous urethra.
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• Organ-adjusted Dice refers to a corrected form of the Dice score that doesn’t 

penalize for cases where the prediction extends past the ground truth (ex. AI 

predicting both prostatic and membranous urethra). This correction only uses 

prediction slices where there is a corresponding ground truth (within prostate) 

and excludes the prediction slices where the corresponding ground truth label is 

absent (outside of prostate).

• Length partitioning refers to taking the organ-adjusted Dice score or CLD and 

stratifying the prostatic urethra into three separate groups corresponding to the 

upper third (base), mid third, and bottom third (apex).

The Wilcoxon rank sum test was used to determine statistical significance between groups. 

The output of the model is a 3D segmentation file that is registered to the T2-weighted 

image allowing for easy visualization of the predicted urethra path.

Failure Analysis

A failure analysis was incorporated to document and elucidate the AI model strengths 

and weaknesses by looking into the test cases and comparing ground truth to predictions. 

Examples of information gathered included if the predictions extended past the ground truth, 

relative size of predictions compared to ground truth, and presence of an asymmetrical 

prostate or not (assessed blindly by radiologist). An asymmetric prostate was defined as one 

containing BPH nodule(s) crossing midline of the transition zone and significantly altering 

the course of the urethra. Failure analysis revealed significant differences in performance 

on asymmetrical vs symmetrical prostates (figures 3a and 3b). Additionally, the failure 

analysis led to incorporating an organ-adjusted correction to correct for penalizing correct 

segmentation of membranous urethra by the AI.

RESULTS

Basic demographics of the study population within each model partition are presented in 

Table 1. The number of asymmetrical prostates was not assessed for training data but was 

assessed for the validation and testing data and found to be 20/141 and 23/140, respectively. 

Any comparisons of symmetric and asymmetric groups constitute the failure analysis are 

described in the methods.

Evaluation using Dice Coefficient

The non-organ-adjusted Dice score in the overall population was 0.59. The Wilcoxon 

rank sum test, shown in Figure 4, revealed a significant difference in Dice score between 

symmetrical and asymmetrical prostates (0.61 vs. 0.52, p<0.05).

Likewise, the Dice score for the organ-adjusted urethra was 0.61 in the overall population, 

and similarly, there was a significant difference in Dice score between asymmetrical 

prostates and asymmetrical (0.64 vs 0.51, p<0.05) as seen in Figure 5.

The organ-adjusted Dice score showed statistically significant differences between all pair-

wise comparison for both symmetrical (Apex, Mid, Base: 0.69 vs 0.67 vs 0.54 respectively, 

p<0.05) and asymmetrical (Apex, Mid, Base: 0.68 vs 0.52 vs 0.39 respectively, p<0.05) 
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prostates. Independent of symmetry, the algorithm predicted the location of the apical 

one-third of the urethra with greatest agreement and the base one-third with the lowest 

agreement. Box plots showing the distribution of these data are shown in Figure 6.

The performance of the algorithm showed a trend towards greater differences towards 

the base of the prostate between the overall population and symmetric and asymmetric 

subpopulations as shown in Figure 7. At the apex, there was no significant difference 

between each group by pair-wise comparison (Apex, Mid, Base: 0.69, 0.68, 0.69, p>0.05). 

At the mid-gland, the pair-wise comparison between these three groups revealed significant 

differences between the asymmetric and the symmetric subpopulations (0.52 vs. 0.67, p < 

0.05) and the asymmetric and overall population (0.52 vs 0.65, p<0.05) but no significant 

difference between the symmetric and overall population (0.67 vs 0.65 respectively, p>0.05). 

Finally, there was a similar pattern of differences observed at the base of the prostate 

with significant differences seen between the asymmetric subpopulation and the symmetric 

subpopulation (0.29 vs. 0.54, p < 0.05) and the asymmetric and overall population (0.29 

vs. 0.50, p < 0.05). Again, no significant difference in the organ-adjusted Dice score was 

observed between the symmetric subpopulation and overall population (0.54 vs. 0.50, p > 

0.05).

Evaluation using Centerline Distance

The AI algorithm was found to have mean performance dependent on craniocaudal 

sublocation within the gland as measured by the CLD metric as shown in Figure 8. 

Statistical testing revealed a significantly higher mean CLD in the asymmetric subpopulation 

as compared to the symmetric subpopulation (3.8mm vs. 2.3mm, p < 0.05) and overall 

population (3.8mm vs 2.6mm, p < 0.05). There was no significant difference between the 

mean CLD of the symmetric subpopulation and overall population (2.3mm vs. 2.6mm).

Within each subpopulation, the mean performance of the AI model was also dependent on 

craniocaudal sublocation as measured by CLD and displayed in Figure 9. For the symmetric 

prostate subpopulation, the mean CLD at the apex, mid-gland, and base were 1.43mm, 

2.15mm, and 3.28mm respectively. For the asymmetric subpopulation, the mean CLD were 

1.83mm, 3.1mm, and 6.24mm, respectively. In both subpopulations, a pair-wise comparison 

between the three sublocation showed that these differences were statistically significant.

The CLD of each subcomponent of the urethra (apex, mid-gland, base) was also compared 

between the symmetric subpopulation, asymmetric subpopulation, and overall population as 

shown in Figure 10. For the apical urethra, a pair-wise comparison showed no significant 

differences between the symmetric, asymmetric, and overall subpopulation (p>0.05). At the 

mid-gland, significant differences were seen between the mean CLD of the asymmetric 

subpopulation when compared to the symmetric subpopulation (3.11mm vs. 2.15mm, p 

< 0.05) and the overall population (3.11mm vs. 2.31mm, p < 0.05), but not between 

the symmetric subpopulation and overall population (2.15mm vs. 2.31mm, p > 0.05). 

Similarly, at the base, significant differences were seen in the mean CLD of the asymmetric 

subpopulation when compared to the symmetric subpopulation (6.24 mm vs. 3.28mm, p 

< 0.05) and the overall population (6.24mm vs. 3.68mm, p < 0.05), but not between the 

symmetric subpopulation and overall population (3.28mm vs. 3.73mm, p > 0.05).
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DISCUSSION

In this study, a fully automated AI model was successfully developed for segmenting the 

prostatic urethra from anatomic MRIs. The general trend for performance was highest at 

the apex and lowest at the base of the prostate (Figures 6,7,9,10). This urethra location-

dependent accuracy was more pronounced in cases that were asymmetrically enlarged with 

BPH, but only towards the base where the influence of the transition zone BPH is most 

prominent (Figures 5–10). The performance metrics suggest that this AI model can be 

accurately used in anatomic prostate MRIs as a tool that supports the clinicians’ workflow 

while they segment the prostatic urethra for treatment planning purposes. In the case of 

prostates with symmetrical BPH, this model can confidently predict the full urethra path, 

whereas for asymmetrical prostates, this model can confidently predict the path of the distal 

two-thirds and would likely need manual correction for the proximal one-third given the 

tortuosity of the urethra often observed at the base of the gland. In both scenarios, this AI 

model is likely to assist this labor-intensive segmentation task for clinicians and medical 

physicists who may be less familiar with detailed radiologic anatomy of the prostate gland.

In comparison with previous studies, our AI model was found to perform similarly. When 

our AI model is compared to the method found in Acosta et al. (8), the proposed AI model 

achieves better mean CLD in the mid and apical prostatic urethra positions, comparable 

mean CLD in the base, with an overall difference of 2.56mm vs 3.25mm. In comparison to 

the method found in Takagi et al. (9), the proposed AI model achieves worse mean CLD in 

the base and the mid, better mean CLD in the apex but worse overall mean CLD of 2.56mm 

vs 2.09mm. It is notable that the magnitude of the mean error in our predictive model as 

measured by the CLD of the overall urethra is within previously specified safety margins 

used in prospective clinical trials (20), although, as noted, at this time for clinical practice, 

manual verification with correction is still warranted especially in cases of asymmetric 

prostates at the base.

The performance differences between our study and prior works may be attributed to 

limitations with CT scans and use of urinary catheters for ground truth creation in the prior 

studies. As mentioned, the previously published work (8,9) trained their models on CT scans 

with each urethra localized with a urinary catheter in situ. Imaging with a urinary catheter is 

not commonplace for external beam radiotherapy planning and requires increased resource 

utilization and may increase the risk of infection (21). The application of a model trained 

and validated on datasets with a urinary catheter in situ may not predict the natural course 

of the urethra. One prior study which has investigated the difference in urethral location 

conditional on the presence or absence of a urinary catheter in situ provides evidence for 

this, estimating a median in-plane difference between urethral location of 2 mm between 

the two conditions and a clinically significant difference, defined by ≥ 3mm, in more than 

20% of patients studied. Of interest, these investigators found that the differences were the 

greatest at the base of the prostate gland (22) which is the sublocation that accounted for the 

greatest performance gap from the previous model proposed by Acosta and Takagi. Another 

prior study has shown that catheterization may produce rotational changes to both the 

urethra and prostate leading to subsequent errors in planning and delivered dosimetry (23). 

In combination, these studies highlight concerns with using models built on catheterized 
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CT data for standard clinical practice when urinary catheters are not regularly used in 

radiation planning studies. These models may have worse performance than our model under 

these conditions, inaccurately predicting non-catheterized urethral location and leading to a 

clinically significant overdose to the urethral tissue itself.

Our research findings have a few future implications. This end-to-end AI model 

only requires axial T2W MRI data and operates fully automated, which can assist 

urethral avoidance during external beam radiotherapy planning. Furthermore, automated 

segmentation of the urethra could be used to aid in large scale retrospective analyses 

attempting to find dosimetric correlates of toxicity or can be used for sessions of direct 

MRI-guided radiotherapy (e.g., MRIdian ViewRay). Finally, this AI model can be utilized to 

choose ideal candidates for image guided focal therapy applications and can help to avoid 

iatrogenic urethra injuries.

Our study has five main limitations. First, urethra annotations were prepared by a 

single highly experienced genitourinary radiologist. For AI model development, ideally, 

annotations should be made by multiple readers, however, our institutional infrastructure in 

this field did not permit this and although this can be viewed as a limitation, a uniform 

method of urethra segmentation is an advantage for obtaining consistent performance 

for this tedious task. Second, our model was not prospectively or retrospectively used 

for treatment planning purposes in this study, therefore its actual impact on this task 

is unknown. However, we aim to test this AI model in our radiation and focal therapy 

planning in near future. Third, the proportion of asymmetrical vs symmetrical BPH cases 

was not assessed for the training population since these variations were encountered during 

retrospective failure analysis phase of our study. Fourth, the results of the model are likely 

influenced by the heterogeneity of the training data from different MRI machines/protocols 

and multiple institutions. As a result, this model is not directly comparable to other models 

built on single institution, homogenous data. However, we view heterogeneity of data as 

a strength for AI models allowing for greater generalizability. Fifth, we did not split the 

data into cohorts and conduct sub-analyses comparing AI results on each source of data 

heterogeneity.

In conclusion, we developed an end-to-end AI approach which can automatically segment 

prostatic urethra with promising performance metrics. This AI model yielded superior 

performance in symmetric prostate glands and underperformed in prostate gland with heavy 

burdens of hyperplastic adenomas. This system can be potentially used to assist treatment 

planning in patients undergoing radiation therapy or focal therapy.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
UNet Training/Inference Workflow from raw input (MRI) to the output (white binary 

segmentation)
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Figure 2: 
(A) Centerline distance (CLD) calculation between ground truth and AI prediction. For 

length-partitioning, the urethra is split into 1/3s based on the z-dimension. (B) Organ-

adjusted (OA) calculations are based on preventing the penalization of the AI correctly 

segmenting the membranous urethra which is not captured by the ground truth.
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Figure 3. 
(A) Example of asymmetrical prostate gland with convoluted urethra path and (B) example 

of a symmetrical prostate gland with non-convoluted urethra path
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Figure 4. 
Non-organ Adjusted Dice Score: Asymmetrical vs Symmetrical
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Figure 5. 
Organ-adjusted Dice Score: Asymmetrical vs Symmetrical
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Figure 6. 
Organ-adjusted Dice Score vs Urethra Position for Symmetrical and Asymmetrical Prostates
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Figure 7. 
Organ-adjusted Dice Score vs Symmetrical and Asymmetrical Prostates Stratified by 

Urethra Position
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Figure 8. 
Centerline Difference of Ground Truth and Prediction stratified by prostate asymmetry 

status
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Figure 9. 
Centerline Difference of Ground Truth and Prediction Grouped by Symmetrical and 

Asymmetrical prostates and stratified by prostatic urethra location.
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Figure 10. 
Centerline Difference of Ground Truth and Prediction: Grouped by prostatic urethra location 

and stratified by presence of asymmetry.
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Table 1

Patient demographics per partition

Group Age (media 
n)

PSA (media 
n)

Prostate 
Volume (media 

n)

Asymmetrical 
Prostates (n=)

PROSTAT Ex 
Distribution (n=95)

ERC Distribution 
(n=402)

Train (n=657) 65.95 6.76 56 --- 64 284

Validation
(n=141)

65.65 8.07 51 20 18 63

Test (n=140) 66.11 6.25 56 23 13 55
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Table 2

Model Centerline Distance Results.

Acosta et al. (2017) 
Overall (n = 1)

Takagi et al. (2020) 
Overall (n = 20)

Belue et al. Non-
Asymmetrical (n = 117)

Belue et al. 
Asymmetrical (n = 23)

Belue et al. Overall 
(n = 140)

Top (Base)
1/3

3.7±1.7 mm 2.49±1.78 mm 3.28±1.91 mm 6.24±4.33 mm 3.73±2.64 mm

Middle
1/3

2.52±1.5 mm 1.86±0.89 mm 2.15±1.18 mm 3.11±1.92 mm 2.31±1.37 mm

Bottom
(Apex) 1/3

3.01±1.7 mm 1.92±0.94 mm 1.43±1.03 mm 1.83±1.04 mm 1.49±1.04 mm

Overall 3.25±1.2 mm 2.09±0.89 mm 2.32±0.94 mm 3.79±2.19 mm 2.56±1.34 mm
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